Triplet–triplet annihilation photon upconversion (TTA-UC) has emerged as a promising approach to enhance the photoconversion efficiency of solar-driven devices, such as solar cells and photocatalysts, by efficiently operating even under weak, incoherent incident light. Metal cluster-based sensitizers, owing to their molecule-like electronic states involving energetically split singlet and triplet states resulting from single-electron transitions, offer tunability of excited state (especially, triplet state) properties, making them highly attractive for TTA-UC applications. This review highlights recent advances in the utilization of ligand-protected metal clusters (LMCs) as triplet sensitizers, with a particular focus on key strategies such as linking of superatomic units, heteroatom substitution, and ligand engineering. Furthermore, we discuss how these design strategies influence intersystem crossing, triplet energy transfer, and overall TTA-UC performance. A more profound understanding of these factors is anticipated to facilitate the development of LMC-based TTA-UC systems, enabling their utilization across a wide range of applications.

1.
G.
Zhang
,
F. R.
Lin
,
F.
Qi
,
T.
Heumüller
,
A.
Distler
,
H.-J.
Egelhaaf
,
N.
Li
,
P. C. Y.
Chow
,
C. J.
Brabec
,
A. K. Y.
Jen
, and
H.-L.
Yip
, “
Renewed prospects for organic photovoltaics
,”
Chem. Rev.
122
(
18
),
14180
14274
(
2022
).
2.
N. A.
Romero
and
D. A.
Nicewicz
, “
Organic photoredox catalysis
,”
Chem. Rev.
116
(
17
),
10075
10166
(
2016
).
3.
Q.
Wang
and
K.
Domen
, “
Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies
,”
Chem. Rev.
120
(
2
),
919
985
(
2020
).
4.
J.
Zhou
,
Q.
Liu
,
W.
Feng
,
Y.
Sun
, and
F.
Li
, “
Upconversion luminescent materials: Advances and applications
,”
Chem. Rev.
115
(
1
),
395
465
(
2015
).
5.
R. R.
Islangulov
,
D. V.
Kozlov
, and
F. N.
Castellano
, “
Low power upconversion using MLCT sensitizers
,”
Chem. Commun.
2005
(
30
),
3776
3778
.
6.
A.
Monguzzi
,
F.
Bianchi
,
A.
Bianchi
,
M.
Mauri
,
R.
Simonutti
,
R.
Ruffo
,
R.
Tubino
, and
F.
Meinardi
, “
High efficiency up-converting single phase elastomers for photon managing applications
,”
Adv. Energy Mater.
3
(
5
),
680
686
(
2013
).
7.
A.
Nattestad
,
Y. Y.
Cheng
,
R. W.
MacQueen
,
T. F.
Schulze
,
F. W.
Thompson
,
A. J.
Mozer
,
B.
Fückel
,
T.
Khoury
,
M. J.
Crossley
,
K.
Lips
,
G. G.
Wallace
, and
T. W.
Schmidt
, “
Dye-sensitized solar cell with integrated triplet–triplet annihilation upconversion system
,”
J. Phys. Chem. Lett.
4
(
12
),
2073
2078
(
2013
).
8.
V.
Gray
,
D.
Dzebo
,
M.
Abrahamsson
,
B.
Albinsson
, and
K.
Moth-Poulsen
, “
Triplet–triplet annihilation photon-upconversion: Towards solar energy applications
,”
Phys. Chem. Chem. Phys.
16
(
22
),
10345
10352
(
2014
).
9.
H.-I.
Kim
,
O. S.
Kwon
,
S.
Kim
,
W.
Choi
, and
J.-H.
Kim
, “
Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts
,”
Energy Environ. Sci.
9
(
3
),
1063
1073
(
2016
).
10.
L.
Frazer
,
J. K.
Gallaher
, and
T. W.
Schmidt
, “
Optimizing the efficiency of solar photon upconversion
,”
ACS Energy Lett.
2
(
6
),
1346
1354
(
2017
).
11.
B. D.
Ravetz
,
A. B.
Pun
,
E. M.
Churchill
,
D. N.
Congreve
,
T.
Rovis
, and
L. M.
Campos
, “
Photoredox catalysis using infrared light via triplet fusion upconversion
,”
Nature
565
(
7739
),
343
346
(
2019
).
12.
Y.
Sasaki
,
M.
Oshikawa
,
P.
Bharmoria
,
H.
Kouno
,
A.
Hayashi-Takagi
,
M.
Sato
,
I.
Ajioka
,
N.
Yanai
, and
N.
Kimizuka
, “
Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels
,”
Angew. Chem., Int. Ed. Engl.
58
(
49
),
17827
17833
(
2019
).
13.
B. S.
Richards
,
D.
Hudry
,
D.
Busko
,
A.
Turshatov
, and
I. A.
Howard
, “
Photon upconversion for photovoltaics and photocatalysis: A critical review
,”
Chem. Rev.
121
(
15
),
9165
9195
(
2021
).
14.
L.
Huang
,
T.
Le
,
K.
Huang
, and
G.
Han
, “
Enzymatic enhancing of triplet–triplet annihilation upconversion by breaking oxygen quenching for background-free biological sensing
,”
Nat. Commun.
12
(
1
),
1898
(
2021
).
15.
L.
Naimovičius
,
P.
Bharmoria
, and
K.
Moth-Poulsen
, “
Triplet–triplet annihilation mediated photon upconversion solar energy systems
,”
Mater. Chem. Front.
7
(
12
),
2297
2315
(
2023
).
16.
F.
Edhborg
,
A.
Olesund
, and
B.
Albinsson
, “
Best practice in determining key photophysical parameters in triplet–triplet annihilation photon upconversion
,”
Photochem. Photobiol. Sci.
21
(
7
),
1143
1158
(
2022
).
17.
Y.
Zhou
,
F. N.
Castellano
,
T. W.
Schmidt
, and
K.
Hanson
, “
On the quantum yield of photon upconversion via triplet–triplet annihilation
,”
ACS Energy Lett.
5
(
7
),
2322
2326
(
2020
).
18.
S. M.
Bachilo
and
R. B.
Weisman
, “
Determination of triplet quantum yields from triplet−triplet annihilation fluorescence
,”
J. Phys. Chem. A
104
(
33
),
7711
7714
(
2000
).
19.
Y. Y.
Cheng
,
B.
Fückel
,
T.
Khoury
,
R. G. C. R.
Clady
,
M. J. Y.
Tayebjee
,
N. J.
Ekins-Daukes
,
M. J.
Crossley
, and
T. W.
Schmidt
, “
Kinetic analysis of photochemical upconversion by triplet−triplet annihilation: Beyond any spin statistical limit
,”
J. Phys. Chem. Lett.
1
(
12
),
1795
1799
(
2010
).
20.
A.
Monguzzi
,
J.
Mezyk
,
F.
Scotognella
,
R.
Tubino
, and
F.
Meinardi
, “
Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold
,”
Phys. Rev. B
78
(
19
),
195112
(
2008
).
21.
Y.
Murakami
and
K.
Kamada
, “
Kinetics of photon upconversion by triplet–triplet annihilation: A comprehensive tutorial
,”
Phys. Chem. Chem. Phys.
23
(
34
),
18268
18282
(
2021
).
22.
A.
Monguzzi
,
R.
Tubino
,
S.
Hoseinkhani
,
M.
Campione
, and
F.
Meinardi
, “
Low power, non-coherent sensitized photon up-conversion: Modelling and perspectives
,”
Phys. Chem. Chem. Phys.
14
(
13
),
4322
4332
(
2012
).
23.
S.
Hoseinkhani
,
R.
Tubino
,
F.
Meinardi
, and
A.
Monguzzi
, “
Achieving the photon up-conversion thermodynamic yield upper limit by sensitized triplet–triplet annihilation
,”
Phys. Chem. Chem. Phys.
17
(
6
),
4020
4024
(
2015
).
24.
N.
Nishimura
,
V.
Gray
,
J. R.
Allardice
,
Z.
Zhang
,
A.
Pershin
,
D.
Beljonne
, and
A.
Rao
, “
Photon upconversion from near-infrared to blue light with TIPS-anthracene as an efficient triplet–triplet annihilator
,”
ACS Mater. Lett.
1
(
6
),
660
664
(
2019
).
25.
D.
Arima
,
S.
Hidaka
,
S.
Yokomori
,
Y.
Niihori
,
Y.
Negishi
,
R.
Oyaizu
,
T.
Yoshinami
,
K.
Kobayashi
, and
M.
Mitsui
, “
Triplet-mediator ligand-protected metal nanocluster sensitizers for photon upconversion
,”
J. Am. Chem. Soc.
146
(
24
),
16630
16638
(
2024
).
26.
V.
Yakutkin
,
S.
Aleshchenkov
,
S.
Chernov
,
T.
Miteva
,
G.
Nelles
,
A.
Cheprakov
, and
S.
Baluschev
, “
Towards the IR limit of the triplet–triplet annihilation-supported up-conversion: Tetraanthraporphyrin
,”
Chem. Eur. J.
14
(
32
),
9846
9850
(
2008
).
27.
S.
Amemori
,
N.
Yanai
, and
N.
Kimizuka
, “
Metallonaphthalocyanines as triplet sensitizers for near-infrared photon upconversion beyond 850 nm
,”
Phys. Chem. Chem. Phys.
17
(
35
),
22557
22560
(
2015
).
28.
M.
Mahboub
,
Z.
Huang
, and
M. L.
Tang
, “
Efficient infrared-to-visible upconversion with subsolar irradiance
,”
Nano Lett.
16
(
11
),
7169
7175
(
2016
).
29.
Z.
Huang
,
Z.
Xu
,
M.
Mahboub
,
Z.
Liang
,
P.
Jaimes
,
P.
Xia
,
K. R.
Graham
,
M. L.
Tang
, and
T.
Lian
, “
Enhanced near-infrared-to-visible upconversion by synthetic control of PbS nanocrystal triplet photosensitizers
,”
J. Am. Chem. Soc.
141
(
25
),
9769
9772
(
2019
).
30.
T. N.
Singh-Rachford
,
A.
Nayak
,
M. L.
Muro-Small
,
S.
Goeb
,
M. J.
Therien
, and
F. N.
Castellano
, “
Supermolecular-chromophore-sensitized near-infrared-to-visible photon upconversion
,”
J. Am. Chem. Soc.
132
(
40
),
14203
14211
(
2010
).
31.
Z.
Huang
,
X.
Li
,
M.
Mahboub
,
K. M.
Hanson
,
V. M.
Nichols
,
H.
Le
,
M. L.
Tang
, and
C. J.
Bardeen
, “
Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared
,”
Nano Lett.
15
(
8
),
5552
5557
(
2015
).
32.
Z.
Huang
,
D. E.
Simpson
,
M.
Mahboub
,
X.
Li
, and
M. L.
Tang
, “
Ligand enhanced upconversion of near-infrared photons with nanocrystal light absorbers
,”
Chem. Sci.
7
(
7
),
4101
4104
(
2016
).
33.
N.
Nishimura
,
J. R.
Allardice
,
J.
Xiao
,
Q.
Gu
,
V.
Gray
, and
A.
Rao
, “
Photon upconversion utilizing energy beyond the band gap of crystalline silicon with a hybrid TES-ADT/PbS quantum dots system
,”
Chem. Sci.
10
(
18
),
4750
4760
(
2019
).
34.
E.
Radiunas
,
S.
Raišys
,
S.
Juršėnas
,
A.
Jozeliūnaitė
,
T.
Javorskis
,
U.
Šinkevičiūtė
,
E.
Orentas
, and
K.
Kazlauskas
, “
Understanding the limitations of NIR-to-visible photon upconversion in phthalocyanine-sensitized rubrene systems
,”
J. Mater. Chem. C
8
(
16
),
5525
5534
(
2020
).
35.
P.
Bharmoria
,
H.
Bildirir
, and
K.
Moth-Poulsen
, “
Triplet–triplet annihilation based near infrared to visible molecular photon upconversion
,”
Chem. Soc. Rev.
49
(
18
),
6529
6554
(
2020
).
36.
W.
Liang
,
C.
Nie
,
J.
Du
,
Y.
Han
,
G.
Zhao
,
F.
Yang
,
G.
Liang
, and
K.
Wu
, “
Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals
,”
Nat. Photonics
17
(
4
),
346
353
(
2023
).
37.
R.
Sun
,
J.
Zang
,
R.
Lai
,
W.
Yang
, and
B.
Ji
, “
Near-infrared-to-visible photon upconversion with efficiency exceeding 21% sensitized by InAs quantum dots
,”
J. Am. Chem. Soc.
146
(
26
),
17618
17623
(
2024
).
38.
M.
Mitsui
, “
Recent advances in understanding triplet states in metal nanoclusters: Their formation, energy transfer, and applications in photon upconversion
,”
J. Phys. Chem. Lett.
15
(
50
),
12257
12268
(
2024
).
39.
H. W.
Kroto
,
J. R.
Heath
,
S. C.
O'Brien
,
R. F.
Curl
, and
R. E.
Smalley
, “
C60: Buckminsterfullerene
,”
Nature
318
(
6042
),
162
163
(
1985
).
40.
H.
Tsunoyama
,
M.
Shibuta
,
M.
Nakaya
,
T.
Eguchi
, and
A.
Nakajima
, “
Synthesis and characterization of metal-encapsulating Si16 cage superatoms
,”
Acc. Chem. Res.
51
(
8
),
1735
1745
(
2018
).
41.
M. L.
Cohen
and
W. D.
Knight
, “
The physics of metal clusters
,”
Phys. Today
43
(
12
),
42
50
(
1990
).
42.
M.
Brust
,
M.
Walker
,
D.
Bethell
,
D. J.
Schiffrin
, and
R.
Whyman
, “
Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system
,”
J. Chem. Soc., Chem. Commun.
0
(
7
),
801
802
(
1994
).
43.
T. G.
Schaaff
,
M. N.
Shafigullin
,
J. T.
Khoury
,
I.
Vezmar
,
R. L.
Whetten
,
W. G.
Cullen
,
P. N.
First
,
C.
Gutiérrez-Wing
,
J.
Ascensio
, and
M. J.
Jose-Yacamán
, “
Isolation of smaller nanocrystal Au molecules: Robust quantum effects in optical spectra
,”
J. Phys. Chem. B
101
(
40
),
7885
7891
(
1997
).
44.
Y.
Negishi
,
K.
Nobusada
, and
T.
Tsukuda
, “
Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals
,”
J. Am. Chem. Soc.
127
(
14
),
5261
5270
(
2005
).
45.
M.
Zhu
,
C. M.
Aikens
,
M. P.
Hendrich
,
R.
Gupta
,
H.
Qian
,
G. C.
Schatz
, and
R.
Jin
, “
Reversible switching of magnetism in thiolate-protected Au25 superatoms
,”
J. Am. Chem. Soc.
131
(
7
),
2490
2492
(
2009
).
46.
P. D.
Jadzinsky
,
G.
Calero
,
C. J.
Ackerson
,
D. A.
Bushnell
, and
R. D.
Kornberg
, “
Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution
,”
Science
318
(
5849
),
430
433
(
2007
).
47.
T.
Tsukuda
, “
Toward an atomic-level understanding of size-specific properties of protected and stabilized gold clusters
,”
Bull. Chem. Soc. Jpn.
85
(
2
),
151
168
(
2012
).
48.
R.
Jin
,
C.
Zeng
,
M.
Zhou
, and
Y.
Chen
, “
Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities
,”
Chem. Rev.
116
(
18
),
10346
10413
(
2016
).
49.
I.
Chakraborty
and
T.
Pradeep
, “
Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles
,”
Chem. Rev.
117
(
12
),
8208
8271
(
2017
).
50.
X.
Kang
,
Y.
Li
,
M.
Zhu
, and
R.
Jin
, “
Atomically precise alloy nanoclusters: Syntheses, structures, and properties
,”
Chem. Soc. Rev.
49
(
17
),
6443
6514
(
2020
).
51.
M. H.
Naveen
,
R.
Khan
,
M. A.
Abbas
,
E.
Cho
,
G. J.
Lee
,
H.
Kim
,
E.
Sim
, and
J. H.
Bang
, “
Modulation of the photoelectrochemical behavior of Au nanocluster–TiO2 electrode by doping
,”
Chem. Sci.
11
(
24
),
6248
6255
(
2020
).
52.
M. A.
Abbas
,
T.-Y.
Kim
,
S. U.
Lee
,
Y. S.
Kang
, and
J. H.
Bang
, “
Exploring interfacial events in gold-nanocluster-sensitized solar cells: Insights into the effects of the cluster size and electrolyte on solar cell performance
,”
J. Am. Chem. Soc.
138
(
1
),
390
401
(
2016
).
53.
K.
Chu
,
Y.
Luo
,
D.
Wu
,
Z.
Su
,
J.
Shi
,
J. Z.
Zhang
, and
C.-Y.
Su
, “
Charge state of Au25(SG)18 nanoclusters induced by interaction with a metal organic framework support and its effect on catalytic performance
,”
J. Phys. Chem. Lett.
12
(
33
),
8003
8008
(
2021
).
54.
M.
Agrachev
,
S.
Antonello
,
T.
Dainese
,
J. A.
Gascón
,
F.
Pan
,
K.
Rissanen
,
M.
Ruzzi
,
A.
Venzo
,
A.
Zoleo
, and
F.
Maran
, “
A magnetic look into the protecting layer of Au25 clusters
,”
Chem. Sci.
7
(
12
),
6910
6918
(
2016
).
55.
Y.
Niihori
,
S.
Hossain
,
S.
Sharma
,
B.
Kumar
,
W.
Kurashige
, and
Y.
Negishi
, “
Understanding and practical use of ligand and metal exchange reactions in thiolate-protected metal clusters to synthesize controlled metal clusters
,”
Chem. Rec.
17
(
5
),
473
484
(
2017
).
56.
A.
Baghdasaryan
,
K.
Martin
,
L. M.
Lawson Daku
,
M.
Mastropasqua Talamo
,
N.
Avarvari
, and
T.
Bürgi
, “
Ligand exchange reactions on the chiral Au38 cluster: CD modulation caused by the modification of the ligand shell composition
,”
Nanoscale
12
(
35
),
18160
18170
(
2020
).
57.
X.
Kang
and
M.
Zhu
, “
Transformation of atomically precise nanoclusters by ligand-exchange
,”
Chem. Mater.
31
(
24
),
9939
9969
(
2019
).
58.
Y.
Wang
and
T.
Bürgi
, “
Ligand exchange reactions on thiolate-protected gold nanoclusters
,”
Nanoscale Adv.
3
(
10
),
2710
2727
(
2021
).
59.
A.
Ghosh
,
O. F.
Mohammed
, and
O. M.
Bakr
, “
Atomic-level doping of metal clusters
,”
Acc. Chem. Res.
51
(
12
),
3094
3103
(
2018
).
60.
T.
Kawawaki
,
Y.
Imai
,
D.
Suzuki
,
S.
Kato
,
I.
Kobayashi
,
T.
Suzuki
,
R.
Kaneko
,
S.
Hossain
, and
Y.
Negishi
, “
Atomically precise alloy nanoclusters
,”
Chemistry A
26
(
69
),
16150
16193
(
2020
).
61.
D. A.
Buschmann
,
H.
Hirai
, and
T.
Tsukuda
, “
Tuning photoluminescence properties of Au clusters by surface modification and doping: Lessons from case studies of icosahedral Au13
,”
Inorg. Chem. Front.
11
(
20
),
6694
6710
(
2024
).
62.
F.
Alkan
,
A.
Muñoz-Castro
, and
C. M.
Aikens
, “
Relativistic DFT investigation of electronic structure effects arising from doping the Au25 nanocluster with transition metals
,”
Nanoscale
9
(
41
),
15825
15834
(
2017
).
63.
C. A.
McCandler
,
A.
Pihlajamäki
,
S.
Malola
,
H.
Häkkinen
, and
K. A.
Persson
, “
Gold–thiolate nanocluster dynamics and intercluster reactions enabled by a machine learned interatomic potential
,”
ACS Nano
18
(
29
),
19014
19023
(
2024
).
64.
D.-E.
Jiang
, “
The expanding universe of thiolated gold nanoclusters and beyond
,”
Nanoscale
5
(
16
),
7149
7160
(
2013
).
65.
K.
Nobusada
and
T.
Iwasa
, “
Oligomeric gold clusters with vertex-sharing bi- and triicosahedral structures
,”
J. Phys. Chem. C
111
(
39
),
14279
14282
(
2007
).
66.
S.
Link
,
A.
Beeby
,
S.
FitzGerald
,
M. A.
El-Sayed
,
T. G.
Schaaff
, and
R. L.
Whetten
, “
Visible to infrared luminescence from a 28-atom gold cluster
,”
J. Phys. Chem. B
106
(
13
),
3410
3415
(
2002
).
67.
Q.
Yan
,
Z.
Yuan
,
Y.
Wu
,
C.
Zhou
,
Y.
Dai
,
X.
Wan
,
D.
Yang
,
X.
Liu
,
N.
Xue
,
Y.
Zhu
, and
Y.
Yang
, “
Atomically precise water-soluble gold nanoclusters: Synthesis and biomedical application
,”
Precis. Chem.
1
(
8
),
468
479
(
2023
).
68.
K. L. D. M.
Weerawardene
,
P.
Pandeya
,
M.
Zhou
,
Y.
Chen
,
R.
Jin
, and
C. M.
Aikens
, “
Luminescence and electron dynamics in atomically precise nanoclusters with eight superatomic electrons
,”
J. Am. Chem. Soc.
141
(
47
),
18715
18726
(
2019
).
69.
M. R.
Narouz
,
S.
Takano
,
P. A.
Lummis
,
T. I.
Levchenko
,
A.
Nazemi
,
S.
Kaappa
,
S.
Malola
,
G.
Yousefalizadeh
,
L. A.
Calhoun
,
K. G.
Stamplecoskie
,
H.
Häkkinen
,
T.
Tsukuda
, and
C. M.
Crudden
, “
Robust, highly luminescent Au13 superatoms protected by N-heterocyclic carbenes
,”
J. Am. Chem. Soc.
141
(
38
),
14997
15002
(
2019
).
70.
H.
Sakai
,
S.
Hiramatsu
,
A.
Akiyama
,
Y.
Negishi
, and
T.
Hasobe
, “
Sensitization experiments of ultrasmall gold nanoclusters: Determination of triplet quantum yields and molar absorption coefficients
,”
Chem. Commun.
61
(
5
),
913
916
(
2025
).
71.
W.-D.
Si
,
C.
Zhang
,
M.
Zhou
,
W.-D.
Tian
,
Z.
Wang
,
Q.
Hu
,
K.-P.
Song
,
L.
Feng
,
X.-Q.
Huang
,
Z.-Y.
Gao
,
C.-H.
Tung
, and
D.
Sun
, “
Two triplet emitting states in one emitter: Near-infrared dual-phosphorescent Au20 nanocluster
,”
Sci. Adv.
9
(
13
),
eadg3587
(
2023
).
72.
W.-D.
Tian
,
C.
Zhang
,
S.
Paul
,
W.-D.
Si
,
Z.
Wang
,
P.-P.
Sun
,
A.
Anoop
,
C.-H.
Tung
, and
D.
Sun
, “
Lattice modulation on singlet-triplet splitting of silver cluster boosting near-unity photoluminescence quantum yield
,”
Angew. Chem., Int. Ed.
64
(
11
),
e202421656
(
2025
).
73.
W.-Q.
Shi
,
L.
Zeng
,
Z.-C.
Long
,
Z.-J.
Guan
,
X.-S.
Han
,
F.
Hu
,
M.
Zhou
, and
Q.-M.
Wang
, “
Ligand effects on luminescence of atomically precise gold nanoclusters
,”
J. Phys. Chem. Lett.
16
(
9
),
2204
2211
(
2025
).
74.
W.-Q.
Shi
,
L.
Zeng
,
R.-L.
He
,
X.-S.
Han
,
Z.-J.
Guan
,
M.
Zhou
, and
Q.-M.
Wang
, “
Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster
,”
Science
383
(
6680
),
326
330
(
2024
).
75.
W.-D.
Tian
,
W.-D.
Si
,
S.
Havenridge
,
C.
Zhang
,
Z.
Wang
,
C. M.
Aikens
,
C.-H.
Tung
, and
D.
Sun
, “
Biomimetic crystallization for long-pursued –COOH-functionalized gold nanocluster with near-infrared phosphorescence
,”
Sci. Bull.
69
(
1
),
40
48
(
2024
).
76.
W.-D.
Si
,
C.
Zhang
,
M.
Zhou
,
Z.
Wang
,
L.
Feng
,
C.-H.
Tung
, and
D.
Sun
, “
Arylgold nanoclusters: Phenyl-stabilized Au44 with thermal-controlled NIR single/dual-channel phosphorescence
,”
Sci. Adv.
10
(
7
),
eadm6928
(
2024
).
77.
H.
Kawasaki
,
S.
Kumar
,
G.
Li
,
C.
Zeng
,
D. R.
Kauffman
,
J.
Yoshimoto
,
Y.
Iwasaki
, and
R.
Jin
, “
Generation of singlet oxygen by photoexcited Au25(SR)18 clusters
,”
Chem. Mater.
26
(
9
),
2777
2788
(
2014
).
78.
R.
Ho-Wu
,
S. H.
Yau
, and
T.
Goodson
III
, “
Efficient singlet oxygen generation in metal nanoclusters for two-photon photodynamic therapy applications
,”
J. Phys. Chem. B
121
(
43
),
10073
10080
(
2017
).
79.
M.
Agrachev
,
W.
Fei
,
S.
Antonello
,
S.
Bonacchi
,
T.
Dainese
,
A.
Zoleo
,
M.
Ruzzi
, and
F.
Maran
, “
Understanding and controlling the efficiency of Au24M(SR)18 nanoclusters as singlet-oxygen photosensitizers
,”
Chem. Sci.
11
(
13
),
3427
3440
(
2020
).
80.
H.
Fakhouri
,
M. P.
Bakulić
,
I.
Zhang
,
H.
Yuan
,
D.
Bain
,
F.
Rondepierre
,
P.-F.
Brevet
,
Ž. S.
Maršić
,
R.
Antoine
,
V.
Bonačić-Koutecký
, and
D.
Maysinger
, “
Ligand impact on reactive oxygen species generation of Au10 and Au25 nanoclusters upon one- and two-photon excitation
,”
Commun. Chem.
6
(
1
),
97
(
2023
).
81.
Y.
Niihori
,
Y.
Wada
, and
M.
Mitsui
, “
Single platinum atom doping to silver clusters enables near-infrared-to-blue photon upconversion
,”
Angew. Chem., Int. Ed.
60
(
6
),
2822
2827
(
2021
).
82.
D.
Arima
,
Y.
Niihori
, and
M.
Mitsui
, “
Unravelling the origin of dual photoluminescence in Au2Cu6 clusters by triplet sensitization and photon upconversion
,”
J. Mater. Chem. C
10
(
12
),
4597
4606
(
2022
).
83.
D.
Arima
and
M.
Mitsui
, “
Structurally flexible Au–Cu alloy nanoclusters enabling efficient triplet sensitization and photon upconversion
,”
J. Am. Chem. Soc.
145
(
12
),
6994
7004
(
2023
).
84.
K.
Yoshida
,
D.
Arima
, and
M.
Mitsui
, “
Dissecting the triplet-state properties and intersystem crossing mechanism of the ligand-protected Au13 superatom
,”
J. Phys. Chem. Lett.
14
(
49
),
10967
10973
(
2023
).
85.
M.
Mitsui
,
Y.
Wada
,
R.
Kishii
,
D.
Arima
, and
Y.
Niihori
, “
Evidence for triplet-state-dominated luminescence in biicosahedral superatomic molecular Au25 clusters
,”
Nanoscale
14
(
22
),
7974
7979
(
2022
).
86.
M.
Mitsui
,
Y.
Miyoshi
, and
D.
Arima
, “
Tailoring sensitization properties and improving near-infrared photon upconversion performance through alloying in superatomic molecular Au25 nanoclusters
,”
Nanoscale
16
(
31
),
14757
14765
(
2024
).
87.
M.
Mitsui
,
D.
Arima
,
Y.
Kobayashi
,
E.
Lee
, and
Y.
Niihori
, “
On the origin of photoluminescence enhancement in biicosahedral AgxAu25−x nanoclusters (x = 0–13) and their application to triplet–triplet annihilation photon upconversion
,”
Adv. Opt. Mater.
10
(
19
),
2200864
(
2022
).
88.
M.
Mitsui
and
A.
Uchida
, “
Triplet properties and intersystem crossing mechanism of PtAg28 nanocluster sensitizers achieving low threshold and efficient photon upconversion
,”
Nanoscale
16
(
6
),
3053
3060
(
2024
).
89.
Y.
Shichibu
and
K.
Konishi
, “
HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: A novel synthetic route to “magic-number” Au13 clusters
,”
Small
6
(
11
),
1216
1220
(
2010
).
90.
Y.
Shichibu
,
Y.
Negishi
,
T.
Watanabe
,
N. K.
Chaki
,
H.
Kawaguchi
, and
T.
Tsukuda
, “
Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2 − 18): A stepping stone to cluster-assembled materials
,”
J. Phys. Chem. C
111
(
22
),
7845
7847
(
2007
).
91.
R.
Jin
,
C.
Liu
,
S.
Zhao
,
A.
Das
,
H.
Xing
,
C.
Gayathri
,
Y.
Xing
,
N. L.
Rosi
,
R. R.
Gil
, and
R.
Jin
, “
Tri-icosahedral gold nanocluster [Au37(PPh3)10(SC2H4Ph)10X2]+: Linear assembly of icosahedral building blocks
,”
ACS Nano
9
(
8
),
8530
8536
(
2015
).
92.
Y.
Niihori
,
S.
Miyajima
,
A.
Ikeda
,
T.
Kosaka
, and
Y.
Negishi
, “
Vertex-shared linear superatomic molecules: Stepping stones to novel materials composed of noble metal clusters
,”
Small Sci.
3
(
5
),
2300024
(
2023
).
93.
C. P.
Joshi
,
M. S.
Bootharaju
,
M. J.
Alhilaly
, and
O. M.
Bakr
, “
[Ag25(SR)18]: The ‘golden’ silver nanoparticle
,”
J. Am. Chem. Soc.
137
(
36
),
11578
11581
(
2015
).
94.
X.
Liu
,
J.
Yuan
,
C.
Yao
,
J.
Chen
,
L.
Li
,
X.
Bao
,
J.
Yang
, and
Z.
Wu
, “
Crystal and solution photoluminescence of MAg24(SR)18 (M = Ag/Pd/Pt/Au) nanoclusters and some implications for the photoluminescence mechanisms
,”
J. Phys. Chem. C
121
(
25
),
13848
13853
(
2017
).
95.
L. G.
AbdulHalim
,
M. S.
Bootharaju
,
Q.
Tang
,
S.
Del Gobbo
,
R. G.
AbdulHalim
,
M.
Eddaoudi
,
D.-E.
Jiang
, and
O. M.
Bakr
, “
Ag29(BDT)12(TPP)4: A tetravalent nanocluster
,”
J. Am. Chem. Soc.
137
(
37
),
11970
11975
(
2015
).
96.
M. S.
Bootharaju
,
S. M.
Kozlov
,
Z.
Cao
,
M.
Harb
,
M. R.
Parida
,
M. N.
Hedhili
,
O. F.
Mohammed
,
O. M.
Bakr
,
L.
Cavallo
, and
J.-M.
Basset
, “
Direct versus ligand-exchange synthesis of [PtAg28(BDT)12(TPP)4]4− nanoclusters: Effect of a single-atom dopant on the optoelectronic and chemical properties
,”
Nanoscale
9
(
27
),
9529
9536
(
2017
).
97.
A. P.
Veenstra
,
L.
Monzel
,
A.
Baksi
,
J.
Czekner
,
S.
Lebedkin
,
E. K.
Schneider
,
T.
Pradeep
,
A.-N.
Unterreiner
, and
M. M.
Kappes
, “
Ultrafast intersystem crossing in isolated Ag29(BDT)123– probed by time-resolved pump–probe photoelectron spectroscopy
,”
J. Phys. Chem. Lett.
11
(
7
),
2675
2681
(
2020
).
98.
S.
Wang
,
X.
Meng
,
A.
Das
,
T.
Li
,
Y.
Song
,
T.
Cao
,
X.
Zhu
,
M.
Zhu
, and
R.
Jin
, “
A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25−x nanoclusters: The 13th silver atom matters
,”
Angew. Chem., Int. Ed.
53
(
9
),
2376
2380
(
2014
).
99.
X.
Kang
,
X.
Li
,
H.
Yu
,
Y.
Lv
,
G.
Sun
,
Y.
Li
,
S.
Wang
, and
M.
Zhu
, “
Modulating photo-luminescence of Au2Cu6 nanoclusters via ligand-engineering
,”
RSC Adv.
7
(
46
),
28606
28609
(
2017
).
100.
W.
Yu
,
D.
Hu
,
L.
Xiong
,
Y.
Li
,
X.
Kang
,
S.
Chen
,
S.
Wang
,
Y.
Pei
, and
M.
Zhu
, “
Isomer structural transformation in Au–Cu alloy nanoclusters: Water ripple-like transfer of thiol ligands
,”
Part. Part. Syst. Charact.
36
(
5
),
1800494
(
2019
).
101.
L.
Zeng
,
W.-Q.
Shi
,
J.
Kong
,
W.
Zhang
,
Q.-M.
Wang
,
Y.
Luo
, and
M.
Zhou
, “
Triplet energy transfer and photon upconversion from metal nanocluster with near-unity NIR emission quantum yield
,”
Adv. Opt. Mater.
13
(
11
),
2402991
(
2024
).
102.
X.
Kang
,
S.
Wang
,
Y.
Song
,
S.
Jin
,
G.
Sun
,
H.
Yu
, and
M.
Zhu
, “
Bimetallic Au2Cu6 nanoclusters: Strong luminescence induced by the aggregation of copper(I) complexes with gold(0) species
,”
Angew. Chem., Int. Ed.
55
(
11
),
3611
3614
(
2016
).
You do not currently have access to this content.