Macromolecular self-assembly is essential in life and interfacial science. A macromolecule consisting of chemically distinct components tends to self-assemble in a selective solvent to minimize the exposure of the solvophobic segments to the medium while the solvophilic segments adopt extended conformations. While micelles composed of linear block copolymers represent classic examples of such solution assembly, recent interest focuses on the self-assembly of complex macromolecules with nonlinear architectures, such as star, graft, and bottlebrush. Such macromolecules include several to hundreds of polymer chains covalently tied to a core and a backbone. The pre-programmed, non-exchangeable chain arrangement makes a huge difference in their self-assembly. The field has witnessed tremendous advances in synthetic methodologies to construct the desired architectures, leading to discoveries of exotic self-assembly behavior. Thanks to the rapid evolution of computing power, computer simulation has also been an emerging and complementary approach for understanding the association mechanism and further predicting the self-assembling morphologies. However, simulating the self-assembly of architected macromolecules has posed a challenge as a huge number of objects should be included in the simulations. Comparing experimental results with simulations is not always straightforward, as synthetic routes to well-defined model systems with systematically controlled structural parameters are not often available. In this manuscript, we propose to bridge a gap between experiments and simulations in self-assembly of architected macromolecules. We focus on the key articles in this area reporting experimental evidence and simulation details and also cover recent examples in the literature. We start with discussing simulation methodologies applicable to investigate solution self-assembly across multiple levels of chemical resolution from all-atom to particle dynamics. Then, we delve into topological design, synthesis, and simulation of nonlinear macromolecules, including dendritic/star, network, and graft/bottlebrush polymers, to understand the architectural effect on the self-assembly behavior. We expand our discourse to embrace recent advances toward realizing more complex systems. For example, self-assembly in the presence of strong Coulombic interactions, such as in the case of polyelectrolytes, geometric constraints, and other components in solutions, exemplified by inorganic fillers, are introduced. Finally, the challenges and perspectives are discussed in the final section of the manuscript.

1.
P. J.
Flory
, “
Thermodynamics of high polymer solutions
,”
J. Chem. Phys.
9
(
8
),
660
(
1941
).
2.
M. L.
Huggins
, “
Solutions of long chain compounds
,”
J. Chem. Phys.
9
(
5
),
440
(
1941
).
3.
N. Y.
Ahn
and
M.
Seo
, “
Synthetic route-dependent intramolecular segregation in heteroarm core cross-linked star polymers as Janus-like nanoobjects
,”
Polym. Chem.
11
(
2
),
449
460
(
2020
).
4.
B. J.
Alder
and
T. E.
Wainwright
, “
Studies in molecular dynamics. I. General method
,”
J. Chem. Phys.
31
(
2
),
459
466
(
1959
).
5.
A.
Rahman
and
F. H.
Stillinger
, “
Molecular dynamics study of liquid water
,”
J. Chem. Phys.
55
(
7
),
3336
3359
(
1971
).
6.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
(
1
),
511
519
(
1984
).
7.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
(
3
),
1695
1697
(
1985
).
8.
J. W.
Ponder
and
D. A.
Case
, “
Force fields for protein simulations
,”
Adv. Protein Chem.
66
,
27
85
(
2003
).
9.
W. L.
Jorgensen
and
J.
Tirado-Rives
, “
The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin
,”
J. Am. Chem. Soc.
110
(
6
),
1657
1666
(
1988
).
10.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
, “
CHARMM: A program for macromolecular energy, minimization, and dynamics calculations
,”
J. Comput. Chem.
4
(
2
),
187
217
(
1983
).
11.
Y.
Sasanuma
and
K.
Sugita
, “
The attractive gauche effect of ethylene oxides
,”
Polym. J.
38
(
9
),
983
988
(
2006
).
12.
J. S.
Kim
,
Z.
Wu
,
A. R.
Morrow
,
A.
Yethiraj
, and
A.
Yethiraj
, “
Self-diffusion and viscosity in electrolyte solutions
,”
J. Phys. Chem. B
116
(
39
),
12007
12013
(
2012
).
13.
J.
Wang
,
Y.
Qian
,
L.
Li
, and
X.
Qiu
, “
Atomic force microscopy and molecular dynamics simulations for study of lignin solution self-assembly mechanisms in organic–aqueous solvent mixtures
,”
ChemSusChem
13
(
17
),
4420
4427
(
2020
).
14.
P.
Ganguly
,
T.
Hajari
,
J. E.
Shea
, and
N. F. A.
Van Der Vegt
, “
Mutual exclusion of urea and trimethylamine n-oxide from amino acids in mixed solvent environment
,”
J. Phys. Chem. Lett.
6
(
4
),
581
585
(
2015
).
15.
R.
Alessandri
,
P. C. T.
Souza
,
S.
Thallmair
,
M. N.
Melo
,
A. H.
De Vries
, and
S. J.
Marrink
, “
Pitfalls of the Martini model
,”
J. Chem. Theory Comput.
15
(
10
),
5448
5460
(
2019
).
16.
A. N.
Hosseini
and
D.
van der Spoel
, “
Martini on the rocks: Can a coarse-grained force field model crystals?
,”
J. Phys. Chem. Lett.
15
(
4
),
1079
1088
(
2024
).
17.
M. W.
Matsen
and
M.
Schick
, “
Stable and unstable phases of a diblock copolymer melt
,”
Phys. Rev. Lett.
72
(
16
),
2660
(
1994
).
18.
M.
Murat
,
G. S.
Grest
, and
K.
Kremer
, “
Statics and dynamics of symmetric diblock copolymers: A molecular dynamics study
,”
Macromolecules
32
(
3
),
595
609
(
1999
).
19.
R. D.
Groot
and
P. B.
Warren
, “
Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation
,”
J. Chem. Phys.
107
(
11
),
4423
4435
(
1997
).
20.
T.
Frembgen-Kesner
and
A. H.
Elcock
, “
Striking effects of hydrodynamic interactions on the simulated diffusion and folding of proteins
,”
J. Chem. Theory Comput.
5
(
2
),
242
256
(
2009
).
21.
V.
Ganesan
and
G. H.
Fredrickson
, “
Field-theoretic polymer simulations
,”
Europhys. Lett.
55
(
6
),
814
(
2001
).
22.
M. W.
Matsen
, “
Field theoretic approach for block polymer melts: SCFT and FTS
,”
J. Chem. Phys.
152
(
11
),
110901
(
2020
).
23.
D.
Düchs
,
V.
Ganesan
,
G. H.
Fredrickson
, and
F.
Schmid
, “
Fluctuation effects in ternary AB + A + B polymeric emulsions
,”
Macromolecules
36
(
24
),
9237
9248
(
2003
).
24.
T. M.
Beardsley
,
R. K. W.
Spencer
, and
M. W.
Matsen
, “
Computationally efficient field-theoretic simulations for block copolymer melts
,”
Macromolecules
52
(
22
),
8840
8848
(
2019
).
25.
S. W.
Sides
,
B. J.
Kim
,
E. J.
Kramer
, and
G. H.
Fredrickson
, “
Hybrid particle-field simulations of polymer nanocomposites
,”
Phys. Rev. Lett.
96
(
25
),
250601
(
2006
).
26.
T. W.
Nam
,
J. W.
Jeong
,
M. J.
Choi
,
K. M.
Baek
,
J. M.
Kim
,
Y. H.
Hur
,
Y.
Kim
, and
Y. S.
Jung
, “
Single nanoparticle localization in the perforated lamellar phase of self-assembled block copolymer driven by entropy minimization
,”
Macromolecules
48
(
21
),
7938
7944
(
2015
).
27.
Y.
Kim
,
H.
Chen
, and
A.
Alexander-Katz
, “
Free energy landscape and localization of nanoparticles at block copolymer model defects
,”
Soft Matter
10
(
18
),
3284
3291
(
2014
).
28.
A. V.
Kyrylyuk
,
F. H.
Case
, and
J. G. E. M.
Fraaije
, “
Property prediction and hybrid modeling for combinatorial materials
,”
QSAR Comb. Sci.
24
(
1
),
131
137
(
2005
).
29.
V.
Percec
,
D. A.
Wilson
,
P.
Leowanawat
,
C. J.
Wilson
,
A. D.
Hughes
,
M. S.
Kaucher
,
D. A.
Hammer
,
D. H.
Levine
,
A. J.
Kim
,
F. S.
Bates
,
K. P.
Davis
,
T. P.
Lodge
,
M. L.
Klein
,
R. H.
Devane
,
E.
Aqad
,
B. M.
Rosen
,
A. O.
Argintaru
,
M. J.
Sienkowska
,
K.
Rissanen
,
S.
Nummelin
, and
J.
Ropponen
, “
Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures
,”
Science
328
(
5981
),
1009
1014
(
2010
).
30.
M. E.
Elizondo-García
,
V.
Márquez-Miranda
,
I.
Araya-Durán
,
J. A.
Valencia-Gallegos
, and
F. D.
González-Nilo
, “
Self-assembly behavior of amphiphilic Janus dendrimers in water: A combined experimental and coarse-grained molecular dynamics simulation approach
,”
Molecules
23
(
4
),
969
(
2018
).
31.
F. F.
Hu
,
Y. W.
Sun
,
Y. L.
Zhu
,
Y. N.
Huang
,
Z. W.
Li
, and
Z. Y.
Sun
, “
Enthalpy-driven self-assembly of amphiphilic Janus dendrimers into onion-like vesicles: A Janus particle model
,”
Nanoscale
11
(
37
),
17350
17356
(
2019
).
32.
B. M.
Rosen
,
D. A.
Wilson
,
C. J.
Wilson
,
M.
Peterca
,
B. C.
Won
,
C.
Huang
,
L. R.
Lipski
,
X.
Zeng
,
G.
Ungar
,
P. A.
Heiney
, and
V.
Percec
, “
Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendrons
,”
J. Am. Chem. Soc.
131
(
47
),
17500
17521
(
2009
).
33.
V.
Márquez-Miranda
,
I.
Araya-Durán
,
M. B.
Camarada
,
J.
Comer
,
J. A.
Valencia-Gallegos
, and
F. D.
González-Nilo
, “
Self-assembly of amphiphilic dendrimers: The role of generation and alkyl chain length in siRNA interaction
,”
Sci. Rep.
6
(
1
),
29436
(
2016
).
34.
C.
Yu
,
L.
Ma
,
K.
Li
,
S.
Li
,
Y.
Liu
,
L.
Liu
,
Y.
Zhou
, and
D.
Yan
, “
Computer simulation studies on the pH-responsive self-assembly of amphiphilic carboxy-terminated polyester dendrimers in aqueous solution
,”
Langmuir
33
(
1
),
388
399
(
2017
).
35.
H.
Tan
,
C.
Yu
,
Z.
Lu
,
Y.
Zhou
, and
D.
Yan
, “
A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents
,”
Soft Matter
13
(
36
),
6178
6188
(
2017
).
36.
M.
Rosati
,
A.
Acocella
,
A.
Pizzi
,
G.
Turtù
,
G.
Neri
,
N.
Demitri
,
Nonappa
,
G.
Raffaini
,
B.
Donnio
,
F.
Zerbetto
,
F. B.
Bombelli
,
G.
Cavallo
, and
P.
Metrangolo
, “
Janus-type dendrimers based on highly branched fluorinated chains with tunable self-assembly and 19F nuclear magnetic resonance properties
,”
Macromolecules
55
(
7
),
2486
2496
(
2022
).
37.
N.
Kern
and
D.
Frenkel
, “
Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction
,”
J. Chem. Phys.
118
(
21
),
9882
9889
(
2003
).
38.
Z. W.
Li
,
Y. L.
Zhu
,
Z. Y.
Lu
, and
Z. Y.
Sun
, “
A versatile model for soft patchy particles with various patch arrangements
,”
Soft Matter
12
(
3
),
741
749
(
2016
).
39.
Z. W.
Li
,
Z. Y.
Lu
,
Y. L.
Zhu
,
Z. Y.
Sun
, and
L. J.
An
, “
A simulation model for soft triblock Janus particles and their ordered packing
,”
RSC Adv.
3
(
3
),
813
822
(
2013
).
40.
Z. W.
Li
,
Z. Y.
Lu
,
Z. Y.
Sun
, and
L. J.
An
, “
Model, self-assembly structures, and phase diagram of soft Janus particles
,”
Soft Matter
8
(
25
),
6693
6697
(
2012
).
41.
V.
Percec
,
M. R.
Imam
,
M.
Peterca
,
D. A.
Wilson
, and
P. A.
Heiney
, “
Self-assembly of dendritic crowns into chiral supramolecular spheres
,”
J. Am. Chem. Soc.
131
(
3
),
1294
1304
(
2009
).
42.
V.
Percec
,
M. R.
Imam
,
M.
Peterca
,
D. A.
Wilson
,
R.
Graf
,
H. W.
Spiess
,
V. S. K.
Balagurusamy
, and
P. A.
Heiney
, “
Self-assembly of dendronized triphenylenes into helical pyramidal columns and chiral spheres
,”
J. Am. Chem. Soc.
131
(
22
),
7662
7677
(
2009
).
43.
H.
Sun
, “
Compass: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds
,”
J. Phys. Chem. B
102
(
38
),
7338
7364
(
1998
).
44.
S.
Strandman
,
A.
Zarembo
,
A. A.
Darinskii
,
P.
Laurinmäki
,
S. J.
Butcher
,
E.
Vuorimaa
,
H.
Lemmetyinen
, and
H.
Tenhu
, “
Effect of the number of arms on the association of amphiphilic star block copolymers
,”
Macromolecules
41
(
22
),
8855
8864
(
2008
).
45.
S.
Strandman
,
S.
Hietala
,
V.
Aseyev
,
B.
Koli
,
S. J.
Butcher
, and
H.
Tenhu
, “
Supramolecular assemblies of amphiphilic PMMA-block-PAA stars in aqueous solutions
,”
Polymer
47
(
19
),
6524
6535
(
2006
).
46.
H.
Yin
,
S. W.
Kang
, and
Y. H.
Bae
, “
Polymersome formation from AB2 type 3-miktoarm star copolymers
,”
Macromolecules
42
(
19
),
7456
7464
(
2009
).
47.
M.
Han
,
M.
Hong
, and
E.
Sim
, “
Influence of the block hydrophilicity of AB2 miktoarm star copolymers on cluster formation in solutions
,”
J. Chem. Phys.
134
(
20
),
204901
(
2011
).
48.
Z.
Li
,
E.
Kesselman
,
Y.
Talmon
,
M. A.
Hillmyer
, and
T. P.
Lodge
, “
Multicompartment micelles from ABC miktoarm stars in water
,”
Science
306
(
5693
),
98
101
(
2004
).
49.
W.
Kong
,
B.
Li
,
Q.
Jin
,
D.
Ding
, and
A. C.
Shi
, “
Helical vesicles, segmented semivesicles, and noncircular bilayer sheets from solution-state self-assembly of ABC miktoarm star terpolymers
,”
J. Am. Chem. Soc.
131
(
24
),
8503
8512
(
2009
).
50.
J.
Havránková
,
Z.
Limpouchová
,
M.
Štěpánek
, and
K.
Procházka
, “
Self-assembly of heteroarm star copolymers – A Monte Carlo study
,”
Macromol. Theory Simul.
16
(
4
),
386
398
(
2007
).
51.
P.
Bačová
,
E.
Glynos
,
S. H.
Anastasiadis
, and
V.
Harmandaris
, “
Nanostructuring single-molecule polymeric nanoparticles via macromolecular architecture
,”
ACS Nano
13
(
2
),
2439
2449
(
2019
).
52.
A. P. H. J.
Schenning
,
C.
Elissen-Román
,
J. W.
Weener
,
M. W. P. L.
Baars
,
S. J.
Van Der Gaast
, and
E. W.
Meijer
, “
Amphiphilic dendrimers as building blocks in supramolecular assemblies
,”
J. Am. Chem. Soc.
120
(
32
),
8199
8208
(
1998
).
53.
M. W. P. L.
Baars
,
A. J.
Karlsson
,
V.
Sorokin
,
B. F. W.
de Waal
, and
E. W.
Meijer
, “
Supramolecular modification of the periphery of dendrimers resulting in rigidity and functionality
,”
Angew. Chem.
112
(
23
),
4432
4435
(
2000
).
54.
J. F. G. A.
Jansen
,
E. M. M.
De Brabander-Van Den Berg
, and
E. W.
Meijer
, “
Encapsulation of guest molecules into a dendritic box
,”
Science
266
(
5188
),
1226
1229
(
1994
).
55.
M.
Liu
,
J. R.
Blankenship
,
A. E.
Levi
,
Q.
Fu
,
Z. M.
Hudson
, and
C. M.
Bates
, “
Miktoarm star polymers: Synthesis and applications
,”
Chem. Mater.
34
(
14
),
6188
6209
(
2022
).
56.
J.
Nam
,
Y. J.
Kim
,
J. G.
Kim
, and
M.
Seo
, “
Self-assembly of monolayer vesicles via backbone-shiftable synthesis of Janus core-shell bottlebrush polymer
,”
Macromolecules
52
(
24
),
9484
9494
(
2019
).
57.
J.
Nam
,
S.
Kwon
,
Y. G.
Yu
,
H. B.
Seo
,
J. S.
Lee
,
W. B.
Lee
,
Y. J.
Kim
, and
M.
Seo
, “
Folding of sequence-controlled graft copolymers to subdomain-defined single-chain nanoparticles
,”
Macromolecules
54
(
18
),
8829
8838
(
2021
).
58.
N. Y.
Ahn
,
S.
Kwon
,
S.
Cho
,
C.
Kang
,
J.
Jeon
,
W. B.
Lee
,
E.
Lee
,
Y.
Kim
, and
M.
Seo
, “
In situ supramolecular polymerization of micellar nanoobjects induced by polymerization
,”
ACS Macro Lett.
11
(
1
),
149
155
(
2022
).
59.
Z.
Li
,
M. A.
Hillmyer
, and
T. P.
Lodge
, “
Laterally nanostructured vesicles, polygonal bilayer sheets, and segmented wormlike micelles
,”
Nano Lett.
6
(
6
),
1245
1253
(
2006
).
60.
Z.
Li
,
M. A.
Hillmyer
, and
T. P.
Lodge
, “
Morphologies of multicompartment micelles formed by ABC miktoarm star terpolymers
,”
Langmuir
22
(
22
),
9409
9417
(
2006
).
61.
N.
Saito
,
C.
Liu
,
T. P.
Lodge
, and
M. A.
Hillmyer
, “
Multicompartment micelles from polyester-containing ABC miktoarm star terpolymers
,”
Macromolecules
41
(
22
),
8815
8822
(
2008
).
62.
Y.
Guo
,
Z.
Ma
,
Z.
Ding
, and
R. K. Y.
Li
, “
Kinetics of laterally nanostructured vesicle formation by self-assembly of miktoarm star terpolymers in aqueous solution
,”
Langmuir
29
(
41
),
12811
12817
(
2013
).
63.
H. Q.
Xie
and
J.
Xia
, “
Synthesis and properties of starshaped block copolymers of styrene and ethylene oxide
,”
Makromol. Chem.
188
,
2543
2552
(
1987
).
64.
O.
Glaied
,
C.
Delaite
, and
P.
Dumas
, “
Synthesis of A2B2 star block copolymers from a heterotetrafunctional initiator
,”
J. Polym. Sci., Part A
45
(
5
),
968
974
(
2007
).
65.
S.
Peleshanko
,
J.
Jeong
,
V. V.
Shevchenko
,
K. L.
Genson
,
Y.
Pikus
,
M.
Ornatska
,
S.
Petrash
, and
V. V.
Tsukruk
, “
Synthesis and properties of asymmetric heteroarm PEOn-b-PSm star polymers with end functionalities
,”
Macromolecules
37
(
20
),
7497
7506
(
2004
).
66.
J.
Teng
and
E. R.
Zubarev
, “
Synthesis and self-assembly of a heteroarm star amphiphile with 12 alternating arms and a well-defined core
,”
J. Am. Chem. Soc.
125
(
39
),
11840
11841
(
2003
).
67.
B.
Li
,
L.
Zhao
,
H. J.
Qian
, and
Z. Y.
Lu
, “
Coarse-grained simulation study on the self-assembly of miktoarm star-like block copolymers in various solvent conditions
,”
Soft Matter
10
(
13
),
2245
2252
(
2013
).
68.
J. M.
Ren
,
T. G.
McKenzie
,
Q.
Fu
,
E. H. H.
Wong
,
J.
Xu
,
Z.
An
,
S.
Shanmugam
,
T. P.
Davis
,
C.
Boyer
, and
G. G.
Qiao
, “
Star polymers
,”
Chem. Rev.
116
(
12
),
6743
6836
(
2016
).
69.
C.
Tsitsilianis
,
D.
Voulgaris
,
M.
Štěpánek
,
K.
Podhájecká
,
K.
Procházka
,
Z.
Tuzar
, and
W.
Brown
, “
Polystyrene/poly(2-vinylpyridine) heteroarm star copolymer micelles in aqueous media and onion type micelles stabilized by diblock copolymers
,”
Langmuir
16
(
17
),
6868
6876
(
2000
).
70.
N. Y.
Ahn
and
M.
Seo
, “
Heteroarm core cross-linked star polymers via RAFT copolymerization of styrene and bismaleimide
,”
RSC Adv.
6
(
53
),
47715
47722
(
2016
).
71.
A.
Blencowe
,
J. F.
Tan
,
T. K.
Goh
, and
G. G.
Qiao
, “
Core cross-linked star polymers via controlled radical polymerisation
,”
Polymer
50
(
1
),
5
32
(
2009
).
72.
A.
Kiriy
,
G.
Gorodyska
,
S.
Minko
,
M.
Stamm
, and
C.
Tsitsilianis
, “
Single molecules and associates of heteroarm star copolymer visualized by atomic force microscopy
,”
Macromolecules
36
(
23
),
8704
8711
(
2003
).
73.
X.
Wang
,
C. A.
Figg
,
X.
Lv
,
Y.
Yang
,
B. S.
Sumerlin
, and
Z.
An
, “
Star architecture promoting morphological transitions during polymerization-induced self-assembly
,”
ACS Macro Lett.
6
(
4
),
337
342
(
2017
).
74.
J.
Wang
,
J.
Li
,
Q.
Yao
,
X.
Sun
,
Y.
Yan
, and
J.
Zhang
, “
One-pot production of porous assemblies by PISA of star architecture copolymers: A simulation study
,”
Phys. Chem. Chem. Phys.
20
(
15
),
10069
10076
(
2018
).
75.
J.
Park
,
N. Y.
Ahn
, and
M.
Seo
, “
Cross-linking polymerization-induced self-assembly to produce branched core cross-linked star block polymer micelles
,”
Polym. Chem.
11
(
26
),
4335
4343
(
2020
).
76.
A. H.
Gröschel
,
A.
Walther
,
T. I.
Löbling
,
J.
Schmelz
,
A.
Hanisch
,
H.
Schmalz
, and
A. H. E.
Müller
, “
Facile, solution-based synthesis of soft, nanoscale Janus particles with tunable Janus balance
,”
J. Am. Chem. Soc.
134
(
33
),
13850
13860
(
2012
).
77.
X.
Ma
,
Y.
Zhou
,
L.
Zhang
,
J.
Lin
, and
X.
Tian
, “
Polymerization-like kinetics of the self-assembly of colloidal nanoparticles into supracolloidal polymers
,”
Nanoscale
10
(
35
),
16873
16880
(
2018
).
78.
X.
Ma
,
M.
Gu
,
L.
Zhang
,
J.
Lin
, and
X.
Tian
, “
Sequence-regulated supracolloidal copolymers via copolymerization-like coassembly of binary mixtures of patchy nanoparticles
,”
ACS Nano
13
(
2
),
1968
1976
(
2019
).
79.
K.
Liu
,
Z.
Nie
,
N.
Zhao
,
W.
Li
,
M.
Rubinstein
, and
E.
Kumacheva
, “
Step-growth polymerization of inorganic nanoparticles
,”
Science
329
(
5988
),
197
200
(
2010
).
80.
W. F. M.
Daniel
,
J.
Burdyńska
,
M.
Vatankhah-Varnoosfaderani
,
K.
Matyjaszewski
,
J.
Paturej
,
M.
Rubinstein
,
A. V.
Dobrynin
, and
S. S.
Sheiko
, “
Solvent-free, supersoft and superelastic bottlebrush melts and networks
,”
Nat. Mater.
15
(
2
),
183
189
(
2016
).
81.
H. Y.
Chang
,
Y. L.
Lin
,
Y. J.
Sheng
, and
H. K.
Tsao
, “
Structural characteristics and fusion pathways of onion-like multilayered polymersome formed by amphiphilic comb-like graft copolymers
,”
Macromolecules
46
(
14
),
5644
5656
(
2013
).
82.
M.
Li
,
G. L.
Li
,
Z.
Zhang
,
J.
Li
,
K. G.
Neoh
, and
E. T.
Kang
, “
Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media
,”
Polymer
51
(
15
),
3377
3386
(
2010
).
83.
Z.
Zhuang
,
T.
Jiang
,
J.
Lin
,
L.
Gao
,
C.
Yang
,
L.
Wang
, and
C.
Cai
, “
Hierarchical nanowires synthesized by supramolecular stepwise polymerization
,”
Angew. Chem., Int. Ed.
55
(
40
),
12522
12527
(
2016
).
84.
C.
Yang
,
L.
Gao
,
J.
Lin
,
L.
Wang
,
C.
Cai
,
Y.
Wei
, and
Z.
Li
, “
Toroid formation through a supramolecular ‘cyclization reaction’ of rodlike micelles
,”
Angew. Chem., Int. Ed.
56
(
20
),
5546
5550
(
2017
).
85.
J.
Paturej
,
S. S.
Sheiko
,
S.
Panyukov
, and
M.
Rubinstein
, “
Molecular structure of bottlebrush polymers in melts
,”
Sci. Adv.
2
(
11
),
e1601478
(
2016
).
86.
H.
Starvaggi
,
Y.
Tian
,
H.
Liang
, and
A. V.
Dobrynin
, “
Bottlebrushes and combs with bimodal distribution of the side chains: Diagram of states and scattering function
,”
Macromolecules
54
(
4
),
1818
1828
(
2021
).
87.
H.
Liang
,
B. J.
Morgan
,
G.
Xie
,
M. R.
Martinez
,
E. B.
Zhulina
,
K.
Matyjaszewski
,
S. S.
Sheiko
, and
A. V.
Dobrynin
, “
Universality of the entanglement plateau modulus of comb and bottlebrush polymer melts
,”
Macromolecules
51
(
23
),
10028
10039
(
2018
).
88.
H.
Liang
,
Z.
Cao
,
Z.
Wang
,
S. S.
Sheiko
, and
A. V.
Dobrynin
, “
Combs and bottlebrushes in a melt
,”
Macromolecules
50
(
8
),
3430
3437
(
2017
).
89.
H.
Liang
,
Z.
Wang
,
S. S.
Sheiko
, and
A. V.
Dobrynin
, “
Comb and bottlebrush graft copolymers in a melt
,”
Macromolecules
52
(
10
),
3942
3950
(
2019
).
90.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
NY
,
2003
).
91.
S.
Kwon
,
J.
Nam
,
J. W.
Chung
,
M.
Seo
,
W. B.
Lee
, and
Y. J.
Kim
, “
Scaling behavior of solution self-assembled micelle of sequence-controlled bottlebrush copolymer
,”
Macromolecules
57
(15),
7664
(
2024
).
92.
L.
Gao
,
R.
Hu
,
P.
Xu
,
J.
Lin
,
L.
Zhang
, and
L.
Wang
, “
Supramolecular cyclization of semiflexible cylindrical micelles assembled from rod-coil graft copolymers
,”
Nanoscale
12
(
1
),
296
305
(
2020
).
93.
H.
Gao
,
X.
Ma
,
J.
Lin
,
L.
Wang
,
C.
Cai
,
L.
Zhang
, and
X.
Tian
, “
Synthesis of nanowires via temperature-induced supramolecular step-growth polymerization
,”
Macromolecules
52
(20),
7731
7739
(
2019
).
94.
I.
Lyubimov
,
M. G.
Wessels
, and
A.
Jayaraman
, “
Molecular dynamics simulation and PRISM theory study of assembly in solutions of amphiphilic bottlebrush block copolymers
,”
Macromolecules
51
(
19
),
7586
7599
(
2018
).
95.
M.
Alaboalirat
,
L.
Qi
,
K. J.
Arrington
,
S.
Qian
,
J. K.
Keum
,
H.
Mei
,
K. C.
Littrell
,
B. G.
Sumpter
,
J. M. Y.
Carrillo
,
R.
Verduzco
, and
J. B.
Matson
, “
Amphiphilic bottlebrush block copolymers: Analysis of aqueous self-assembly by small-angle neutron scattering and surface tension measurements
,”
Macromolecules
52
(
2
),
465
476
(
2019
).
96.
B. B.
Patel
,
T.
Pan
,
Y.
Chang
,
D. J.
Walsh
,
J. J.
Kwok
,
K. S.
Park
,
K.
Patel
,
D.
Guironnet
,
C. E.
Sing
, and
Y.
Diao
, “
Concentration-driven self-assembly of PS-b-PLA bottlebrush diblock copolymers in solution
,”
ACS Polym. Au
2
(
4
),
232
244
(
2022
).
97.
W.
Hwang
,
S.
Kwon
,
W. B.
Lee
, and
Y. J.
Kim
, “
Self-assembly prediction of architecture-controlled bottlebrush copolymers in solution using graph convolutional networks
,”
Soft Matter
20
(
25
),
4905
4915
(
2024
).
98.
K. S.
Schweizer
and
J. G.
Curro
, “
Integral-equation theory of the structure of polymer melts
,”
Phys. Rev. Lett.
58
(
3
),
246
(
1987
).
99.
T.
Pan
,
B. B.
Patel
,
D. J.
Walsh
,
S.
Dutta
,
D.
Guironnet
,
Y.
Diao
, and
C. E.
Sing
, “
Implicit side-chain model and experimental characterization of bottlebrush block copolymer solution assembly
,”
Macromolecules
54
(
8
),
3620
3633
(
2021
).
100.
B.
Gumus
,
M.
Herrera-Alonso
, and
A.
Ramírez-Hernández
, “
Kinetically-arrested single-polymer nanostructures from amphiphilic mikto-grafted bottlebrushes in solution: A simulation study
,”
Soft Matter
16
(
21
),
4969
4979
(
2020
).
101.
H.
Luo
,
J. L.
Santos
, and
M.
Herrera-Alonso
, “
Toroidal structures from brush amphiphiles
,”
Chem. Commun.
50
(
5
),
536
538
(
2014
).
102.
M.
Szymusiak
,
J.
Kalkowski
,
H.
Luo
,
A. J.
Donovan
,
P.
Zhang
,
C.
Liu
,
W.
Shang
,
T.
Irving
,
M.
Herrera-Alonso
, and
Y.
Liu
, “
Core-shell structure and aggregation number of micelles composed of amphiphilic block copolymers and amphiphilic heterografted polymer brushes determined by small-angle x-ray scattering
,”
ACS Macro Lett.
6
(
9
),
1005
1012
(
2017
).
103.
X.
Lian
,
D.
Wu
,
X.
Song
, and
H.
Zhao
, “
Synthesis and self-assembly of amphiphilic asymmetric macromolecular brushes
,”
Macromolecules
43
(
18
),
7434
7445
(
2010
).
104.
H. Y.
Chang
,
Y. L.
Lin
,
Y. J.
Sheng
, and
H. K.
Tsao
, “
Multilayered polymersome formed by amphiphilic asymmetric macromolecular brushes
,”
Macromolecules
45
(
11
),
4778
4789
(
2012
).
105.
T.
Xie
and
J. C.
Grossman
, “
Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
,”
Phys. Rev. Lett.
120
(
14
),
145301
(
2018
).
106.
A. S.
Barnard
and
B. L.
Fox
, “
Importance of structural features and the influence of individual structures of graphene oxide using shapley value analysis
,”
Chem. Mater.
35
(
21
),
8840
8856
(
2023
).
107.
S.
Tan
,
R.
Wang
,
G.
Song
,
S.
Qi
,
K.
Zhang
,
Z.
Zhao
, and
Q.
Yin
, “
Machine learning and shapley additive explanation-based interpretable prediction of the electrocatalytic performance of N-doped carbon materials
,”
Fuel
355
,
129469
(
2024
).
108.
R.-Y.
Wang
,
S.
Jeong
,
H.
Ham
,
J.
Kim
,
H.
Lee
,
C. Y.
Son
,
M. J.
Park
,
R.-Y.
Wang
,
H.
Ham
,
J.
Kim
,
H.
Lee
,
M. J.
Park
,
S.
Jeong
, and
C. Y.
Son
, “
Superionic bifunctional polymer electrolytes for solid-state energy storage and conversion
,”
Adv. Mater.
35
(
4
),
2203413
(
2023
).
109.
H. M.
Seo
,
S.
Kim
,
S.
Kwon
,
Y. J.
Kim
,
M.
Sung
,
J.
Yang
,
B.
Lee
,
J.
Sung
,
M. H.
Kang
,
J.
Park
,
K.
Shin
,
W. B.
Lee
, and
J. W.
Kim
, “
Two-dimensional demixing within multilayered nanoemulsion films
,”
Sci. Adv.
8
(
42
),
597
(
2022
).
110.
T. K.
Lytle
,
L. W.
Chang
,
N.
Markiewicz
,
S. L.
Perry
, and
C. E.
Sing
, “
Designing electrostatic interactions via polyelectrolyte monomer sequence
,”
ACS Cent. Sci.
5
(
4
),
709
718
(
2019
).
111.
J.
Han
,
S.
Najafi
,
Y.
Byun
,
L.
Geonzon
,
S.-H.
Oh
,
J.
Park
,
J. M.
Koo
,
J.
Kim
,
T.
Chung
,
I. K.
Han
,
S.
Chae
,
D. W.
Cho
,
J.
Jang
,
U.
Jeong
,
G. H.
Fredrickson
,
S.-H.
Choi
,
K.
Mayumi
,
E.
Lee
,
J.-E.
Shea
, and
Y. S.
Kim
, “
Bridge-rich and loop-less hydrogel networks through suppressed micellization of multiblock polyelectrolytes
,”
Nat. Commun.
15
(
1
),
6553
(
2024
).
112.
S.
Chen
and
Z. G.
Wang
, “
Charge asymmetry suppresses coarsening dynamics in polyelectrolyte complex coacervation
,”
Phys. Rev. Lett.
131
(
21
),
218201
(
2023
).
113.
J. W.
Ponder
,
C.
Wu
,
P.
Ren
,
V. S.
Pande
,
J. D.
Chodera
,
M. J.
Schnieders
,
I.
Haque
,
D. L.
Mobley
,
D. S.
Lambrecht
,
R. A.
Distasio
,
M.
Head-Gordon
,
G. N. I.
Clark
,
M. E.
Johnson
, and
T.
Head-Gordon
, “
Current status of the AMOEBA polarizable force field
,”
J. Phys. Chem. B
114
(
8
),
2549
2564
(
2010
).
114.
Y.
Shi
,
Z.
Xia
,
J.
Zhang
,
R.
Best
,
C.
Wu
,
J. W.
Ponder
, and
P.
Ren
, “
Polarizable atomic multipole-based AMOEBA force field for proteins
,”
J. Chem. Theory Comput.
9
(
9
),
4046
4063
(
2013
).
115.
P. T.
Kiss
and
A.
Baranyai
, “
A systematic development of a polarizable potential of water
,”
J. Chem. Phys.
138
(
20
),
204507
(
2013
).
116.
O.
Borodin
, “
Polarizable force field development and molecular dynamics simulations of ionic liquids
,”
J. Phys. Chem. B
113
(
33
),
11463
11478
(
2009
).
117.
J. W.
Yu
,
S.
Kim
,
J. H.
Ryu
,
W. B.
Lee
, and
T. J.
Yoon
, “
Spatio temporal characterization of water diffusion anomalies in saline solutions using machine learning force field
,”
Sci. Adv.
10
(
50
),
eadp9662
(
2024
).
118.
K.
Goloviznina
,
Z.
Gong
,
M. F.
Costa Gomes
, and
A. A. H.
Pádua
, “
Extension of the CL&Pol polarizable force field to electrolytes, protic ionic liquids, and deep eutectic solvents
,”
J. Chem. Theory Comput.
17
(
3
),
1606
(
2021
).
119.
C.
Zhang
,
C.
Lu
,
Z.
Jing
,
C.
Wu
,
J. P.
Piquemal
,
J. W.
Ponder
, and
P.
Ren
, “
AMOEBA polarizable atomic multipole force field for nucleic acids
,”
J. Chem. Theory Comput.
14
(
4
),
2084
2108
(
2018
).
120.
Z. M.
Jedlinska
and
R. A.
Riggleman
, “
The effect of monomer polarizability on the stability and salt partitioning in model coacervates
,”
Soft Matter
19
(
36
),
7000
7010
(
2023
).
121.
A.
Sahoo
,
P. Y.
Lee
, and
S.
Matysiak
, “
Transferable and polarizable coarse grained model for proteins—ProMPT
,”
J. Chem. Theory Comput.
18
(
8
),
5046
5055
(
2022
).
122.
J. C.
Wu
,
J. P.
Piquemal
,
R.
Chaudret
,
P.
Reinhardt
, and
P.
Ren
, “
Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field
,”
J. Chem. Theory Comput.
6
(
7
),
2059
2070
(
2010
).
123.
D.
Jiao
,
C.
King
,
A.
Grossfield
,
T. A.
Darden
, and
P.
Ren
, “
Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential
,”
J. Phys. Chem. B
110
(
37
),
18553
18559
(
2006
).
124.
J. P.
Piquemal
,
L.
Perera
,
G. A.
Cisneros
,
P.
Ren
,
L. G.
Pedersen
, and
T. A.
Darden
, “
Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure
,”
J. Chem. Phys.
125
(
5
),
054511
(
2006
).
125.
E. E.
Wait
,
J.
Gourary
,
C.
Liu
,
E. D.
Spoerke
,
S. B.
Rempe
, and
P.
Ren
, “
Development of AMOEBA polarizable force field for rare-earth La3+ interaction with bioinspired ligands
,”
J. Phys. Chem. B
127
(
6
),
1367
1375
(
2023
).
126.
A.
Chremos
and
J. F.
Douglas
, “
Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution
,”
J. Chem. Phys.
144
(
16
),
164904
(
2016
).
127.
J.
Kim
,
K. J.
Jeong
,
K.
Kim
,
C. Y.
Son
, and
M. J.
Park
, “
Enhanced electrochemical properties of block copolymer electrolytes with blended end-functionalized homopolymers
,”
Macromolecules
55
(
6
),
2028
2040
(
2022
).
128.
S.
Kim
,
M.
Lee
,
W. B.
Lee
, and
S. H.
Choi
, “
Ionic-group dependence of polyelectrolyte coacervate phase behavior
,”
Macromolecules
54
(
16
),
7572
7581
(
2021
).
129.
D.
Thirumalai
and
C.
Hyeon
, “
RNA and protein folding: Common themes and variations
,”
Biochemistry
44
(
13
),
4957
(
2005
).
130.
H.
Kang
,
P. A.
Pincus
,
C.
Hyeon
, and
D.
Thirumalai
, “
Effects of macromolecular crowding on the collapse of biopolymers
,”
Phys. Rev. Lett.
114
(
6
),
068303
(
2015
).
131.
M. K.
Chae
,
N. K.
Lee
,
Y.
Jung
, and
A.
Johner
, “
Shape fluctuations of random polyampholyte and intrinsically disordered protein sequences
,”
Macromolecules
56
(
3
),
785
793
(
2023
).
132.
C.
Keun Hyung Lee
,
M. S.
Kang
,
S.
Zhang
,
Y.
Gu
,
T. P.
Lodge
,
C. D.
Frisbie
,
K. H.
Lee
,
S.
Zhang
,
C. D.
Frisbie
,
T. P.
Lodge
,
M. S.
Kang
, and
Y.
Gu
, “
Cut and stick' rubbery ion gels as high capacitance gate dielectrics
,”
Adv. Mater.
24
(
32
),
4457
4462
(
2012
).
133.
F.
Fan
,
Y.
Wang
,
T.
Hong
,
M. F.
Heres
,
T.
Saito
, and
A. P.
Sokolov
, “
Ion conduction in polymerized ionic liquids with different pendant groups
,”
Macromolecules
48
(
13
),
4461
4470
(
2015
).
134.
L. W.
Chang
,
T. K.
Lytle
,
M.
Radhakrishna
,
J. J.
Madinya
,
J.
Vélez
,
C. E.
Sing
, and
S. L.
Perry
, “
Sequence and entropy-based control of complex coacervates
,”
Nat. Commun.
8
(
1
),
1
36
(
2017
).
135.
Y. P.
Timilsena
,
T. O.
Akanbi
,
N.
Khalid
,
B.
Adhikari
, and
C. J.
Barrow
, “
Complex coacervation: Principles, mechanisms and applications in microencapsulation
,”
Int. J. Biol. Macromol.
121
,
1276
1286
(
2019
).
136.
C. E.
Sing
and
S. L.
Perry
, “
Recent progress in the science of complex coacervation
,”
Soft Matter
16
(
12
),
2885
2914
(
2020
).
137.
C. E.
Sing
, “
Development of the modern theory of polymeric complex coacervation
,”
Adv. Colloid Interface Sci.
239
,
2
16
(
2017
).
138.
J.
van der Gucht
,
E.
Spruijt
,
M.
Lemmers
, and
M. A.
Cohen Stuart
, “
Polyelectrolyte complexes: Bulk phases and colloidal systems
,”
J. Colloid Interface Sci.
361
(
2
),
407
422
(
2011
).
139.
J.
Lee
,
Y. O.
Popov
, and
G. H.
Fredrickson
, “
Complex coacervation: A field theoretic simulation study of polyelectrolyte complexation
,”
J. Chem. Phys.
128
(
22
),
224908
(
2008
).
140.
H.
Shao
and
R. J.
Stewart
, “
Biomimetic underwater adhesives with environmentally triggered setting mechanisms
,”
Adv. Mater.
22
(
6
),
729
733
(
2010
).
141.
K. A.
Black
,
D.
Priftis
,
S. L.
Perry
,
J.
Yip
,
W. Y.
Byun
, and
M.
Tirrell
, “
Protein encapsulation via polypeptide complex coacervation
,”
ACS Macro Lett.
3
(
10
),
1088
1091
(
2014
).
142.
C. E.
Sing
and
J.
Qin
, “
Bridging field theory and ion pairing in the modeling of polyelectrolytes and complex coacervation
,”
Macromolecules
56
(
15
),
5941
5963
(
2023
).
143.
T. K.
Lytle
and
C. E.
Sing
, “
Transfer matrix theory of polymer complex coacervation
,”
Soft Matter
13
(
39
),
7001
7012
(
2017
).
144.
S.
Cui
,
L.
Yu
, and
J.
Ding
, “
Thermogelling of amphiphilic block copolymers in water: ABA type versus AB or BAB type
,”
Macromolecules
52
(
10
),
3697
3715
(
2019
).
145.
M. W.
Matsen
and
R. B.
Thompson
, “
Equilibrium behavior of symmetric ABA triblock copolymer melts
,”
J. Chem. Phys.
111
(
15
),
7139
7146
(
1999
).
146.
S. H.
Jo
,
S.
Roh
,
J.
Shim
,
J. W.
Yu
,
Y.
Jung
,
W. Y.
Jang
,
B.
Seo
,
Y. Y.
Won
, and
J.
Yoo
, “
Modulating the thermoresponsive characteristics of PLGA-PEG-PLGA hydrogels via manipulation of PLGA monomer sequences
,”
Biomacromolecules
25
,
5374
5386
(
2024
).
147.
S.
Srivastava
,
M.
Andreev
,
A. E.
Levi
,
D. J.
Goldfeld
,
J.
Mao
,
W. T.
Heller
,
V. M.
Prabhu
,
J. J.
De Pablo
, and
M. V.
Tirrell
, “
Gel phase formation in dilute triblock copolyelectrolyte complexes
,”
Nat. Commun.
8
(
1
),
14131
(
2017
).
148.
J. M.
Kim
,
T. Y.
Heo
, and
S. H.
Choi
, “
Structure and relaxation dynamics for complex coacervate hydrogels formed by ABA triblock copolymers
,”
Macromolecules
53
(
21
),
9234
9243
(
2020
).
149.
S.
Chen
,
P.
Zhang
, and
Z. G.
Wang
, “
Complexation between oppositely charged polyelectrolytes in dilute solution: Effects of charge asymmetry
,”
Macromolecules
55
(
10
),
3898
3909
(
2022
).
150.
X.
Liu
,
M.
Haddou
,
I.
Grillo
,
Z.
Mana
,
J. P.
Chapel
, and
C.
Schatz
, “
Early stage kinetics of polyelectrolyte complex coacervation monitored through stopped-flow light scattering
,”
Soft Matter
12
(
44
),
9030
9038
(
2016
).
151.
T. J.
Welsh
,
G.
Krainer
,
J. R.
Espinosa
,
J. A.
Joseph
,
A.
Sridhar
,
M.
Jahnel
,
W. E.
Arter
,
K. L.
Saar
,
S.
Alberti
,
R.
Collepardo-Guevara
, and
T. P. J.
Knowles
, “
Surface electrostatics govern the emulsion stability of biomolecular condensates
,”
Nano Lett.
22
(
2
),
612
621
(
2022
).
152.
Y.
Wang
,
Y.
Zhou
,
Q.
Yang
,
R.
Basak
,
Y.
Xie
,
D.
Le
,
A. D.
Fuqua
,
W.
Shipley
,
Z.
Yam
,
A.
Frano
,
G.
Arya
, and
A. R.
Tao
, “
Self-assembly of nanocrystal checkerboard patterns via non-specific interactions
,”
Nat. Commun.
15
(
1
),
3913
(
2024
).
153.
K. C.
Elbert
,
T.
Vo
,
N. M.
Krook
,
W.
Zygmunt
,
J.
Park
,
K. G.
Yager
,
R. J.
Composto
,
S. C.
Glotzer
, and
C. B.
Murray
, “
Dendrimer ligand directed nanoplate assembly
,”
ACS Nano
13
(
12
),
14241
14251
(
2019
).
154.
A.
Gooneie
and
R.
Hufenus
, “
Hybrid carbon nanoparticles in polymer matrix for efficient connected networks: Self-assembly and continuous pathways
,”
Macromolecules
51
(
10
),
3547
3562
(
2018
).
155.
J. M.
Ilnytskyi
,
A.
Slyusarchuk
, and
M.
Saphiannikova
, “
Photocontrollable self-assembly of azobenzene-decorated nanoparticles in bulk: Computer simulation study
,”
Macromolecules
49
(
23
),
9272
9282
(
2016
).
156.
J. W.
Yu
,
H.
Yun
,
W. B.
Lee
, and
Y.
Kim
, “
Two-regime conformation of grafted polymer on nanoparticle determines symmetry of nanoparticle self-assembly
,”
Adv. Sci.
11
(36),
2406720
(
2024
).
157.
Y.
Zhou
,
T. Y.
Tang
,
B. H. J.
Lee
, and
G.
Arya
, “
Tunable orientation and assembly of polymer-grafted nanocubes at fluid-fluid interfaces
,”
ACS Nano
16
(
5
),
7457
7470
(
2022
).
158.
H.
Yun
,
J. W.
Yu
,
Y. J.
Lee
,
J. S.
Kim
,
C. H.
Park
,
C.
Nam
,
J.
Han
,
T. Y.
Heo
,
S. H.
Choi
,
D. C.
Lee
,
W. B.
Lee
,
G. E.
Stein
, and
B. J.
Kim
, “
Symmetry transitions of polymer-grafted nanoparticles: Grafting density effect
,”
Chem. Mater.
31
(
14
),
5264
5273
(
2019
).
159.
S.
Prestipino
,
F.
Saija
, and
P. V.
Giaquinta
, “
Phase diagram of the Gaussian-core model
,”
Phys. Rev. E
71
(
5
),
050102
(
2005
).
160.
C. N.
Likos
, “
Effective interactions in soft condensed matter physics
,”
Phys. Rep.
348
(
4–5
),
267
439
(
2001
).
161.
G.
Giunta
,
G.
Campos-Villalobos
, and
M.
Dijkstra
, “
Coarse-grained many-body potentials of ligand-stabilized nanoparticles from machine-learned mean forces
,”
ACS Nano
17
(
23
),
23391
23404
(
2023
).
162.
Y.
Zhou
,
S. L.
Bore
,
A. R.
Tao
,
F.
Paesani
, and
G.
Arya
, “
Many-body potential for simulating the self-assembly of polymer-grafted nanoparticles in a polymer matrix
,”
npj Comput. Mater.
9
(
1
),
224
(
2023
).
163.
Z.
Wu
,
S.
Pal
, and
S.
Keten
, “
Implicit chain particle model for polymer-grafted nanoparticles
,”
Macromolecules
56
(
9
),
3259
3271
(
2023
).
164.
T.
Waltmann
,
C.
Waltmann
,
N.
Horst
, and
A.
Travesset
, “
Many body effects and icosahedral order in superlattice self-assembly
,”
J. Am. Chem. Soc.
140
(
26
),
8236
8245
(
2018
).
165.
J.
Choi
,
H.
Chung
,
J. H.
Yun
, and
M.
Cho
, “
Photo-isomerization effect of the azobenzene chain on the opto-mechanical behavior of nematic polymer: A molecular dynamics study
,”
Appl. Phys. Lett.
105
(
22
),
221906
(
2014
).
166.
H.
Kim
,
S.
Park
,
H.
Chung
,
C.
Li
, and
M.
Cho
, “
Effect of azobenzene composition ratio on the degree of photosoftening: Experimental and molecular dynamics simulation studies
,”
Mech. Adv. Mater. Struct.
31
(
4
),
927
934
(
2024
).
167.
H.
Heinz
,
R. A.
Vaia
,
H.
Koerner
, and
B. L.
Farmer
, “
Photoisomerization of azobenzene grafted to layered silicates: Simulation and experimental challenges
,”
Chem. Mater.
20
(
20
),
6444
6456
(
2008
).
168.
J.
Hoshen
and
R.
Kopelman
, “
Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm
,”
Phys. Rev. B
14
(
8
),
3438
(
1976
).
169.
R. L.
Whetten
,
M. N.
Shafigullin
,
J. T.
Khoury
,
T. G.
Schaaff
,
I.
Vezmar
,
M. M.
Alvarez
, and
A.
Wilkinson
, “
Crystal structures of molecular gold nanocrystal arrays
,”
Acc. Chem. Res.
32
(
5
),
397
406
(
1999
).
170.
H.
Yun
,
Y. J.
Lee
,
M.
Xu
,
D. C.
Lee
,
G. E.
Stein
, and
B. J.
Kim
, “
Softness- and size-dependent packing symmetries of polymer-grafted nanoparticles
,”
ACS Nano
14
(
8
),
9644
9651
(
2020
).
171.
C.
Nam
,
W. B.
Lee
, and
Y. J.
Kim
, “
Self-assembly of rod–coil diblock copolymer–nanoparticle composites in thin films: Dissipative particle dynamics
,”
Soft Matter
17
(
9
),
2384
2391
(
2021
).
172.
J. H.
Park
,
V.
Kalra
, and
Y. L.
Joo
, “
Cylindrically confined assembly of asymmetrical block copolymers with and without nanoparticles
,”
Soft Matter
8
(
6
),
1845
1857
(
2012
).
173.
J. M.
Shin
,
Y.
Kim
,
H.
Yun
,
G. R.
Yi
, and
B. J.
Kim
, “
Morphological evolution of block copolymer particles: Effect of solvent evaporation rate on particle shape and morphology
,”
ACS Nano
11
(
2
),
2133
2142
(
2017
).
174.
C. T.
Bezik
,
G. P.
Garner
, and
J. J.
De Pablo
, “
Mechanisms of directed self-assembly in cylindrical hole confinements
,”
Macromolecules
51
(
7
),
2418
2427
(
2018
).
175.
Z.
Sun
,
R.
Liu
,
T.
Su
,
H.
Huang
,
K.
Kawamoto
,
R.
Liang
,
B.
Liu
,
M.
Zhong
,
A.
Alexander-Katz
,
C. A.
Ross
, and
J. A.
Johnson
, “
Emergence of layered nanoscale mesh networks through intrinsic molecular confinement self-assembly
,”
Nat. Nanotechnol.
18
(
3
),
273
280
(
2023
).
176.
G. J. A.
Sevink
and
A. V.
Zvelindovsky
, “
Confined sphere-forming block copolymers: Phase behavior and the role of chain architecture
,”
Macromolecules
42
(
21
),
8500
8512
(
2009
).
177.
G. E.
Stein
,
E. W.
Cochran
,
K.
Katsov
,
G. H.
Fredrickson
,
E. J.
Kramer
,
X.
Li
, and
J.
Wang
, “
Symmetry breaking of in-plane order in confined copolymer mesophases
,”
Phys. Rev. Lett.
98
(
15
),
158302
(
2007
).
178.
S. M.
Hur
,
C. J.
García-Cervera
,
E. J.
Kramer
, and
G. H.
Fredrickson
, “
SCFT simulations of thin film blends of block copolymer and homopolymer laterally confined in a square well
,”
Macromolecules
42
(
15
),
5861
5872
(
2009
).
179.
Y.
Wu
,
G.
Cheng
,
K.
Katsov
,
S. W.
Sides
,
J.
Wang
,
J.
Tang
,
G. H.
Fredrickson
,
M.
Moskovits
, and
G. D.
Stucky
, “
Composite mesostructures by nano-confinement
,”
Nat. Mater.
3
(
11
),
816
822
(
2004
).
180.
M.
Liu
,
W.
Li
, and
X.
Wang
, “
Order-order transitions of diblock copolymer melts under cylindrical confinement
,”
J. Chem. Phys.
147
(
11
),
114903
(
2017
).
181.
J.
Yang
,
Q.
Dong
,
L.
Peng
,
X.
Huang
, and
W.
Li
, “
Transition paths of ordered phases in a diblock copolymer under cylindrical confinement
,”
Macromolecules
56
(
24
),
10132
10142
(
2023
).
182.
F.
Zhao
,
Z.
Xu
, and
W.
Li
, “
Self-assembly of asymmetric diblock copolymers under the spherical confinement
,”
Macromolecules
54
(
24
),
11351
11359
(
2021
).
183.
S.
Li
,
Y.
Jiang
, and
J. Z. Y.
Chen
, “
Morphologies and phase diagrams of ABC star triblock copolymers confined in a spherical cavity
,”
Soft Matter
9
(
19
),
4843
4854
(
2013
).
184.
J.
Oh
,
H. S.
Suh
,
Y.
Ko
,
Y.
Nah
,
J. C.
Lee
,
B.
Yeom
,
K.
Char
,
C. A.
Ross
, and
J. G.
Son
, “
Universal perpendicular orientation of block copolymer microdomains using a filtered plasma
,”
Nat. Commun.
10
(
1
),
2912
(
2019
).
185.
Y. C.
Kim
,
T. J.
Shin
,
S. M.
Hur
,
S. J.
Kwon
, and
S. Y.
Kim
, “
Shear-solvo defect annihilation of diblock copolymer thin films over a large area
,”
Sci. Adv.
5
(
6
),
eaaw3974
(
2019
).
186.
S.
Jang
,
K.
Lee
,
H. C.
Moon
,
J.
Kwak
,
J.
Park
,
G.
Jeon
,
W. B.
Lee
, and
J. K.
Kim
, “
Vertical orientation of nanodomains on versatile substrates through self-neutralization induced by star-shaped block copolymers
,”
Adv. Funct. Mater.
25
(
34
),
5414
5419
(
2015
).
187.
U.
Jeong
,
D. Y.
Ryu
,
D. H.
Kho
,
D. H.
Lee
,
J. K.
Kim
, and
T. P.
Russell
, “
Phase behavior of mixtures of block copolymer and homopolymers in thin films and bulk
,”
Macromolecules
36
(
10
),
3626
3634
(
2003
).
188.
C.
Nam
,
J. G.
Son
,
Y. J.
Kim
, and
W. B.
Lee
, “
Molecular dynamics study of shear-induced lamellar alignment of ABA triblock copolymer thin films
,”
Soft Matter
19
(
23
),
4297
4303
(
2023
).
189.
J. M.
Shin
,
Y.
Kim
,
K. H.
Ku
,
Y. J.
Lee
,
E. J.
Kim
,
G. R.
Yi
, and
B. J.
Kim
, “
Aspect ratio-controlled synthesis of uniform colloidal block copolymer ellipsoids from evaporative emulsions
,”
Chem. Mater.
30
(
18
),
6277
6288
(
2018
).
190.
K. H.
Ku
,
J. M.
Shin
,
H.
Yun
,
G.-R.
Yi
,
S.
Gyu Jang
,
B. J.
Kim
,
K. H.
Ku
,
J. M.
Shin
,
H.
Yun
,
B. J.
Kim
,
G.
Yi
, and
S. G.
Jang
, “
Multidimensional design of anisotropic polymer particles from solvent-evaporative emulsion
,”
Adv. Funct. Mater.
28
(
42
),
1802961
(
2018
).
191.
N.
Yan
,
Y.
Zhu
, and
W.
Jiang
, “
Recent progress in the self-assembly of block copolymers confined in emulsion droplets
,”
Chem. Commun.
54
(
94
),
13183
13195
(
2018
).
192.
K. H.
Ku
,
Y. J.
Lee
,
Y.
Kim
, and
B. J.
Kim
, “
Shape-anisotropic diblock copolymer particles from evaporative emulsions: Experiment and theory
,”
Macromolecules
52
(
3
),
1150
1157
(
2019
).
193.
K. H.
Ku
,
J. M.
Shin
,
D.
Klinger
,
S. G.
Jang
,
R. C.
Hayward
,
C. J.
Hawker
, and
B. J.
Kim
, “
Particles with tunable porosity and morphology by controlling interfacial instability in block copolymer emulsions
,”
ACS Nano
10
(
5
),
5243
5251
(
2016
).
194.
K. H.
Ku
,
Y. J.
Kim
,
G. R.
Yi
,
Y. S.
Jung
, and
B. J.
Kim
, “
Soft patchy particles of block copolymers from interface-engineered emulsions
,”
ACS Nano
9
(
11
),
11333
11341
(
2015
).
195.
R. B.
Thompson
,
V. V.
Ginzburg
,
M. W.
Matsen
, and
A. C.
Balazs
, “
Predicting the mesophases of copolymer-nanoparticle composites
,”
Science
292
(
5526
),
2469
2472
(
2001
).
196.
J. T.
Chen
,
E. L.
Thomas
,
C. K.
Ober
, and
G. P.
Mao
, “
Self-assembled smectic phases in rod-coil block copolymers
,”
Science
273
(
5273
),
343
346
(
1996
).
197.
V.
Kalra
,
P. A.
Kakad
,
S.
Mendez
,
T.
Ivannikov
,
M.
Kamperman
, and
Y. L.
Joo
, “
Self-assembled structures in electrospun poly(styrene-block-isoprene) fibers
,”
Macromolecules
39
(
16
),
5453
5457
(
2006
).
198.
M.
Kamperman
,
L. T. J.
Korley
,
B.
Yau
,
K. M.
Johansen
,
Y. L.
Joo
, and
U.
Wiesner
, “
Nanomanufacturing of continuous composite nanofibers with confinement-induced morphologies
,”
Polym. Chem.
1
(
7
),
1001
1004
(
2010
).
199.
B.
De Nijs
,
S.
Dussi
,
F.
Smallenburg
,
J. D.
Meeldijk
,
D. J.
Groenendijk
,
L.
Filion
,
A.
Imhof
,
A.
Van Blaaderen
, and
M.
Dijkstra
, “
Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement
,”
Nat. Mater.
14
(
1
),
56
60
(
2015
).
200.
D.
Wang
,
M.
Hermes
,
R.
Kotni
,
Y.
Wu
,
N.
Tasios
,
Y.
Liu
,
B.
De Nijs
,
E. B.
Van Der Wee
,
C. B.
Murray
,
M.
Dijkstra
, and
A.
Van Blaaderen
, “
Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes
,”
Nat. Commun.
9
(
1
),
2228
(
2018
).
201.
J.
Lee
,
S.
Ban
,
K.
Jo
,
H. S.
Oh
,
J.
Cho
, and
K. H.
Ku
, “
Dynamic photonic Janus colloids with axially stacked structural kayers
,”
ACS Nano
18
(
6
),
5196
5205
(
2024
).
202.
F. A.
Detcheverry
,
D. Q.
Pike
,
U.
Nagpal
,
P. F.
Nealey
, and
J. J.
De Pablo
, “
Theoretically informed coarse grain simulations of block copolymer melts: Method and applications
,”
Soft Matter
5
(
24
),
4858
4865
(
2009
).
203.
W. E.
Weinan
,
W.
Ren
, and
E.
Vanden-Eijnden
, “
Simplified and improved string method for computing the minimum energy paths in barrier-crossing events
,”
J. Chem. Phys.
126
(
16
),
164103
(
2007
).
204.
M.
Kim
,
S.
Kim
,
C.
Hyeon
,
J. W.
Yu
,
S. Q.
Choi
, and
W. B.
Lee
, “
Anomalous water penetration in Al3+ dissolution
,”
J. Chem. Phys. Lett.
15
(
43
),
10903
10908
(
2024
).
205.
J. H.
Ryu
,
J. W.
Yu
,
T. J.
Yoon
, and
W. B.
Lee
, “
Understanding the dielectric relaxation of liquid water using neural network potential and classical pairwise potential
,”
J. Mol. Liq.
397
,
124054
(
2024
).
206.
D.
Yong
and
J. U.
Kim
, “
Accelerating Langevin field-theoretic simulation of polymers with deep learning
,”
Macromolecules
55
(
15
),
6505
6515
(
2022
).
207.
A.
Jayaraman
and
B.
Olsen
, “
Convergence of artificial intelligence, machine learning, cheminformatics, and polymer science in macromolecules
,”
Macromolecules
57
(
16
),
7685
7688
(
2024
).
208.
A.
Vaswani
,
N.
Shazeer
,
N.
Parmar
,
J.
Uszkoreit
,
L.
Jones
,
A. N.
Gomez
,
Ł.
ukasz Kaiser
, and
I.
Polosukhin
, “
Attention is all you need
,” in
Proceedings of Neural Information Processing System
, edited by
I.
Guyon
,
U.
Von Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
(
Curran Associates, Inc
.,
2017
), pp.
6000
6010
.
209.
F.
Scarselli
,
M.
Gori
,
A. C.
Tsoi
,
M.
Hagenbuchner
, and
G.
Monfardini
, “
The graph neural network model
,”
IEEE Trans. Neural Networks
20
,
61
80
(
2009
).
210.
D.
Weininger
, “
SMILES, a chemical language and information system: 1: Introduction to methodology and encoding rules
,”
J. Chem. Inf. Comput. Sci.
28
(
1
),
31
36
(
1988
).
211.
D.
Weininger
,
A.
Weininger
, and
J. L.
Weininger
, “
SMILES. 2. Algorithm for generation of unique SMILES notation
,”
J. Chem. Inf. Comput. Sci.
29
(
2
),
97
101
(
1989
).
212.
J.
Ahn
,
G. P.
Irianti
,
Y.
Choe
, and
S. M.
Hur
, “
Enhancing deep learning predictive models with HAPPY (Hierarchically Abstracted rePeat unit of PolYmers) representation
,”
npj Comput. Mater.
10
(
1
),
110
(
2024
).
213.
K. H.
Tu
,
H.
Huang
,
S.
Lee
,
W.
Lee
,
Z.
Sun
,
A.
Alexander-Katz
, and
C. A.
Ross
, “
Machine learning predictions of block copolymer self-assembly
,”
Adv. Mater.
32
(
52
),
2005713
(
2020
).
214.
A.
Jha
,
A.
Chandrasekaran
,
C.
Kim
, and
R.
Ramprasad
, “
Impact of dataset uncertainties on machine learning model predictions: The example of polymer glass transition temperatures
,”
Modell. Simul. Mater. Sci. Eng.
27
(
2
),
024002
(
2019
).
215.
H.
Doan Tran
,
C.
Kim
,
L.
Chen
,
A.
Chandrasekaran
,
R.
Batra
,
S.
Venkatram
,
D.
Kamal
,
J. P.
Lightstone
,
R.
Gurnani
,
P.
Shetty
,
M.
Ramprasad
,
J.
Laws
,
M.
Shelton
, and
R.
Ramprasad
, “
Machine-learning predictions of polymer properties with polymer genome
,”
J. Appl. Phys.
128
(
17
),
171104
(
2020
).
216.
C.
Xu
,
Y.
Wang
, and
A.
Barati Farimani
, “
TransPolymer: A transformer-based language model for polymer property predictions
,”
npj Comput. Mater.
9
(
1
),
64
(
2023
).
217.
O.
Queen
,
G. A.
McCarver
,
S.
Thatigotla
,
B. P.
Abolins
,
C. L.
Brown
,
V.
Maroulas
, and
K. D.
Vogiatzis
, “
Polymer graph neural networks for multitask property learning
,”
npj Comput. Mater.
9
(
1
),
90
(
2023
).
218.
K. M.
Jablonka
,
G. M.
Jothiappan
,
S.
Wang
,
B.
Smit
, and
B.
Yoo
, “
Bias free multiobjective active learning for materials design and discovery
,”
Nat. Commun.
12
(
1
),
2312
(
2021
).
219.
J.
Park
,
Y.
Shim
,
F.
Lee
,
A.
Rammohan
,
S.
Goyal
,
M.
Shim
,
C.
Jeong
, and
D. S.
Kim
, “
Prediction and interpretation of polymer properties using the graph convolutional network
,”
ACS Polym. Au
2
(
4
),
213
222
(
2022
).
220.
S.
Jiang
,
A. B.
Dieng
, and
M. A.
Webb
, “
Property-guided generation of complex polymer topologies using variational autoencoders
,”
npj Comput. Mater.
10
(
1
),
139
(
2024
).
221.
G.
Pilania
,
C. N.
Iverson
,
T.
Lookman
, and
B. L.
Marrone
, “
Machine-learning-based predictive modeling of glass transition temperatures: A case of polyhydroxyalkanoate homopolymers and copolymers
,”
J. Chem. Inf. Model.
59
(
12
),
5013
5025
(
2019
).
222.
C.
Kuenneth
,
A. C.
Rajan
,
H.
Tran
,
L.
Chen
,
C.
Kim
, and
R.
Ramprasad
, “
Polymer informatics with multi-task learning
,”
Patterns
2
(
4
),
100238
(
2021
).
223.
C.
Kim
,
A.
Chandrasekaran
,
A.
Jha
, and
R.
Ramprasad
, “
Active-learning and materials design: The example of high glass transition temperature polymers
,”
MRS Commun.
9
(
3
),
860
866
(
2019
).
224.
A.
Jain
,
R.
Gurnani
,
A.
Rajan
,
H. J.
Qi
, and
R.
Ramprasad
, “
A physics-enforced neural network to predict polymer melt viscosity
,” arXiv:2409.05240 (
2024
).
225.
B.
Kim
,
S.
Lee
, and
J.
Kim
, “
Inverse design of porous materials using artificial neural networks
,”
Sci. Adv.
6
(
1
),
eaax9324
(
2020
).
226.
J.
Park
,
A. P. S.
Gill
,
S. M.
Moosavi
, and
J.
Kim
, “
Inverse design of porous materials: A diffusion model approach
,”
J. Mater. Chem. A
12
(
11
),
6507
6514
(
2024
).
227.
N. H.
Park
,
D. Y.
Zubarev
,
J. L.
Hedrick
,
V.
Kiyek
,
C.
Corbet
, and
S.
Lottier
, “
A recommender system for inverse design of polycarbonates and polyesters
,”
Macromolecules
53
(
24
),
10847
10854
(
2020
).
228.
T. K.
Patra
,
T. D.
Loeffler
, and
S. K. R. S.
Sankaranarayanan
, “
Accelerating copolymer inverse design using Monte Carlo tree search
,”
Nanoscale
12
(
46
),
23653
23662
(
2020
).
229.
A. N.
Wilson
,
P. C.
St John
,
D. H.
Marin
,
C. B.
Hoyt
,
E. G.
Rognerud
,
M. R.
Nimlos
,
R. M.
Cywar
,
N. A.
Rorrer
,
K. M.
Shebek
,
L. J.
Broadbelt
,
G. T.
Beckham
, and
M. F.
Crowley
, “
PolyID: Artificial intelligence for discovering performance-advantaged and sustainable polymers
,”
Macromolecules
56
(
21
),
8547
8557
(
2023
).
230.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
(
14
),
146401
(
2007
).
231.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
E.
Weinan
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
232.
J.
Zeng
,
D.
Zhang
,
D.
Lu
,
P.
Mo
,
Z.
Li
,
Y.
Chen
,
M.
Rynik
,
L.
Huang
,
Z.
Li
,
S.
Shi
,
Y.
Wang
,
H.
Ye
,
P.
Tuo
,
J.
Yang
,
Y.
Ding
,
Y.
Li
,
D.
Tisi
,
Q.
Zeng
,
H.
Bao
,
Y.
Xia
,
J.
Huang
,
K.
Muraoka
,
Y.
Wang
,
J.
Chang
,
F.
Yuan
,
S. L.
Bore
,
C.
Cai
,
Y.
Lin
,
B.
Wang
,
J.
Xu
,
J. X.
Zhu
,
C.
Luo
,
Y.
Zhang
,
R. E. A.
Goodall
,
W.
Liang
,
A. K.
Singh
,
S.
Yao
,
J.
Zhang
,
R.
Wentzcovitch
,
J.
Han
,
J.
Liu
,
W.
Jia
,
D. M.
York
,
E.
Weinan
,
R.
Car
,
L.
Zhang
, and
H.
Wang
, “
DeePMD-kit v2: A software package for deep potential models
,”
J. Chem. Phys.
159
(
5
),
054801
(
2023
).
233.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
(
4
),
3192
3203
(
2017
).
234.
V. L.
Deringer
and
G.
Csányi
, “
Machine learning based interatomic potential for amorphous carbon
,”
Phys. Rev. B
95
(
9
),
094203
(
2017
).
235.
K. T.
Schütt
,
H. E.
Sauceda
,
P. J.
Kindermans
,
A.
Tkatchenko
, and
K. R.
Müller
, “
SchNet - A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
(
24
),
241722
(
2018
).
236.
A. V.
Shapeev
, “
Moment tensor potentials: A class of systematically improvable interatomic potentials
,”
Multiscale Model. Simul.
14
(
3
),
1153
1173
(
2016
).
237.
J.
Gasteiger
,
J.
Groß
, and
S.
Günnemann
, “
Directional message passing for molecular graphs
,” in
8th International Conference on Learning Representations, ICLR 2020
,
2020
.
238.
Z.
Fan
,
Z.
Zeng
,
C.
Zhang
,
Y.
Wang
,
K.
Song
,
H.
Dong
,
Y.
Chen
, and
T.
Ala-Nissila
, “
Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport
,”
Phys. Rev. B
104
(
10
),
104309
(
2021
).
239.
J.
Gasteiger
,
F.
Becker
, and
S.
Günnemann
, “
GemNet: Universal directional graph neural networks for molecules
,” in Advances in Neural Information Processing Systems, Volume 34, edited by M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan (
Curran Associates, Inc.
,
2021
), pp.
6790
6802
.
240.
S.
Batzner
,
A.
Musaelian
,
L.
Sun
,
M.
Geiger
,
J. P.
Mailoa
,
M.
Kornbluth
,
N.
Molinari
,
T. E.
Smidt
, and
B.
Kozinsky
, “
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
,”
Nat. Commun.
13
(
1
),
2453
(
2022
).
241.
I.
Batatia
,
D. P.
Kovacs
,
G.
Simm
,
C.
Ortner
, and
G.
Csanyi
, “
MACE: Higher order equivariant message passing neural networks for fast and accurate force fields
,” in Advances in Neural Information Processing Systems, Volume 35, edited by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (
Curran Associates, Inc.
,
2022
), pp.
11423
11436
.
242.
O. T.
Unke
,
M.
Stöhr
,
S.
Ganscha
,
T.
Unterthiner
,
H.
Maennel
,
S.
Kashubin
,
D.
Ahlin
,
M.
Gastegger
,
L. M.
Sandonas
,
J. T.
Berryman
,
A.
Tkatchenko
, and
K. R.
Müller
, “
Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments
,”
Sci. Adv.
10
(
14
),
eadn4397
(
2024
).
243.
A.
Kabylda
,
J. T.
Frank
,
S. S.
Dou
,
A.
Khabibrakhmanov
,
L. M.
Sandonas
,
O. T.
Unke
,
S.
Chmiela
,
K.-R.
Muller
, and
A.
Tkatchenko
, “
Molecular simulations with a pretrained neural network and universal pairwise force fields
,” chemRxiv (
2024
).
244.
S. J.
Hong
,
H.
Chun
,
J.
Lee
,
B. H.
Kim
,
M. H.
Seo
,
J.
Kang
, and
B.
Han
, “
First-principles-based machine-learning molecular dynamics for crystalline polymers with van der Waals interactions
,”
J. Phys. Chem. Lett.
12
,
6000
6006
(
2021
).
245.
S.
Mohanty
,
J.
Stevenson
,
A. R.
Browning
,
L.
Jacobson
,
K.
Leswing
,
M. D.
Halls
, and
M. A. F.
Afzal
, “
Development of scalable and generalizable machine learned force field for polymers
,”
Sci. Rep.
13
(
1
),
1
36
(
2023
).
246.
C.
van der Oord
,
M.
Sachs
,
D. P.
Kovács
,
C.
Ortner
, and
G.
Csányi
, “
Hyperactive learning for data-driven interatomic potentials
,”
npj Comput. Mater.
9
(
1
),
1
36
(
2023
).
247.
Y.
Park
,
J.
Kim
,
S.
Hwang
, and
S.
Han
, “
Scalable parallel algorithm for graph neural network interatomic potentials in molecular dynamics simulations
,”
J. Chem. Theory Comput.
20
(
11
),
4857
4868
(
2024
).
248.
I.
Batatia
,
P.
Benner
,
Y.
Chiang
,
A. M.
Elena
,
D. P.
Kovács
,
J.
Riebesell
,
X. R.
Advincula
,
M.
Asta
,
M.
Avaylon
,
W. J.
Baldwin
,
F.
Berger
,
N.
Bernstein
,
A.
Bhowmik
,
S. M.
Blau
,
V.
Cărare
,
J. P.
Darby
,
S.
De
,
F. D.
Pia
,
V. L.
Deringer
,
R.
Elijošius
,
Z.
El-Machachi
,
F.
Falcioni
,
E.
Fako
,
A. C.
Ferrari
,
A.
Genreith-Schriever
,
J.
George
,
R. E. A.
Goodall
,
C. P.
Grey
,
P.
Grigorev
,
S.
Han
,
W.
Handley
,
H. H.
Heenen
,
K.
Hermansson
,
C.
Holm
,
J.
Jaafar
,
S.
Hofmann
,
K. S.
Jakob
,
H.
Jung
,
V.
Kapil
,
A. D.
Kaplan
,
N.
Karimitari
,
J. R.
Kermode
,
N.
Kroupa
,
J.
Kullgren
,
M. C.
Kuner
,
D.
Kuryla
,
G.
Liepuoniute
,
J. T.
Margraf
,
I.-B.
Magdău
,
A.
Michaelides
,
J. H.
Moore
,
A. A.
Naik
,
S. P.
Niblett
,
S. W.
Norwood
,
N.
O'Neill
,
C.
Ortner
,
K. A.
Persson
,
K.
Reuter
,
A. S.
Rosen
,
L. L.
Schaaf
,
C.
Schran
,
B. X.
Shi
,
E.
Sivonxay
,
T. K.
Stenczel
,
V.
Svahn
,
C.
Sutton
,
T. D.
Swinburne
,
J.
Tilly
,
C.
van der Oord
,
E.
Varga-Umbrich
,
T.
Vegge
,
M.
Vondrák
,
Y.
Wang
,
W. C.
Witt
,
F.
Zills
, and
G.
Csányi
, “
A foundation model for atomistic materials chemistry
,” arXiv:2401.00096v2 (
2023
).
249.
Y. L.
Liao
,
B.
Wood
,
A.
Das
, and
T.
Smidt
, “
EquiformerV2: Improved equivariant transformer for scaling to higher-degree representations
,” in
12th International Conference on Learning Representations, ICLR 2024
,
2023
.
250.
L.
Barroso-Luque
,
M.
Shuaibi
,
X.
Fu
,
B. M.
Wood
,
M.
Dzamba
,
M.
Gao
,
A.
Rizvi
,
C. L.
Zitnick
, and
Z. W.
Ulissi
, “
Open Materials 2024 (OMat24) inorganic materials dataset and models
,” arXiv:2410.12771v1 (
2024
).
251.
P.
Mo
,
Y.
Zhang
,
Z.
Zhao
,
H.
Sun
,
J.
Li
,
D.
Guan
,
X.
Ding
,
X.
Zhang
,
B.
Chen
,
M.
Shi
,
D.
Zhang
,
D.
Lu
,
Y.
Wang
,
J.
Huang
,
F.
Liu
,
X.
Li
,
M.
Chen
,
J.
Cheng
,
B.
Liang
,
W. E. J.
Dai
,
L.
Zhang
,
H.
Wang
, and
J.
Liu
, “
High-speed and low-power molecular dynamics processing unit (MDPU) with ab initio accuracy
,”
npj Comput. Mater.
10
(
1
),
253
(
2024
).
252.
C.
Lee
,
K. S.
Kim
,
Y. J.
Kim
,
J. Y.
Lee
, and
D. N.
Kim
, “
Tailoring the mechanical stiffness of DNA nanostructures using engineered defects
,”
ACS Nano
13
(
7
),
8329
8336
(
2019
).
253.
C.
Lee
,
S.
Do
,
J. Y.
Lee
,
M.
Kim
,
S. M.
Kim
,
Y.
Shin
, and
D. N.
Kim
, “
Formation of non-base-pairing DNA microgels using directed phase transition of amphiphilic monomers
,”
Nucleic Acids Res.
50
(
7
),
4187
4196
(
2022
).
254.
J. Y.
Lee
,
Y. J.
Kim
,
C.
Lee
,
J. G.
Lee
,
H.
Yagyu
,
O.
Tabata
, and
D. N.
Kim
, “
Investigating the sequence-dependent mechanical properties of DNA nicks for applications in twisted DNA nanostructure design
,”
Nucleic Acids Res.
47
(
1
),
93
102
(
2019
).
255.
J. Y.
Lee
,
Y.
Kim
, and
D. N.
Kim
, “
Predicting the effect of binding molecules on the shape and mechanical properties of structured DNA assemblies
,”
Nat. Commun.
15
(
1
),
6446
(
2024
).
256.
J. Y.
Lee
,
H.
Koh
, and
D. N.
Kim
, “
A computational model for structural dynamics and reconfiguration of DNA assemblies
,”
Nat. Commun.
14
(
1
),
7079
(
2023
).
257.
J. Y.
Lee
,
J. G.
Lee
,
G.
Yun
,
C.
Lee
,
Y. J.
Kim
,
K. S.
Kim
,
T. H.
Kim
, and
D. N.
Kim
, “
Rapid computational analysis of DNA origami assemblies at near-atomic resolution
,”
ACS Nano
15
(
1
),
1002
1015
(
2021
).
258.
K. S.
Schweizer
,
M.
Fuchs
,
G.
Szamel
,
M.
Guenza
, and
H.
Tang
, “
Polymer-mode-coupling theory of the slow dynamics of entangled macromolecular fluids
,”
Macromol. Theory Simul.
6
(
6
),
1037
1117
(
1997
).
259.
U.
Kapoor
and
A.
Jayaraman
, “
Self-assembly of allomelanin dimers and the impact of poly(ethylene glycol) on the assembly: A molecular dynamics simulation study
,”
J. Phys. Chem. B
124
(
13
),
2702
2714
(
2020
).
260.
Z.
Wu
,
J. W.
Wu
,
Q.
Michaudel
, and
A.
Jayaraman
, “
Investigating the hydrogen bond-induced self-assembly of polysulfamides using molecular simulations and experiments
,”
Macromolecules
56
(
13
),
5033
5049
(
2023
).
261.
Y.
Kim
,
E.
Ha
, and
A.
Alexander-Katz
, “
Phase behavior of disk-coil macromolecules
,”
Macromolecules
44
(
17
),
7016
7025
(
2011
).
262.
Y.
Kim
and
A.
Alexander-Katz
, “
Phase behavior of symmetric disk-coil macromolecules with stacking interactions
,”
J. Chem. Phys.
135
(
2
),
024902
(
2011
).
263.
H. J.
Kim
,
J. S.
Kim
,
Y.
Kim
,
Y. S.
Jung
,
B. J.
Kim
, and
Y. J.
Kim
, “
Regioregularity controlled phase behavior for poly(3-hexylthiophene): A combined study of simple coarse-grained simulation and experiment
,”
Polymer
178
,
121569
(
2019
).
264.
M. Y.
Ha
,
J. H.
Ryu
,
E. N.
Cho
,
J.
Choi
,
Y.
Kim
, and
W. B.
Lee
, “
Phase behavior of disk-coil block copolymers under cylindrical confinement: Curvature-induced structural frustrations
,”
Phys. Rev. E
100
(
5
),
052502
(
2019
).
265.
Z.
Xu
,
R.
Sun
,
W.
Lu
,
S.
Patil
,
J.
Mays
,
K. S.
Schweizer
, and
S.
Cheng
, “
Nature of steady-state fast flow in entangled polymer melts: Chain stretching, shear thinning, and viscosity scaling
,”
Macromolecules
55
(
23
),
10737
10750
(
2022
).
266.
W.
Zhao
,
R.
Xiao
,
P.
Steinmann
, and
S.
Pfaller
, “
Time–temperature correlations of amorphous thermoplastics at large strains based on molecular dynamics simulations
,”
Mech. Mater.
190
,
104926
(
2024
).
You do not currently have access to this content.