Natural porous structures are heterogeneous with multiple scales that are distributed nonuniformly. Few large pores (fissures, channels, and cracks) are accompanied by numerous finer channels. Can this type of flow architecture be attributed to a principle of maximization of global flow access? Features similar to those of multiscale porous structures are exhibited by tree-shaped flow structures. Trees have been deduced from the maximization of flow access between a point and a volume, a point and an area, and a point and a curve (e.g., circle). In this paper we invoke the same principle and consider fundamentally the question of how to bathe with minimal flow resistance a microchannel structure that globally behaves as a porous medium. We develop completely multiscale configurations that guide the flow from one side of the porous structure to the other (line to line and plane to plane) and show analytically the advantages of tree structures over the usual stacks of parallel microchannels. The “porous medium” that has tree-shaped labyrinths is heterogeneous, with multiple scales that are distributed nonuniformly. These features justify comparisons with the design of natural porous structures.

1.
A.
Bejan
,
Advanced Engineering Thermodynamics
, 2nd ed. (
Wiley
,
New York
,
1997
).
2.
A.
Bejan
,
Shape and Structure, from Engineering to Nature
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
3.
A.
Bejan
and
S.
Lorente
,
Int. J. Heat Mass Transfer
4
,
3203
(
2004
).
4.
A.
Bejan
and
S.
Lorente
,
La Loi Constructale
(
L’Harmattan
,
Paris
,
2005
).
5.
A.
Bejan
,
J. Exp. Biol.
208
,
1677
(
2005
).
6.
A.
Bejan
,
I.
Dincer
,
S.
Lorente
,
A. F.
Miguel
, and
A. H.
Reis
,
Porous and Complex Flow Structures in Modern Technologies
(
Springer
,
New York
,
2004
).
7.
G.
Hernandez
,
J. K.
Allen
, and
F.
Mistree
,
Eng. Optimiz.
35
,
229
(
2003
).
8.
H.
Brod
,
J. Non-Newtonian Fluid Mech.
111
,
107
(
2003
).
9.
D.
Tondeur
and
L.
Luo
,
Chem. Eng. Sci.
59
,
1799
(
2004
).
10.
L.
Gosselin
,
Int. J. Heat Mass Transfer
48
,
2159
(
2005
).
11.
Y.
Chen
and
P.
Cheng
,
Int. Commun. Heat Mass Transfer
32
,
931
(
2005
).
12.
A. Y.
Alharbi
,
D. V.
Pence
, and
R. N.
Cullion
,
J. Fluids Eng.
125
,
1051
(
2003
).
13.
A. D.
Kraus
,
ASME International Mechanical Engineering Congress and Exposition
,
Washington, DC
,
2003
.
14.
G. F.
Jones
and
S.
Ghassemi
,
ASME Heat Transfer∕Fluids Engineering Summer Conference
,
Charlotte, NC
, 11–15 July
2004
.
15.
S. M.
Senn
and
D.
Poulikakos
,
J. Power Sources
130
,
178
(
2004
).
16.
S. M.
Senn
and
D.
Poulikakos
,
J. Appl. Phys.
96
,
842
(
2004
).
17.
Y.
Azoumah
,
N.
Mazet
, and
P.
Neveu
,
Int. J. Heat Mass Transfer
47
,
2961
(
2004
).
18.
Y. S.
Muzychka
,
Int. J. Heat Mass Transfer
48
,
3119
(
2005
).
19.
F.
Lundell
,
B.
Thonon
, and
J. A.
Gruss
,
Second Conference on Microchannels and Minichannels
,
Rochester, NY
,
2004
.
20.
M.
Lallemand
,
F.
Ayela
,
M.
Favre-Marinet
,
A.
Gruss
,
D.
Maillet
,
P.
Marty
,
H.
Peerhossaini
, and
L.
Tadrist
,
Congrès Français de Thermique, SFT 2005
,
Reims
, 30 May–2 June
2005
.
21.
A. K.
Pramanick
and
P. K.
Das
,
Int. J. Heat Mass Transfer
48
,
1851
(
2005
).
22.
A. K.
Pramanick
and
P. K.
Das
,
Int. J. Heat Mass Transfer
48
,
1974
(
2005
).
23.
S.
Lorente
,
W.
Wechsatol
, and
A.
Bejan
,
Int. J. Heat Mass Transfer
45
,
3299
(
2002
).
24.
A.
Bejan
,
L. A. O.
Rocha
, and
S.
Lorente
,
Int. J. Therm. Sci.
39
,
949
(
2000
).
25.
D. A.
Nield
and
A.
Bejan
,
Convection in Porous Media
, 2nd ed. (
Springer
,
New York
,
1999
).
26.
D.
Szczerba
and
G.
Szekely
,
J. Theor. Biol.
234
,
87
(
2005
).
27.
M. R.
Errera
and
A.
Bejan
,
Fractals
6
,
245
(
1998
).
28.
A.
Bejan
and
S.
Lorente
,
J. Appl. Phys.
100
,
041301
(
2006
).
You do not currently have access to this content.