The effects of shock loading on compressive yield strength are presented for several aluminum materials. These include commercially pure aluminum 1060, ultrapure aluminum, pure aluminum single crystal of [100] and [111] orientations, and aluminum alloy 6061-T6. The yield strength of these materials was measured by a cyclic shock loading technique in which the sample was first shocked to longitudinal stresses ranging from 4to22GPa, followed by complete release and then reshocked to final states of 431GPa. The results reveal that the yield strength of 6061-T6 alloy, as determined through measurement of its Hugoniot elastic limit during reshocking, remains unchanged after first shock loading and release. In contrast, the yield strength of all pure aluminum materials was found to increase during reshocking. In addition, plastic strain hardening was observed in all reshock wave profiles after the initial elastic response, as observed through substantially higher reshock wave speeds. This results in substantially higher reshock Hugoniot stresses than predicted by the original Hugoniot of aluminum at the same compression. The compressive yield strength at the reshock Hugoniot stress was estimated by comparing the first and second Hugoniot states and correcting for thermal effects. The results suggest that strain hardening during second shock compression is independent of first shock amplitudes over the range of 622GPa and appears to saturate for a first shock stress greater than 6GPa. The temperature correction for the Hugoniot mean stress shows that the increased temperature produced by second shock compression significantly reduces the flow strength during reshocking and makes the resultant strength strongly dependent on loading history.

1.
A. D.
Chijioke
,
W. J.
Neillis
, and
I. F.
Silvera
,
J. Appl. Phys.
98
,
073526
(
2005
).
2.
C. E.
Anderson
, Jr.
and
J. D.
Walker
,
Int. J. Impact Eng.
31
,
1119
(
2005
).
3.
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
74
,
21
(
1940
).
4.
S.
Merkel
,
J. F.
Shu
,
G. Y.
Shen
,
P.
Gillet
,
H. K.
Mao
, and
R. J.
Hemley
,
J. Geophys. Res.
107
,
2271
(
2002
).
5.
J.
Duffy
,
J. D.
Campbell
, and
R. H.
Hawley
,
J. Appl. Mech.
38
,
83
(
1971
).
6.
H.
Huang
and
R.
Feng
,
Int. J. Solids Struct.
41
,
2821
(
2004
).
7.
G. I.
Kanel
 et al,
Int. J. Impact Eng.
23
,
421
(
1999
).
8.
G. E.
Duvall
, in
Dynamic Response of Materials to Intense Impulsive Loading
, edited by
P. C.
Chou
and
A. K.
Hopkins
(
Wright Patterson Air Force Base
,
Air Force Materials Laboratory, OH
,
1973
), p.
89
121
.
9.
L. W.
Davison
and
R. A.
Graham
,
Phys. Rep.
55
,
256
(
1979
).
10.
G. R.
Fowles
,
J. Appl. Phys.
32
,
1475
(
1961
).
11.
R. J.
Clifton
,
M.
Mello
, and
N. S.
Brar
, in
Shock Compression of Condensed Matter-1997
, edited by
S. C.
Schmidt
,
D. P.
Dandekar
, and
J.
Forbes
(
American Institute of Physics
,
New York
,
1998
), p.
521
.
12.
G.
Yuan
,
R.
Feng
, and
Y. M.
Gupta
,
J. Appl. Phys.
89
,
5372
(
2001
).
13.
L. V.
Al’tshuler
,
M. N.
Pavlovskii
,
V. V.
Komissarov
, and
P. V.
Makarov
,
Combust., Explos. Shock Waves
35
,
92
(
1999
).
14.
R.
Feng
,
G. F.
Raiser
, and
Y. M.
Gupta
,
J. Appl. Phys.
79
,
1378
(
1996
).
15.
G.
Yuan
,
R.
Feng
,
Y. M.
Gupta
, and
K.
Zimmerman
,
J. Appl. Phys.
88
,
2371
(
2000
).
16.
H. M.
Simha
and
Y. M.
Gupta
,
J. Appl. Phys.
96
,
1880
(
2004
).
17.
M. J. C. F.
Millet
,
N. K.
Bourne
,
Z.
Rosenberg
, and
J. E.
Field
,
J. Appl. Phys.
86
,
6707
(
1999
).
18.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
41
,
4208
(
1970
).
19.
C. A.
Hall
 et al,
Rev. Sci. Instrum.
72
,
3587
(
2001
).
20.
K. T.
Lorenz
,
M. J.
Edwards
,
S. G.
Glendinning
,
A. F.
Jankowski
,
J.
McNaney
,
S. M.
Pollaine
, and
B. A.
Remington
,
Phys. Plasmas
12
,
056309
(
2005
).
21.
T. J.
Vogler
(private communication).
22.
E. M.
Bringa
,
A.
Caro
,
Y.
Wang
,
M.
Victoria
,
J. M.
McNaney
,
B. A.
Remington
,
R. F.
Smith
,
B. R.
Torralva
, and
H. Van
Swygenhoven
,
Science
309
,
1838
(
2005
).
23.
A.
Kubota
,
B.
Wolfer
, and
D.
Reisman
, in
Shock Compression of Condensed Matter-2005
(
American Institute of Physics
,
New York
, in press).
24.
J.
Lipkin
and
J. R.
Asay
,
J. Appl. Phys.
48
,
182
(
1977
).
25.
J. R.
Asay
and
J.
Lipkin
,
J. Appl. Phys.
49
,
4242
(
1978
).
26.
J. R.
Asay
and
L. C.
Chhabildas
, in
Shock Waves and High Strain-Rate Phenomena in Metals: Concepts and Applications
, edited by
M. A.
Meyers
and
L. E.
Murr
(
Plenum
,
New York
,
1981
), p.
417
.
27.
J. R.
Asay
,
L. C.
Chhabildas
, and
D. P.
Dandekar
,
J. Appl. Phys.
51
,
4774
(
1980
).
28.
L. C.
Chhabildas
,
J. L.
Wise
, and
J. R.
Asay
, in
Shock Compression of Condensed Matter-1981
, edited by
W. J.
Nellis
,
L.
Seaman
, and
R. A.
Graham
(
American Institute of Physics
,
New York
,
1982
), p.
422
.
29.
W. D.
Reinhart
and
L. C.
Chhabildas
,
Int. J. Impact Eng.
29
,
601
(
2003
).
30.
T. J.
Vogler
,
W. D.
Reinhart
, and
L. C.
Chhabildas
,
J. Appl. Phys.
95
,
4173
(
2004
).
31.
H.
Huang
and
J. R.
Asay
,
J. Appl. Phys.
98
,
033524
(
2005
).
32.
D. J.
Steinberg
,
S. G.
Cochran
, and
M. W.
Guinan
,
J. Appl. Phys.
51
,
1498
(
1980
).
33.
D. P.
Dandekar
,
P. J.
Gaeta
, and
Y.
Horie
, in
Shock Wave in Condensed Matter-1987
, edited by
S. C.
Schmidt
and
N. C.
Holmes
(
North-Holland
,
New York
,
1982
), p.
281
.
34.
J. N.
Johnson
and
L. M.
Barker
,
J. Appl. Phys.
40
,
4321
(
1969
).
35.
G. T.
Gray
 III
and
J. C.
Huang
,
Mater. Sci. Eng., A
145
,
21
(
1991
).
36.
G. T.
Gray
 III
, in
High-Pressure Shock Compression of Solids
, edited by
J. R.
Asay
and
M.
Shahinpoor
(
Springer-Verlag
,
New York
,
1993
), Chapter 6, p.
187
215
.
37.
A.
Rohatgi
,
K. S.
Vecchio
, and
G. T.
Gray
 III
,
Acta Mater.
49
,
427
(
2001
).
38.
G. R.
Fowles
,
G. E.
Duvall
,
J. R.
Asay
,
P.
Bellamy
,
F.
Feistmann
,
D. E.
Grady
,
T.
Michaels
, and
R.
Mitchell
,
Rev. Sci. Instrum.
41
,
984
(
1970
).
39.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
43
,
4669
(
1972
).
40.
L. M.
Barker
and
K. W.
Schuler
,
J. Appl. Phys.
45
,
3692
(
1974
).
41.
S. C.
Jones
and
Y. M.
Gupta
,
J. Appl. Phys.
88
,
5671
(
2000
).
42.
J. L.
Wise
and
L. C.
Chhabildas
, in
Shock Waves in Condensed Matter
, edited by
Y. M.
Gupta
(
Plenum
,
New York
,
1986
), p.
441
.
43.
A. C.
Mitchell
and
W. J.
Nellis
,
J. Appl. Phys.
52
,
3363
(
1981
).
44.
W. J.
Carter
,
High Temp. - High Press.
5
,
313
(
1973
).
45.
D. C.
Wallace
,
Phys. Rev. B
22
,
1487
(
1980
).
46.
J. N.
Johnson
,
J. Appl. Phys.
41
,
2330
(
1970
).
47.
M.
Cai
, Ph.D. thesis,
The University of Manchester
,
2003
.
48.
R. W. K.
Honeycombe
,
The Plastic Deformation of Metals
, 2nd ed. (
Edward Arnold Pty Ltd.
,
Australia
,
1984
).
49.
J. J.
Gilman
,
Micromechanics of Flow in Solids
(
McGraw-Hill
,
New York
,
1969
), p.
219
.
50.
J. W.
Swegle
and
D. E.
Grady
,
J. Appl. Phys.
58
,
692
(
1985
).
51.
D. C.
Wallace
,
Thermodynamics of Crystals
(
Wiley
,
New York
,
1972
), p.
376
.
52.
R. G.
McQueen
,
S. P.
Marsh
,
J. W.
Taylor
,
J. N.
Fritz
, and
W. J.
Carter
, in
High-Velocity Impact Phenomena
, edited by
R.
Kinslow
(
Academic
,
New York
,
1970
), p.
293
417
.
53.
M. D.
Knudson
(private communication).
54.
J. W.
Swegle
and
D. E.
Grady
, in
Metallurgical Application of Shock-wave And High-strain-rate Phenomena
, edited by
L. E.
Murr
,
K. P.
Standhammer
, and
M. A.
Meyers
(
Dekker
,
New York
,
1986
), p.
705
.
55.
D. L.
Preston
,
D. L.
Tonks
, and
D. C.
Wallace
,
J. Appl. Phys.
93
,
211
(
2003
).
56.
P. S.
Follansbee
and
U. F.
Kocks
,
Acta Metall.
36
,
81
(
1988
).
57.
F. J.
Zerilli
and
R. W.
Armstrong
,
J. Appl. Phys.
61
,
1816
(
1987
).
You do not currently have access to this content.