Different fatigue states of a soft composition of bulk ferroelectric lead zirconate titanate are characterized by measurement of the nonlinearity of domain wall motion. The dc field-dependent Rayleigh constants were measured for the dielectric as well as piezoelectric coefficients. The limits of the Rayleigh law near the coercive field and implications for the Preisach model are discussed. Due to fatigue, the nonlinearity of domain wall motion (Rayleigh coefficient) reduces stronger than the dielectric constant itself. 90° domain wall motion is more affected by fatigue than 180° switching which is displayed by an increasing disparity between the piezoelectric and dielectric Rayleigh constants. Like other material coefficients, fatigue as reflected in the Rayleigh coefficient is largely determined by the near electrode volume.

1.
K.
Uchino
,
Piezoelectric Actuators and Ultrasonic Motors
(
Kluwer
,
Boston
,
1997
).
2.
J. F.
Scott
,
Ferroelectric Memories
(
Springer
,
Heidelberg
,
2000
).
3.
D. C.
Lupascu
,
Fatigue in Ferroelectric Ceramics and Related Issues
(
Springer
,
Heidelberg
,
2004
).
4.
M. J.
Hoffmann
,
M.
Hammer
,
A.
Endriss
, and
D. C.
Lupascu
,
Acta Mater.
49
,
1301
(
2001
).
5.
H.
Kungl
, Ph.D. thesis, Karlsruhe, Germany,
2005
.
6.
D.
Damjanovic
,
Rep. Prog. Phys.
61
,
1267
(
1998
).
7.
D.
Taylor
,
D.
Damjanovic
,
E.
Colla
, and
N.
Setter
,
Ferroelectrics
225
,
91
(
1999
).
8.
D.
Taylor
,
D.
Damjanovic
,
E.
Colla
, and
N.
Setter
,
Ferroelectrics
225
,
897
(
1999
).
9.
L.
Rayleigh
,
Philos. Mag.
23
,
225
(
1887
).
10.
L.
Néel
,
Cah. Phys.
12
,
1
(
1942
).
11.
H.
Kronmüller
,
Z. Angew. Phys.
30
,
9
(
1970
).
12.
D. V.
Taylor
and
D.
Damjanovic
,
Appl. Phys. Lett.
73
,
2045
(
1998
).
13.
D. A.
Hall
,
J. Mater. Sci.
36
,
4575
(
2001
).
14.
O.
Boser
,
J. Appl. Phys.
62
,
1344
(
1987
).
15.
D.
Bolten
,
U.
Boettger
, and
R.
Waser
,
J. Appl. Phys.
93
,
1735
(
2003
).
16.
17.
I. D.
Mayergoyz
,
Mathematical Models of Hysteresis
(
Springer
,
New York
,
1991
).
18.
K. H.
Pfeffer
,
Phys. Status Solidi
21
,
857
(
1967
).
19.
A. J.
Masys
,
W.
Ren
,
G.
Yang
, and
B. K.
Mukherjee
,
J. Appl. Phys.
94
,
1155
(
2003
).
20.
J. L.
Sun
,
J.
Chen
,
X. J.
Meng
,
J.
Yu
,
X.
Bo
,
S. L.
Guo
, and
J. H.
Chu
,
Appl. Phys. Lett.
80
,
3584
(
2002
).
21.
Y.
Zhang
,
D. C.
Lupascu
,
E.
Aulbach
,
I.
Baturin
,
A.
Bell
, and
J.
Rödel
,
Acta Mater.
53
,
2203
(
2005
).
22.
G.
Robert
,
D.
Damjanovic
,
N.
Setter
, and
A. V.
Turik
,
J. Appl. Phys.
89
,
5067
(
2001
).
23.
Q. M.
Zhang
,
H.
Wang
,
N.
Kim
, and
L. E.
Cross
,
J. Appl. Phys.
75
,
454
(
1994
).
24.
A. T.
Bartic
,
D. J.
Wouters
,
H. E.
Maes
,
J. T.
Rickes
, and
R. M.
Waser
,
J. Appl. Phys.
89
,
3420
(
2001
).
25.
L.
Cima
and
E.
Labouré
,
J. Appl. Phys.
95
,
2654
(
2004
).
26.
L.
Cima
,
E.
Labouré
, and
P.
Muralt
,
Rev. Sci. Instrum.
73
,
3546
(
2002
).
27.
A. K.
Tagantsev
,
I.
Stolichnov
,
E. L.
Colla
, and
N.
Setter
,
J. Appl. Phys.
90
,
1387
(
2001
).
28.
A.
Stancu
,
D.
Ricinschi
,
L.
Mitoseriu
,
P.
Postolache
, and
M.
Okuyama
,
Appl. Phys. Lett.
83
,
3767
(
2003
).
29.
J.
Nuffer
,
D. C.
Lupascu
, and
J.
Rödel
,
Appl. Phys. Lett.
80
,
1049
(
2002
).
30.
D. C.
Lupascu
,
S.
Fedosov
,
C.
Verdier
,
H.
von Seggern
, and
J.
Rödel
,
J. Appl. Phys.
95
,
1386
(
2004
).
31.
O.
Lohse
,
M.
Grossmann
,
U.
Boettger
,
D.
Bolten
, and
R.
Waser
,
J. Appl. Phys.
89
,
2332
(
2001
).
32.
A.
Endriss
(private communication).
33.
D. C.
Lupascu
and
U.
Rabe
,
Phys. Rev. Lett.
89
,
187601
(
2002
).
34.
V. V.
Shvartsman
,
A. L.
Kholkin
,
C.
Verdier
, and
D. C.
Lupascu
,
J. Appl. Phys.
98
,
094109
(
2005
).
35.
R. E.
Newnham
and
V.
Sundar
,
Ferroelectrics
135
,
431
(
1992
).
36.
C.
Verdier
,
F. D.
Morrison
,
D. C.
Lupascu
, and
J. F.
Scott
,
J. Appl. Phys.
97
,
024107
(
2005
).
37.
Y.
Zhang
,
D. C.
Lupascu
,
N.
Balke
, and
J.
Rödel
,
J. Phys. IV
128
,
97
(
2005
).
You do not currently have access to this content.