We investigate theoretically light- and bias-induced metastabilities in Cu(In,Ga)Se2 (CIGS) based solar cells, suggesting the Se–Cu divacancy complex (VSe-VCu) as the source of this hitherto puzzling phenomena. Due to its amphoteric nature, the (VSe-VCu) complex is able to convert by persistent carrier capture or emission from a shallow donor into a shallow acceptor configuration, and vice versa, thereby changing in a metastable fashion the local net acceptor density inside the CIGS absorber of the solar cell, e.g., a CdS/CIGS heterojunction. In order to establish a comprehensive picture of metastability caused by the (VSe-VCu) complex, we determine defect formation energies from first-principles calculations, employ numerical simulations of equilibrium defect thermodynamics, and develop a model for the transition dynamics after creation of a metastable nonequilibrium state. We find that the (VSe-VCu) complex can account for the light-induced metastabilities, i.e., the “red” and “blue” illumination effects, as well as for the reverse-bias effect. Thus, our (VSe-VCu) model implies that the different metastabilities observed in CIGS share a common origin. A defect state in the band gap caused by (VSe-VCu) in the acceptor configuration creates a potentially detrimental recombination center and may contribute to the saturation of the open circuit voltage in larger-gap Cu(In,Ga)Se2 alloys with higher Ga content. Therefore, the presence of metastable defects should be regarded as a concern for solar cell performance.

1.
M. N.
Ruberto
and
A.
Rothwarf
,
J. Appl. Phys.
61
,
4662
(
1987
).
2.
M.
Igalson
and
H. W.
Schock
,
J. Appl. Phys.
80
,
5765
(
1996
).
3.
U.
Rau
,
M.
Schmitt
,
J.
Parisi
,
W.
Riedl
, and
F.
Karg
,
Appl. Phys. Lett.
73
,
223
(
1998
).
4.
U.
Rau
,
A.
Jasenek
,
R.
Herberholz
,
H. W.
Schock
,
J. F.
Guillemoles
,
D.
Lincot
, and
L.
Kronik
, in
Proceedings of the Second World Conference on Photovoltaic Energy Conversion
(
E.C. Joint Res. Centre
,
Luxembourg
,
1998
), p.
428
.
5.
R.
Herberholz
, et al,
Eur. Phys. J.: Appl. Phys.
6
,
131
(
1999
).
6.
Th.
Meyer
,
M.
Schmidt
,
F.
Engelhard
,
J.
Parisi
, and
U.
Rau
,
Eur. Phys. J.: Appl. Phys.
8
,
43
(
1999
).
7.
U.
Rau
,
K.
Weinert
,
Q.
Nguyen
,
M.
Mamor
,
G.
Hanna
,
A.
Jasenek
, and
H. W.
Schock
,
Mater. Res. Soc. Symp. Proc.
668
,
H
9
1
1
(
2001
).
8.
P.
Zabierowski
,
U.
Rau
, and
M.
Igalson
,
Thin Solid Films
387
,
147
(
2001
).
9.
Th.
Meyer
,
F.
Engelhardt
,
J.
Parisi
, and
U.
Rau
,
J. Appl. Phys.
91
,
5093
(
2002
).
10.
M.
Igalson
,
M.
Bodegard
,
L.
Stolt
, and
A.
Jasenek
,
Thin Solid Films
431–432
,
153
(
2003
).
11.
J. T.
Heath
,
J. D.
Cohen
, and
W. N.
Shafarman
,
Thin Solid Films
431–432
,
426
(
2003
).
12.
J. T.
Heath
,
J. D.
Cohen
, and
W. N.
Shafarman
,
J. Appl. Phys.
95
,
1000
(
2004
).
13.
J. W.
Lee
,
J. T.
Heath
,
D.
Cohen
,
W. N.
Shafarman
,
Mater. Res. Soc. Symp. Proc.
865
,
F
12
4
1
(
2005
).
14.
J. W.
Lee
,
J. D.
Cohen
, and
W. N.
Shafarman
,
Thin Solid Films
480–481
,
336
(
2005
).
15.
M.
Igalson
,
M.
Cwil
, and
M.
Edoff
,
Proceedings of 20th European Photovoltaic Solar Energy Conference
(
WIP-Renewable Energies
,
München
,
2005
), p.
180
.
16.
D. L.
Young
,
K.
Ramanathan
, and
R. S.
Crandall
,
Proceedings of 31st IEEE Photovoltaic Specialists Conference
(
IEEE
,
Orlando
,
2005
), p.
259
.
17.
D. L.
Young
and
R. S.
Crandall
,
Appl. Phys. Lett.
86
,
262107
(
2005
).
18.
K.
Gartsman
 et al,
J. Appl. Phys.
82
,
4282
(
1997
).
19.
S.
Lany
and
A.
Zunger
,
Phys. Rev. Lett.
93
,
156404
(
2004
).
20.
S.
Lany
and
A.
Zunger
,
Phys. Rev. B
72
,
035215
(
2005
).
21.
J. T.
Heath
,
J. D.
Cohen
,
W. N.
Shafarman
,
D. X.
Liao
, and
A. A.
Rockett
,
Appl. Phys. Lett.
80
,
4540
(
2002
).
22.
Y.
Akaki
, et al,
Thin Solid Films
480–481
,
250
(
2005
).
23.
M.
Igalson
and
M.
Edoff
,
Thin Solid Films
480–481
,
322
(
2005
).
24.
J.
Ihm
,
A.
Zunger
, and
M. L.
Cohen
,
J. Phys. C
12
,
4409
(
1979
).
25.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
26.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
27.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
);
G.
Kresse
and
J.
Furthüller
,
Comput. Mater. Sci.
6
,
15
(
1996
);
G.
Kresse
and
J.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
28.

In principle, neither the experimental nor the LDA equilibrium lattice constant (usually smaller than the real lattice constant) represents an optimal situation. The choice of the LDA (equilibrium) lattice constant implies an overestimated overlap and, hence, interaction between defect and host orbitals, whereas the choice of the experimental (nonequilibrium) lattice constant implies the presence of some hydrostatic pressure acting on the lattice in the calculation. Fortunately, there are usually only minor differences in the defect formation and transition energies. Since the large lattice relaxation of the anion vacancies in II-VI compounds is particularly sensitive to the lattice constant (Ref. 20) the differences can be more pronounced, in the case of anion vacancies, however. For CIS and CGS, we confirmed by additional calculations that ΔH changes by not more than 0.2eV when using the LDA lattice constant.

29.
S.
Lany
,
Y. J.
Zhao
,
C.
Persson
, and
A.
Zunger
,
Appl. Phys. Lett.
86
,
042109
(
2005
).
30.
Y. J.
Zhao
,
C.
Persson
,
S.
Lany
, and
A.
Zunger
,
Appl. Phys. Lett.
85
,
5860
(
2004
).
31.
S. B.
Zhang
,
S. H.
Wei
,
A.
Zunger
, and
H.
Katayama-Yoshida
,
Phys. Rev. B
57
,
9642
(
1998
).
32.
C.
Persson
,
Y. J.
Zhao
,
S.
Lany
, and
A.
Zunger
,
Phys. Rev. B
72
,
035211
(
2005
).
33.
V. I.
Anisimov
,
I. V.
Solovyev
,
M. A.
Korotin
,
M. T.
Czyzyk
, and
G. A.
Sawatzky
,
Phys. Rev. B
48
,
16929
(
1993
);
A. I.
Liechtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
,
Phys. Rev. B
52
,
R5467
(
1995
).
34.
M.
Usuda
,
N.
Hamada
,
T.
Kotani
, and
M.
van Schilfgaarde
,
Phys. Rev. B
66
,
125101
(
2002
).
35.
L.
Hedin
and
S.
Lundqvist
, in
Solid State Physics
, edited by
F.
Seitz
,
D.
Turnbull
, and
H.
Ehrenreich
(
Academic
,
New York
,
1969
), Vol.
23
, p.
1
.
36.
H.
Weinert
,
H.
Neumann
,
H. J.
Höbler
,
G.
Kühn
, and
N.
Van Nam
,
Phys. Status Solidi B
81
,
K59
(
1977
).
37.
T.
Irie
,
S.
Endo
, and
S.
Kimura
,
Jpn. J. Appl. Phys.
18
,
1303
(
1979
).
38.

We determined mh*me=0.8 from fitting an effective-mass-like density of states (degeneracy factor of 2) to the numerical density of states, calculated in LDA including spin-orbit coupling. The obtained value is close to mh*me=0.73 determined experimentally in Ref. 37.

39.

In Ref. 20, we determined ΔV from the difference of the single-particle energy of the In-d(Ga-d) orbitals in the defect calculation relative to In-d(Ga-d) energy in the pure host. The present method appears to yield more consistent results and less uncontrolled scatter compared to the former method. Accordingly, the potential alignment ΔV for the (VSe-VCu) complex determined here differs by up to 0.2eV from that determined in Ref. 20. The most significant change is that we now find a shallow state of the acceptor configuration of (VSe-VCu), similar to the shallow state of the isolated VCu (see Table I). Before, we found a deeper state ε(0)=EV+0.27eV (Ref. 20) for the complex. Further, the deep acceptor levels of the isolated VSe now appear as closely spaced, but separate ε(0) and ε(2) levels, whereas we found a weak negative-U behavior and a ε(02) transition before. (Ref. 20).

40.
G.
Makov
and
M. C.
Payne
,
Phys. Rev. B
51
,
4014
(
1995
).
41.
U.
Gerstmann
,
P.
Deák
,
R.
Rurali
,
B.
Aradi
,
Th.
Frauenheim
, and
H.
Overhof
,
Physica B
340–342
,
190
(
2003
).
42.
S. H.
Wei
,
S. B.
Zhang
, and
A.
Zunger
,
Appl. Phys. Lett.
72
,
3199
(
1998
).
43.
J. F.
Guillemoles
,
U.
Rau
,
L.
Kronik
,
H. W.
Schock
, and
D.
Cahen
,
Adv. Mater. (Weinheim, Ger.)
11
,
957
(
1999
).
44.
Figure 4 was created with the visual molecular dynamics (VMD) package;
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
45.

The energy barriers ΔE1, ΔE2, and ΔE3 are actually determined for the isolated VSe. Since energies of the a and b defect levels and the mechanism of III-III bond formation/breakup that leads to the barriers is hardly affected upon complex formation with VCu, the respective energies for (VSe-VCu) are expected to be very similar.

46.
B.
Fernandez
and
S. M.
Wasim
,
Phys. Status Solidi A
122
,
235
(
1990
).
47.

For the electron capture, Eq. (2), the empty a level needs to be activated to energies below the CBM. Similarly, for the hole capture, Eq. (3), the occupied a level must be activated to energies above the VBM. This happens only for some fraction of the time 1νph needed for a full oscillation around the local minima in the CCD [Figs. 3(b) and 5(b)].

48.
M.
Igalson
(private communication).
49.
M.
Igalson
,
M.
Bodegard
, and
L.
Stolt
,
Sol. Energy Mater. Sol. Cells
80
,
195
(
2003
).
50.
S.
Niki
,
R.
Suzuki
,
S.
Ishibashi
,
T.
Ohdaira
,
P. J.
Fons
,
A.
Yamada
,
H.
Oyanagi
,
T.
Wada
,
R.
Kimura
, and
T.
Nakada
,
Thin Solid Films
387
,
129
(
2001
).
51.
S.
Niki
,
A.
Yamada
,
R.
Hunger
,
P. J.
Fons
,
K.
Iwata
,
K.
Matsubara
,
A.
Nishio
, and
H.
Nakanishi
,
J. Cryst. Growth
237–239
,
1993
(
2002
).
52.
W. N.
Shafarman
,
R.
Klenk
, and
B. E.
McCandless
,
J. Appl. Phys.
79
,
7324
(
1996
).
You do not currently have access to this content.