In ultrashort pulse (<10ps) laser ablation of dielectrics, affected materials are first transformed into absorbing plasma with metallic properties and, then, the subsequent laser-plasma interaction causes material removals. For ultrashort-pulse laser ablation of dielectrics, this study proposes a model using the Fokker-Planck equation for electron density distribution, a plasma model for the optical properties of ionized dielectrics, and quantum treatments for electron heating and relaxation time. The free electron density distribution of the plasma within the pulse duration is then used to determine the ablation crater shape. The predicted threshold fluences and ablation depths for barium aluminum borosilicate and fused silica are in agreement with published experimental data. It is found that the significantly varying optical properties in time and space are the key factors determining the ablation crater shape. The effects of fluence and pulse duration are also studied.

1.
G.
Dumitru
,
V.
Romano
,
H. P.
Weber
,
M.
Sentis
, and
W.
Marine
,
Appl. Phys. A: Mater. Sci. Process.
74
,
729
(
2001
).
2.
L.
Jiang
and
H. L.
Tsai
,
ASME J. Heat Transfer
127
,
1167
(
2005
).
3.
P. P.
Pronko
,
S. K.
Dutta
,
D.
Du
, and
R. K.
Singh
,
J. Appl. Phys.
78
,
6233
(
1995
).
4.
M.
Lenzner
,
J.
Krüger
,
S.
Sartania
,
Z.
Cheng
,
C.
Spielmann
,
G.
Mourou
,
W.
Kautek
, and
F.
Krausz
,
Phys. Rev. Lett.
80
,
4076
(
1998
).
5.
X.
Liu
,
D.
Du
, and
G.
Mourou
,
IEEE J. Quantum Electron.
33
,
1706
(
1997
).
6.
F.
Ladieu
,
P.
Martin
, and
S.
Guizard
,
Appl. Phys. Lett.
81
,
957
(
2002
).
7.
L.
Jiang
and
H. L.
Tsai
,
Proceedings of NSF Workshop on Research Needs in Thermal, Aspects of Material Removal
,
Stillwater, OK
,
2003
, p.
163
8.
R.
Stoian
,
D.
Ashkenasi
,
A.
Rosenfeld
, and
E. E. B.
Campbell
,
Phys. Rev. B
62
,
13167
(
2000
).
9.
A.
Tien
,
S.
Backus
,
H.
Kapteyn
,
M.
Murnane
, and
G.
Mourou
,
Phys. Rev. Lett.
82
,
3883
(
1999
).
10.
B. C.
Stuart
,
M. D.
Feit
,
S.
Herman
,
A. M.
Rubenchik
,
B. W.
Shore
, and
M. D.
Perry
,
Phys. Rev. B
53
,
1749
(
1996
).
11.
B. C.
Stuart
,
M. D.
Feit
,
A. M.
Rubenchik
,
B. W.
Shore
, and
M. D.
Perry
,
Phys. Rev. Lett.
74
,
2248
(
1995
).
12.
E. G.
Gamaly
,
A. V.
Rode
,
B.
Luther-Davies
, and
V. T.
Tikhonchuk
,
Phys. Plasmas
9
,
949
(
2002
).
13.
D.
Du
,
X.
Liu
,
G.
Korn
,
J.
Squier
, and
G.
Mourou
,
Appl. Phys. Lett.
64
,
3071
(
1994
).
14.
M. D.
Perry
,
B. C.
Stuart
,
P. S.
Banks
,
M. D.
Feit
,
V.
Yanovsky
, and
A. M.
Rubenchik
,
J. Appl. Phys.
85
,
6803
(
1999
).
15.
E. M.
Lifshitz
and
L. P.
Pitaevskii
,
Physical Kinetics
(
Pergamon
,
Oxford
,
1981
).
16.
B. K.
Ridley
,
Quantum Processes in Semiconductors
(
Clarendon
,
Oxford
,
1993
).
17.
L. V.
Keldysh
,
Sov. Phys. JETP
20
,
1307
(
1965
).
18.
B.
Rethfeld
,
A.
Kaiser
,
M.
Vicanek
, and
G.
Simon
,
Phys. Rev. B
65
,
214303
(
2002
).
19.
M.
Fox
,
Optical Properties of Solids
(
Oxford University Press
,
Oxford
,
2001
).
20.
Y. T.
Lee
and
R. M.
More
,
Phys. Fluids
27
,
1273
(
1984
).
21.
K.
Eidmann
,
J.
Meyer-ter-Vehn
,
T.
Schlegel
, and
S.
Hüller
,
Phys. Rev. E
62
,
1202
(
2000
).
22.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Holt, Rinehart, and Winston
,
New York
,
1976
).
23.
A. S.
Zakharov
,
M. V.
Volkov
,
I. P.
Gurov
,
V. V.
Temnov
,
K.
Sokolovski-Tinten
, and
D.
von der Linde
,
J. Opt. Technol.
69
,
478
(
2002
).
24.
Z.
Wu
,
H.
Jiang
,
Z.
Zhang
,
Q.
Sun
,
H.
Yang
, and
Q.
Gong
,
Opt. Express
10
,
1244
(
2002
).
25.
J.
Bonse
,
M.
Munz
, and
H.
Sturm
,
IEEE Trans. Nanotechnol.
3
,
358
(
2004
).
26.
J.
Krüger
and
W.
Kautek
,
Laser Phys.
9
,
30
(
1999
).
27.
S.
Kurosaki
,
M.
Kuriyama
, and
Y.
Ito
,
Machining of Micro-Holes on a Thin Glass Plate by Femtosecond Laser Pulses
,
Proceeding of ICALEO
,
Jacksonville, FL
(
2001
).
28.
M.
Lapczyna
,
K. P.
Chen
,
P. R.
Herman
,
H. W.
Tan
, and
R. S.
Marjoribanks
,
Appl. Phys. A: Mater. Sci. Process.
69
,
S883
(
1999
).
29.
P. R.
Herman
,
A.
Oettl
,
K. P.
Chen
, and
R. S.
Marjoribanks
,
Proc. SPIE
3616
,
148
(
1999
).
You do not currently have access to this content.