The effect of light soaking (LS) on nanocrystalline porous silicon (nc-Si) is found to depend on the ambient conditions. Light soaking in air decreases the photoluminescence (PL) intensity and increases the number of dangling bond density measured by electron spin resonance (ESR) monotonically as the exposure time is increased. In vacuum, however, short light exposures increase the PL intensity and decrease the ESR signal, but longer exposures have the opposite effect. Thus PL intensity has a maximum as a function of exposure time. The temperature dependence of LS in vacuum is measured at 300, 325, and 350K. We found that the maximum PL intensity occurs at smaller exposure times as the temperature is increased. These results are explained in terms of two kinds of photostructural changes having opposite LS effects on the PL. Coating nc-Si with a thin layer of polystyrene stabilizes PL against light soaking as well as water vapor, without affecting the PL intensity significantly. Modified bonding configurations at the nc-Si/polystyrene interface, as observed by Fourier transform infrared, seem responsible for the improved stability.

1.
L. T.
Canham
,
Appl. Phys. Lett.
57
,
1046
(
1990
).
2.
O.
Bisi
,
S.
Ossicini
, and
L.
Pavesi
,
Surf. Sci. Rep.
38
,
1
(
2000
).
3.
P. A.
Snow
,
E. K.
Squire
,
P. St. J.
Russell
, and
L. T.
Canham
,
J. Appl. Phys.
86
,
1781
(
1999
).
4.
L.
Seals
,
J. L.
Gole
,
L. A.
Tse
, and
P. J.
Hesketh
,
J. Appl. Phys.
91
,
2519
(
2002
).
5.
C.
Tsai
,
K. H.
Li
,
J.
Sarathy
,
J. C.
Campbell
,
B. K.
Hance
, and
J. M.
White
,
Appl. Phys. Lett.
59
,
2814
(
1991
).
6.
R. R.
Koropecki
,
R. D.
Arce
, and
J. A.
Schmidt
,
Phys. Rev. B
69
,
205317
(
2004
) and references therein.
7.
S. M.
Prokes
,
W. E.
Carlos
,
L.
Seals
, and
J. L.
Gole
,
Phys. Rev. B
62
,
1878
(
2000
).
8.
B.
Gelloz
,
T.
Nakagawa
, and
N.
Koshida
,
Appl. Phys. Lett.
73
,
2021
(
1998
).
9.
X. L.
Wu
,
S. J.
Xiong
,
D. L.
Fan
,
Y.
Gu
,
X. M.
Bao
,
G. G.
Siu
, and
M. J.
Stokes
,
Phys. Rev. B
62
,
R7759
(
2000
).
10.
C. H.
Chen
and
Y. F.
Chen
,
Appl. Phys. Lett.
75
,
2560
(
1999
).
11.
S. T.
Lakshmikumar
and
P. K.
Singh
,
J. Appl. Phys.
92
,
3413
(
2002
).
12.
N. P.
Mandal
, Ph.D. thesis,
IIT Kanpur
,
2005
.
13.
N. P.
Mandal
,
S.
Dey
, and
S. C.
Agarwal
,
Thin Solid Films
451
,
375
(
2004
).
14.
S. C.
Agarwal
, in
Science and Technology of Nanostructred Materials
, edited by
B. K.
Rao
,
S. M.
Bose
,
M. P.
Das
, and
S. N.
Sahu
(
Nova
,
New York
,
2001
), p.
101
.
15.
N. P.
Mandal
and
S. C.
Agarwal
,
Mater. Res. Soc. Symp. Proc.
762
,
A17
18
(
2003
).
16.
H. J.
von Bardeleben
,
D.
Stievenard
,
M.
Chamarro
,
A.
Grosman
,
C.
Ortega
, and
J.
Siekja
,
J. Lumin.
57
,
39
(
1993
).
17.
J. C.
Mao
,
Y. Q.
Jia
,
J. S.
Fu
,
E.
Wu
,
B. R.
Zhang
,
L. Z.
Zhang
, and
G. G.
Qin
,
Appl. Phys. Lett.
62
,
1408
(
1993
).
18.
M.
Ben-Chorin
,
A.
Kux
, and
I.
Schechter
,
Appl. Phys. Lett.
64
,
481
(
1994
).
19.
H.
Yokomichi
,
H.
Takakura
, and
M.
Kondo
,
Jpn. J. Appl. Phys., Part 2
32
,
L365
(
1993
).
20.
N. P.
Mandal
,
S.
Dey
, and
S. C.
Agarwal
,
Proceedings of Seventh International Symposium on Advancement in Electrochemical Science and Technology (ISAEST-VII)
,
2002
(unpublished), p.
D92
.
21.
M. A.
Tischler
,
R. T.
Collins
,
J. H.
Stathis
, and
J. C.
Tsang
,
Appl. Phys. Lett.
60
,
639
(
1992
).
22.
N. P.
Mandal
,
A.
Sharma
, and
S. C.
Agarwal
,
Solid State Commun.
129
,
183
(
2004
).
23.
M.
Stutzmann
,
W. B.
Jackson
, and
C. C.
Tsai
,
Phys. Rev. B
32
,
23
(
1985
).
24.
T.
Matsumoto
,
M.
Kondo
,
S. V.
Nair
, and
Y.
Masumoto
,
J. Non-Cryst. Solids
227–230
,
320
(
1998
).
25.
D. L.
Staebler
and
C.
Wronski
,
Appl. Phys. Lett.
31
,
292
(
1977
).
26.
R. M.
Silverstein
,
G. C.
Bassler
, and
T. C.
Morrill
,
Spectrometric Identification of Organic Compounds
(
Wiley
,
New York
,
1974
), p.
139
.
27.
J.
Jang
and
N. K.
Lee
,
Chem. Commun. (Cambridge)
21
,
1098
(
2002
).
You do not currently have access to this content.