This study examines the thermoluminescence (TL) of ytterbium oxide (Yb2O3)-doped zirconia (ZrO2) in response to ultraviolet (UV) and synchrotron x-ray excitations. Experimental results demonstrate that, as well as a strong TL peak at 105°C and a weak peak at 205°C, another small peak appears at 150°C. The TL peak at 150°C exhibits dopant concentration quenching. The intensity of the two small peaks, particularly that at 150°C, increases rapidly with the energy of the photons. However, increasing the doping concentration of Yb2O3 reduces the intensity of both TL peaks at 105 and 205°C, and reduces the ZrO2 content in the monoclinic phase. This finding indicates that the intensities of both TL peaks at 105 and 205°C are associated with the ZrO2 content in the monoclinic phase. Additionally, the TL glow remains clearly observed from both undoped and doped samples after 48h of storage. Doping ZrO2 with Yb2O3 reduces the rate of fading of TL from the undoped ZrO2 sample. The stable TL peak of the Yb2O3 dopant at 150°C indicates its greater effectiveness than pure ZrO2 in dosimetry. These observations and their implications are discussed.

1.
N.
Claussen
,
M.
Ruhle
, and
A. H.
Heuer
,
Science and Technology of Zirconia II
,
Series in Advances in Ceramics
Vol.
12
(
American Ceramic Society
,
Columbus, OH
,
1984
).
2.
M.
Swain
,
Material Science and Technology
,
Structure and Properties of Ceramics
Vol.
11
(
VCH
,
New York
,
1994
), p.
101
.
3.
J.
Liopis
,
R.
Vila
, and
A.
Ibarra
,
J. Phys. Chem. Solids
52
,
903
(
1991
).
4.
J.
Llopis
,
Phys. Status Solidi A
119
,
661
(
1990
).
5.
W. C.
Hseih
and
C. S.
Su
,
Appl. Phys. A: Solids Surf.
58
,
459
(
1994
).
6.
E. P.
Butler
,
Mater. Sci. Technol.
1
,
417
(
1985
).
7.
C.
Bettinali
,
G.
Ferraresso
, and
J. W.
Manconi
,
J. Chem. Phys.
50
,
3957
(
1969
).
8.
J.
Azorín
,
T.
Rivera
,
C.
Falcony
,
M.
García
,
E.
Martínez
, and
C.
Otilio
, in
Tenth International Congress of the International Radiation Protection Association (IRPA 10)
,
Hiroshima, Japan
, 14–19 May
2000
(unpublished), Scientic topics-3, Dosimetry and Instrumentation, Paper No. P-3b-200.
9.
T.
Kron
,
Radiat. Prot. Dosim.
85
,
333
(
1999
).
10.
L. J.
Lai
,
T. C.
Chu
,
Y. C.
Hsu
, and
Y. H.
Chen
,
J. Appl. Phys.
97
,
113524
(
2005
).
11.
L. J.
Lai
and
C. S.
Su
,
J. Appl. Phys.
87
,
236
(
2000
).
12.
D. E.
Harrison
,
N. T.
Melamed
, and
E. C.
Subbarao
,
J. Electrochem. Soc.
110
,
23
(
1963
).
13.
P.
Iacconi
,
D.
Lapraz
, and
R.
Caruba
,
Phys. Status Solidi A
50
,
275
(
1978
).
14.
P. A.
Arsenev
,
K. S.
Bagdasarov
,
A.
Niklas
, and
A. D.
Ryazantsev
,
Phys. Status Solidi A
62
,
395
(
1980
).
15.
L. J.
Lai
and
C. S.
Su
,
J. Appl. Phys.
85
,
8362
(
1999
).
16.
W. T.
Elam
,
J. P.
Kirkland
,
R. A.
Neiser
, and
P. D.
Wolf
,
Phys. Rev. B
38
,
26
(
1988
).
17.
S. W. S.
McKeever
,
Thermoluminescence of Solids
(
Cambridge University Press
,
Cambridge
,
1985
), Chap. 4.
18.
W. L.
Medlin
,
J. Chem. Phys.
34
,
672
(
1961
).
19.
P. D.
Johnson
and
F. E.
Williams
,
J. Chem. Phys.
18
,
1477
(
1950
).
20.
C.
Sallé
,
F.
Ferey
,
P.
Grosseau
,
B.
Guilhot
,
P.
Iacconi
,
M.
Benabdesselam
, and
G.
Fantozzi
,
J. Therm Anal. Calorim.
73
,
25
(
2003
).
21.
Y.
Kirsh
and
P. D.
Townsend
,
J. Phys. C
20
,
967
(
1987
).
22.
W. C.
Hsieh
and
C. S.
Su
,
J. Phys. D
27
,
1763
(
1994
).
23.
J. F.
Sarver
,
J. Electrochem. Soc.
113
,
124
(
1966
).
24.
J. D.
McCullougy
and
K. N.
Trueblood
,
Acta Crystallogr.
12
,
507
(
1959
).
25.
S.
Emura
,
T.
Moriga
, and
J.
Takizawa
,
Phys. Rev. B
47
,
6918
(
1993
).
26.
A.
Erbil
,
G. S.
Cargill
 III
,
R.
Frahm
, and
R. F.
Boehme
,
Phys. Rev. B
37
,
2450
(
1988
).
27.
P.
Salas
,
E.
De La Rosa-Cruz
,
L. A.
Diaz-Torres
,
V. M.
Castaño
,
R.
Meléndrez
, and
M.
Barboza-Flores
,
Radiat. Meas.
37
,
187
(
2003
).
You do not currently have access to this content.