The present study aims to establish a theoretical proposition that the rate of macromolecular adsorption can be augmented with application of transverse electric fields across patterned walls of a microfluidic channel. First, an approximate fully developed velocity profile is derived, which is subsequently utilized to solve the species conservation equation pertaining to a combined advection-diffusion transport. Closed form solutions for the concentration field are subsequently obtained, in consistency with the typical second order kinetics of macromolecular adsorption. It is suggested that the transverse electric field and pattern angles can be regulated as independent parameters to maximize the rate of macromolecular adsorption under the prevailing conditions.

1.
W. B.
Russel
,
D. A.
Saville
, and
W. R.
Scowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
Cambridge
,
1989
).
2.
D. J.
Harrison
,
K.
Fluri
,
K.
Seiler
,
C. S.
Effenhauser
, and
A.
Manz
,
Science
57
,
895
(
1993
).
3.
M. J.
Heller
,
IEEE Eng. Med. Biol. Mag.
15
,
100
(
1996
).
4.
R. G.
Sosnowski
,
E.
Tu
,
W. F.
Butler
,
J. P.
O’Connell
, and
M. J.
Heller
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
1119
(
1997
).
5.
J. T.
Davies
and
E. K.
Rideal
,
Interfacial Phenomena
(
Academic
,
New York
,
1963
).
6.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
(
Willey
,
New York
,
1980
).
7.
8.
R. J.
Hunter
,
Foundations of Colloid Science
(
Oxford University Press
,
New York
,
1991
).
9.
S.
Das
,
T.
Das
, and
S.
Chakraborty
,
Microfluid Nanofluid
2
,
37
(
2006
).
10.
R. W.
Phillips
, in
Skinner Materiais Dentários
, edited by
J.
D’Albuquerque Lossio
(
Guanabara Koogan
,
Rio de Janeiro
,
1993
), Vol.
9
, p.
92
.
11.
I.
Rouzina
and
V. A.
Bloomfield
,
Biophys. J.
77
,
3242
(
1999
).
You do not currently have access to this content.