This paper considers the fundamental question of whether the optimal geometry of dendritic tree networks is symmetric or asymmetric. Asymmetry of dendritic networks is a result of the relation between flow resistance and flow fraction at each bifurcation node. Asymmetry of bifurcation (asymmetry of Y-shaped assemblies) appears when the flow fraction at each bifurcation node is not equal to one-half. Asymmetric bifurcation provides lower flow resistance than symmetric bifurcation. Murray’s law of bifurcation (Di+1Di=213) is valid only when the flow fraction at every bifurcation node in dendritic networks is one-half and the networks are symmetric. General rules to construct asymmetric trees are developed and reported in this paper. It is shown that even through pressure drops across round and square cross-sectional shape channels are different; their flow resistances can be expressed by similar relations.

1.
A.
Bejan
,
Shape and Structure, from Engineering to Nature
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
2.
J. C.
Ordonez
,
A.
Bejan
, and
R. S.
Cherry
,
Int. J. Therm. Sci.
42
,
857
(
2003
).
3.
C. D.
Murray
,
Proc. Natl. Acad. Sci. U.S.A.
12
,
207
(
1926
).
4.
5.
D. L.
Cohl
,
Bull. Math. Biophys.
17
,
219
(
1955
).
7.
W.
Schreiner
and
P. F.
Buxbaum
,
IEEE Trans. Biomed. Eng.
40
,
482
(
1993
).
8.
W.
Schreiner
,
M.
Neumann
,
F.
Neumann
,
S. M.
Rödler
,
A.
End
,
P. F.
Buxbaum
,
M. R.
Müller
, and
P.
Spieckermann
,
J. Gen. Physiol.
103
,
975
(
1994
).
9.
G.
Rabbitsch
,
K.
Perktold
, and
W.
Guggenberger
,
Computational Biomedicine
, edited by
K. D.
Held
,
C. A.
Brebbia
,
R. D.
Ciskowski
, and
H.
Power
(
Computational Mechanics
,
Swansea
, Wales,
1993
).
10.
Y.
Chen
and
P.
Cheng
,
Int. J. Heat Mass Transfer
44
,
699
(
2002
).
11.
G. A.
Ledezma
,
A.
Bejan
, and
M. R.
Errera
,
J. Appl. Phys.
82
,
89
(
1997
).
12.
A.
Bejan
,
Int. J. Heat Mass Transfer
40
,
799
(
1997
).
13.
A.
Bejan
,
Int. J. Heat Mass Transfer
45
,
4607
(
2002
).
14.
A. K.
da Silva
,
C.
Vasile
, and
A.
Bejan
,
Int. J. Heat Mass Transfer
47
,
4257
(
2004
).
15.
A. K.
da Silva
,
S.
Lorente
, and
A.
Bejan
,
J. Appl. Phys.
96
,
1709
(
2004
).
16.
W.
Wechsatol
,
S.
Lorente
, and
A.
Bejan
,
Int. J. Heat Mass Transfer
46
,
4381
(
2003
).
17.
W.
Wechsatol
,
S.
Lorente
, and
A.
Bejan
,
Int. J. Exergy
1
,
2
(
2004
).
18.
W.
Wechsatol
,
S.
Lorente
, and
A.
Bejan
,
Int. J. Heat Mass Transfer
45
,
4911
(
2002
).
19.
S.
Lorente
,
W.
Wechsatol
, and
A.
Bejan
,
Int. J. Heat Technology
22
,
15
(
2004
).
20.
W.
Wechsatol
, Ph.D. thesis,
Duke University
,
2005
.
21.
L.
Gosselin
and
A.
Bejan
,
Int. J. Therm. Sci.
44
,
53
(
2005
).
22.
L.
Gosselin
,
Int. J. Heat Mass Transfer
48
,
2159
(
2005
).
23.
Y.
Azoumah
,
N.
Mazet
, and
P.
Neveu
,
Int. J. Heat Mass Transfer
47
,
2961
(
2004
).
24.
S. M.
Senn
and
D.
Poulikakos
,
J. Power Sources
130
,
178
(
2004
).
25.
S. M.
Senn
and
D.
Poulikakos
,
J. Appl. Phys.
96
,
842
(
2004
).
26.
J.
Mantzaras
 et al.,
Chimia
58
,
857
(
2004
).
27.
J.
Laminie
and
A.
Dicks
,
Fuel Cell Systems Explained
2nd ed. (
Wiley
,
New York
,
2003
).
28.
S. C.
Singhal
and
K.
Kendall
,
High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
(
Elsevier
,
New York
,
2005
).
29.
C. M.
Ho
and
Y. C.
Tai
,
Annu. Rev. Fluid Mech.
30
,
579
(
1998
).
30.
X. F.
Peng
and
G. P.
Peterson
,
Int. J. Heat Mass Transfer
39
,
2599
(
1996
).
31.
N. T.
Obot
,
Microscale Thermophys. Eng.
6
,
155
(
2002
).
32.
W.
Wechsatol
,
S.
Lorente
, and
A.
Bejan
,
Int. J. Heat Mass Transfer
49
,
2957
(
2006
).
33.
W.
Wechsatol
,
S.
Lorente
,
A.
Bejan
, and
J. C.
Ordonez
,
J. Hydraul. Eng.
(submitted).
34.
F. M.
White
,
Viscous Fluid Flow
, 3rd ed. (
McGraw-Hill
,
New York
,
2006
).
35.
E. J.
Shaughnessy
, Jr.
,
I. M.
Katz
, and
J. P.
Schaffer
,
Introduction to Fluid Mechanics
(
Oxford University Press
,
Oxford
,
2005
).
36.
A.
Bejan
,
Convection Heat Transfer
, 3rd ed. (
Wiley
,
New York
,
2004
).
37.
S.
Lorente
,
W.
Wechsatol
, and
A.
Bejan
,
Int. J. Heat Mass Transfer
45
,
3299
(
2002
).
You do not currently have access to this content.