A first principles electronic structure based method is presented to determine the equivalent circuit representations of nanostructured physical systems at optical frequencies, via a mapping of the effective permittivity calculated for a lattice of physical nano-elements using density functional theory to that calculated for a lattice of impedances using circuit theory. Specifically, it is shown that silicon nanowires and carbon nanotubes can be represented as series combinations of inductance, capacitance and resistance. It is anticipated that the generality of this approach will allow for an alternate description of physical systems at optical frequencies, and in the realization of novel opto- and nanoelectronic devices, including negative refractive index materials.

1.
G. V.
Eleftheriades
and
K. G.
Balmain
,
Negative-Refraction Metamaterials: Fundamental Principles and Applications
(
Wiley
,
NJ
,
2005
).
2.
D. R.
Smith
,
J. B.
Pendry
, and
M. C. K.
Wiltshire
,
Science
305
,
788
(
2004
).
3.
J. B.
Pendry
and
D. R.
Smith
,
Phys. Today
57
,
37
(
2004
).
4.
J. B.
Pendry
,
A. J.
Holden
,
W. J.
Stewart
, and
I.
Youngs
,
Phys. Rev. Lett.
76
,
4773
(
1996
).
5.
J. B.
Pendry
,
A. J.
Holden
,
D. J.
Robbins
, and
W. J.
Stewart
,
IEEE Trans. Microwave Theory Tech.
47
,
2075
(
1999
).
6.
D. R.
Smith
,
W. J.
Padilla
,
D. C.
Vier
,
S. C.
Nemat-Nasser
, and
S.
Schultz
,
Phys. Rev. Lett.
84
,
4184
(
2000
).
7.
V. G.
Veselago
,
Sov. Phys. Usp.
10
,
509
(
1968
).
8.
See, for instance
P. Y.
Yu
and
M.
Cardona
, 3rd ed.,
Fundamentals of Semiconductors
(
Springer
,
Berlin
,
2005
), p.
261
.
9.
N.
Engheta
,
A.
Salandrino
, and
A.
Alu
,
Phys. Rev. Lett.
95
,
095504
(
2005
).
10.
A. K.
Sarychev
,
D. A.
Genov
,
A.
Wei
, and
V. M.
Shalaev
, in
Proceedings of SPIE, Complex Mediums IV: Beyond Linear Isotropic Dielectrics
, edited by
Martin W.
McCall
and
Graeme
Dewar
(
SPIE
,
Bellingham, WA
,
2003
), Vol.
5218
, p.
8192
.
11.
G. V.
Eleftheriades
,
A. K.
Iyer
, and
P. C.
Kremer
,
IEEE Trans. Microwave Theory Tech.
50
,
2702
(
2002
).
12.
N.
Engheta
,
N.
Bliznyuk
, and
A.
Alu
,
Dig. USNC-URSI National Radio Science Meeting
,
Monterey, CA
(
IEEE
,
Piscataway, NJ
,
2004
), p.
276
.
13.
A.
Alu
and
N.
Engheta
,
J. Opt. Soc. Am. B
23
,
571
(
2006
).
14.
V. M.
Shalaev
,
W.
Cai
,
U. K.
Chettiar
,
H.
Yuan
,
A. K.
Sarychev
,
V. P.
Drachev
, and
A. V.
Kildishev
,
Opt. Express
30
,
3356
(
2005
).
15.
D. M.
Pozar
,
Microwave Engineering
, 2nd ed. (
Wiley
,
New York
,
1998
).
16.
R.
Martin
,
Electronic Structure: Basic Theory and Practical Methods
(
Cambridge University Press
,
Cambridge
,
2004
).
17.
X.
Zhao
,
C. M.
Wei
,
L.
Yang
, and
M. Y.
Chou
,
Phys. Rev. Lett.
92
,
236805
(
2004
).
18.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
19.

d was fixed at the lattice spacing used in the DFT calculations along the x-y plane, C was obtained from the low frequency end of the real part of the dielectric function, L from the energy corresponding to ν0, and R by the requirement of best fit to the imaginary part of the dielectric function. The energy corresponding to νr was not explicitly used in the fit.

20.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. B
34
,
5390
(
1986
).
21.
M. L.
Cohen
and
J. R.
Chelikowsky
,
Electronic Structure and Optical Properties of Semiconductors
, 2nd ed. (
Springer
,
New York
,
1988
).
22.
G. Y.
Guo
,
K. C.
Chu
,
D. S.
Wang
, and
C. G.
Duan
,
Phys. Rev. B
69
,
205416
(
2004
).
You do not currently have access to this content.