The effects of shock loading on compressive yield strength are presented for several aluminum materials. These include commercially pure aluminum 1060, ultrapure aluminum, pure aluminum single crystal of [100] and [111] orientations, and aluminum alloy 6061-T6. The yield strength of these materials was measured by a cyclic shock loading technique in which the sample was first shocked to longitudinal stresses ranging from , followed by complete release and then reshocked to final states of . The results reveal that the yield strength of 6061-T6 alloy, as determined through measurement of its Hugoniot elastic limit during reshocking, remains unchanged after first shock loading and release. In contrast, the yield strength of all pure aluminum materials was found to increase during reshocking. In addition, plastic strain hardening was observed in all reshock wave profiles after the initial elastic response, as observed through substantially higher reshock wave speeds. This results in substantially higher reshock Hugoniot stresses than predicted by the original Hugoniot of aluminum at the same compression. The compressive yield strength at the reshock Hugoniot stress was estimated by comparing the first and second Hugoniot states and correcting for thermal effects. The results suggest that strain hardening during second shock compression is independent of first shock amplitudes over the range of and appears to saturate for a first shock stress greater than . The temperature correction for the Hugoniot mean stress shows that the increased temperature produced by second shock compression significantly reduces the flow strength during reshocking and makes the resultant strength strongly dependent on loading history.
Skip Nav Destination
Article navigation
15 August 2006
Research Article|
August 23 2006
Reshock response of shock deformed aluminum
H. Huang;
H. Huang
Institute for Shock Physics,
Washington State University
, Pullman, Washington 99164-2816 and Department of Physics, Washington State University
, Pullman, Washington 99164-2816
Search for other works by this author on:
J. R. Asay
Institute for Shock Physics,
Washington State University
, Pullman, Washington 99164-2816 and Department of Physics, Washington State University
, Pullman, Washington 99164-2816
Search for other works by this author on:
a)
Electronic mail: jrasay@wsu.edu
J. Appl. Phys. 100, 043514 (2006)
Article history
Received:
March 31 2006
Accepted:
June 29 2006
Citation
H. Huang, J. R. Asay; Reshock response of shock deformed aluminum. J. Appl. Phys. 15 August 2006; 100 (4): 043514. https://doi.org/10.1063/1.2266234
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00