High electron mobility field effect transistors were fabricated on AlGaNGaN heterostructures and their magnetoresistance was measured at 4.2K up to 10T with simultaneous modulation of the gate potential. Low and high magnetic field data were used to determine the electron mobility (μ) and concentration (n), respectively, in the gated part of the transistor channel. With these measurements we present a method to determine μ and n under the gate of a transistor, which does not require knowledge of the transistor gate length, access resistance, threshold voltage, or capacitance. We discuss applications of this method for nanometer and ballistic transistors.

1.
For an overview of classical magnetotransport phenomena, see
A. C.
Beer
,
Galvanomagnetic Effects in Semiconductors
,
Solid State Physics Suppl. 4
Academic
,
New York
(
1963
);
M.
Shur
,
Physics of Semiconductor Devices
(
Prentice-Hall
,
Englewood, Cliffs, NJ
,
1990
).
2.
C.-S.
Chang
,
H. R.
Fetterman
, and
C. R.
Viswanathan
,
J. Appl. Phys.
66
,
928
(
1989
).
3.
Y. M.
Meziani
 et al.,
J. Appl. Phys.
96
,
5761
(
2004
).
4.
W.
Knap
,
F.
Teppe
,
Y.
Meziani
,
N.
Dyakonova
,
J.
Łusakowski
,
F.
Boeuf
,
T.
Skotnicki
,
D.
Maude
,
S.
Rumyantsev
, and
M. S.
Shur
,
Appl. Phys. Lett.
85
,
675
(
2004
).
5.
J.
Łusakowski
 et al.,
Appl. Phys. Lett.
87
,
053507
(
2005
).
6.
W.
Chaisanticulwat
,
M.
Mouis
,
G.
Ghibaudo
,
C.
Gallon
,
C.
Fenouillet-Beranger
,
D. K.
Maude
,
T.
Skotnicki
, and
S.
Cristoloveanu
,
Solid-State Electron.
50
,
637
(
2006
).
7.

The contact resistance is defined here as the resistance of metallic source and drain electrodes. The access resistance is defined as the resistance of the ungated part of the channel, present in HEMTs and absent in Si MOSFETs.

8.
J. M.
Lopez
,
T.
Gonzalez
,
D.
Pardo
,
S.
Bollaert
,
T.
Parenty
, and
A.
Cappy
,
IEEE Trans. Electron Devices
51
,
521
(
2004
).
9.
P.
Lorenzini
,
A.
Bougrioua
,
A.
Tiberj
,
R.
Tauk
,
M.
Azize
,
M.
Sakowicz
,
K.
Kapierz
, and
W.
Knap
,
Appl. Phys. Lett.
87
,
232107
(
2005
).
10.
S. J.
Papadakis
,
E. P.
De Poortere
,
H. C.
Manoharan
,
M.
Shayengan
, and
R.
Winkler
,
Science
283
,
2056
(
1999
).
11.
Z.
Bougrioua
,
M.
Azize
,
P.
Lorenzini
,
M.
Laügt
, and
H.
Haas
,
Phys. Status Solidi A
202
,
536
(
2005
).
12.
S.
Takagi
,
A.
Toriumi
,
M.
Iwase
, and
H.
Tango
,
IEEE Trans. Electron Devices
41
,
2357
(
1994
).
13.
J.
Łusakowski
 et al.,
Fiz. Tverd. Tela (S.-Peterburg)
46
,
138
(
2004
).
14.
S.-D.
Kim
,
C.-M.
Park
, and
J. C. S.
Woo
,
IEEE Trans. Electron Devices
49
,
457
(
2002
);
S.-D.
Kim
,
C.-M.
Park
, and
J. C. S.
Woo
,
IEEE Trans. Electron Devices
49
,
467
(
2002
).
15.
J.
Łusakowski
 et al.,
J. Appl. Phys.
97
,
064307
(
2005
).
16.
S.
Datta
,
Electronic Transport of Mesoscopic Systems
(
Cambridge University Press
,
Cambridge, UK
,
2003
).
17.
J.
Łusakowski
 et al.,
Solid-State Electron.
50
,
632
(
2006
).
18.
M. I.
Dyakonov
and
M. S.
Shur
, in
The 23rd International Conference on Physics of Semiconductors
, edited by
M.
Scheffler
and
R.
Zimmermann
(
World Scientific
,
Singapore
,
1996
), pp.
145
148
.
You do not currently have access to this content.