The resonant frequencies of cantilever beams can depend strongly on the fluid in which they are immersed. In this article, we expand on the method of Elmer and Dreier [J. Appl. Phys. 81, 7709 (1997)] and derive explicit analytical formulas for the flexural and torsional resonant frequencies of a rectangular cantilever beam immersed in an inviscid fluid. These results are directly applicable to cantilever beams of macroscopic size, where the effects of viscosity are negligible, and are valid for arbitrary mode number. In contrast to low mode numbers, in all cases it is found that the fluid has no effect on the resonant frequencies in the limit of infinite mode number.
REFERENCES
1.
R.
Berger
, Ch.
Gerber
, H. P.
Land
, and J. K.
Gimzewski
, Microelectron. Eng.
35
, 373
(1997
).2.
U. S.
Lindholm
, D. D.
Kana
, W.-H.
Chu
, and H. N.
Abramson
, J. Ship Res.
9
, 11
(1965
).3.
4.
5.
G.
Binnig
, C. F.
Quate
, and Ch.
Gerber
, Phys. Rev. Lett.
56
, 930
(1986
).6.
C. H.
Ho
and Y. C.
Tai
, Annu. Rev. Fluid Mech.
30
, 579
(1998
).7.
8.
C. P.
Green
and J. E.
Sader
, J. Appl. Phys.
92
, 6262
(2002
).9.
M. R.
Paul
and M. C.
Cross
, Phys. Rev. Lett.
92
, 235501
(2004
).10.
C. P.
Green
and J. E.
Sader
, J. Appl. Phys.
98
, 114913
(2005
).11.
S.
Basak
, A.
Raman
, and S. V.
Garimella
, J. Appl. Phys.
99
, 114906
(2006
).12.
M. R.
Paul
, M. T.
Clark
, and M. C.
Cross
, Nanotechnology
17
, 4502
(2006
).13.
J.
Dorignac
, A.
Kalinowski
, S.
Erramilli
, and P.
Mohanty
, Phys. Rev. Lett.
96
, 186105
(2006
).14.
J. W. M.
Chon
, P.
Mulvaney
, and J. E.
Sader
, J. Appl. Phys.
87
, 3978
(2000
).15.
W.-H.
Chu
, Southwest Research Institute Technical Report No. 2, DTMB, Contract NObs–86396 (X), 1963
(unpublished).16.
F.-J.
Elmer
and M.
Dreier
, J. Appl. Phys.
81
, 7709
(1997
). For the flexural mode, the hydrodynamic function , defined in Eq. (9) is related to Elmer’s “master function” , by ,.17.
G. K.
Batchelor
, An Introduction to Fluid Dynamics
(Cambridge University Press
, Cambridge
, 1974
).18.
19.
Y. L.
Luke
, The Special Functions and Their Approximations
(Academic
, New York
, 1969
).20.
M.
Abramowitz
and I. A.
Stegun
, Handbook of Mathematical Functions
(Dover
, New York
, 1972
).© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.