Polymeric membranes have become essential for energy-efficient gas separations such as natural gas sweetening, hydrogen separation, and carbon dioxide capture. Polymeric membranes face challenges like permeability-selectivity tradeoffs, plasticization, and physical aging, limiting their broader applicability. Machine learning (ML) techniques are increasingly used to address these challenges. This review covers current ML applications in polymeric gas separation membrane design, focusing on three key components: polymer data, representation methods, and ML algorithms. Exploring diverse polymer datasets related to gas separation, encompassing experimental, computational, and synthetic data, forms the foundation of ML applications. Various polymer representation methods are discussed, ranging from traditional descriptors and fingerprints to deep learning-based embeddings. Furthermore, we examine diverse ML algorithms applied to gas separation polymers. It provides insights into fundamental concepts such as supervised and unsupervised learning, emphasizing their applications in the context of polymer membranes. The review also extends to advanced ML techniques, including data-centric and model-centric methods, aimed at addressing challenges unique to polymer membranes, focusing on accurate screening and inverse design.

1.
R.
Sidhikku Kandath Valappil
,
N.
Ghasem
, and
M.
Al-Marzouqi
, “
Current and future trends in polymer membrane-based gas separation technology: A comprehensive review
,”
J. Ind. Eng. Chem.
98
,
103
129
(
2021
).
2.
W. J.
Koros
and
G. K.
Fleming
, “
Membrane-based gas separation
,”
J. Membr. Sci.
83
,
1
80
(
1993
).
3.
D. F.
Sanders
,
Z. P.
Smith
,
R.
Guo
,
L. M.
Robeson
,
J. E.
McGrath
,
D. R.
Paul
, and
B. D.
Freeman
, “
Energy-efficient polymeric gas separation membranes for a sustainable future: A review
,”
Polymer
54
,
4729
4761
(
2013
).
4.
P.
Bernardo
,
E.
Drioli
, and
G.
Golemme
, “
Membrane gas separation: A review/state of the art
,”
Ind. Eng. Chem. Res.
48
,
4638
4663
(
2009
).
5.
D. S.
Sholl
and
R. P.
Lively
, “
Seven chemical separations to change the world
,”
Nature
532
,
435
437
(
2016
).
6.
R. W.
Baker
and
B. T.
Low
, “
Gas separation membrane materials: A perspective
,”
Macromolecules
47
,
6999
7013
(
2014
).
7.
J. R.
Weidman
and
R.
Guo
, “
The use of Iptycenes in rational macromolecular design for gas separation membrane applications
,”
Ind. Eng. Chem. Res.
56
,
4220
4236
(
2017
).
8.
M.
Galizia
,
W. S.
Chi
,
Z. P.
Smith
,
T. C.
Merkel
,
R. W.
Baker
, and
B. D.
Freeman
, “
50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation—a review and prospective opportunities
,”
Macromolecules
50
,
7809
7843
(
2017
).
9.
Y.
Wang
,
B. S.
Ghanem
,
Z.
Ali
,
K.
Hazazi
,
Y.
Han
, and
I.
Pinnau
, “
Recent progress on polymers of intrinsic microporosity and thermally modified analogue materials for membrane-based fluid separations
,”
Small Struct.
2
,
2100049
(
2021
).
10.
M.
Liu
,
A.
Seeger
, and
R.
Guo
, “
Cross-linked polymer membranes for energy-efficient gas separation: Innovations and perspectives
,”
Macromolecules
56
,
7230
7246
(
2023
).
11.
S.
Adhikari
and
S.
Fernando
, “
Hydrogen membrane separation techniques
,”
Ind. Eng. Chem. Res.
45
,
875
881
(
2006
).
12.
J.
Caro
,
M.
Noack
,
P.
Kölsch
, and
R.
Schäfer
, “
Zeolite membranes—state of their development and perspective
,”
Microporous Mesoporous Mater.
38
,
3
24
(
2000
).
13.
E.
Adatoz
,
A. K.
Avci
, and
S.
Keskin
, “
Opportunities and challenges of MOF-based membranes in gas separations
,”
Sep. Purif. Technol.
152
,
207
237
(
2015
).
14.
T.-S.
Chung
,
L. Y.
Jiang
,
Y.
Li
, and
S.
Kulprathipanja
, “
Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation
,”
Prog. Polym. Sci.
32
,
483
507
(
2007
).
15.
Z.
Wang
,
D.
Wang
,
S.
Zhang
,
L.
Hu
, and
J.
Jin
, “
Interfacial design of mixed matrix membranes for improved gas separation performance
,”
Adv. Mater.
28
,
3399
3405
(
2016
).
16.
G.
Saracco
,
H. W. J. P.
Neomagus
,
G. F.
Versteeg
, and
W. P. M.
van Swaaij
, “
High-temperature membrane reactors: Potential and problems
,”
Chem. Eng. Sci.
54
,
1997
2017
(
1999
).
17.
Y.
Yampolskii
, “
Polymeric gas separation membranes
,”
Macromolecules
45
,
3298
3311
(
2012
).
18.
W. J.
Koros
,
G. K.
Fleming
,
S. M.
Jordan
,
T. H.
Kim
, and
H. H.
Hoehn
, “
Polymeric membrane materials for solution-diffusion based permeation separations
,”
Prog. Polym. Sci.
13
,
339
401
(
1988
).
19.
X.
Hu
,
Y.
Pang
,
H.
Mu
,
X.
Meng
,
X.
Wang
,
Z.
Wang
, and
J.
Yan
, “
Synthesis and gas separation performances of intrinsically microporous polyimides based on 4-methylcatechol-derived monomers
,”
J. Membr. Sci.
620
,
118825
(
2021
).
20.
C. Z.
Liang
,
T.-S.
Chung
, and
J.-Y.
Lai
, “
A review of polymeric composite membranes for gas separation and energy production
,”
Prog. Polym. Sci.
97
,
101141
(
2019
).
21.
H.-J.
Schröter
, “
Carbon molecular sieves for gas separation processes
,”
Gas Sep. Purif.
7
,
247
251
(
1993
).
22.
A.
Phan
,
C. J.
Doonan
,
F. J.
Uribe-Romo
,
C. B.
Knobler
,
M.
O'Keeffe
, and
O. M.
Yaghi
, “
Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks
,”
Acc. Chem. Res.
43
,
58
67
(
2010
).
23.
J. G.
Wijmans
and
R. W.
Baker
, “
The solution-diffusion model: A review
,”
J. Membr. Sci.
107
,
1
21
(
1995
).
24.
A. S.
Michaels
,
W. R.
Vieth
, and
J. A.
Barrie
, “
Diffusion of gases in polyethylene terephthalate
,”
J. Appl. Phys.
34
,
13
20
(
1963
).
25.
A. S.
Michaels
,
W. R.
Vieth
, and
J. A.
Barrie
, “
Solution of gases in polyethylene terephthalate
,”
J. Appl. Phys.
34
,
1
12
(
1963
).
26.
See https://www.membrane-australasia.org for Membrane Society of Australasia, MSA (2024).
27.
N.
Mehio
,
S.
Dai
, and
D.
Jiang
, “
Quantum mechanical basis for kinetic diameters of small gaseous molecules
,”
J. Phys. Chem. A
118
,
1150
1154
(
2014
).
28.
L. M.
Robeson
, “
Correlation of separation factor versus permeability for polymeric membranes
,”
J. Membr. Sci.
62
,
165
185
(
1991
).
29.
B. D.
Freeman
, “
Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes
,”
Macromolecules
32
,
375
380
(
1999
).
30.
A. Y.
Alentiev
and
Y. P.
Yampolskii
, “
Free volume model and tradeoff relations of gas permeability and selectivity in glassy polymers
,”
J. Membr. Sci.
165
,
201
216
(
2000
).
31.
T.
Corrado
and
R.
Guo
, “
Macromolecular design strategies toward tailoring free volume in glassy polymers for high performance gas separation membranes
,”
Mol. Syst. Des. Eng.
5
,
22
48
(
2020
).
32.
L. M.
Robeson
, “
The upper bound revisited
,”
J. Membr. Sci.
320
,
390
400
(
2008
).
33.
W. J.
Koros
, “
Model for sorption of mixed gases in glassy polymers
,”
J. Polym. Sci. Polym. Phys. Ed.
18
,
981
992
(
1980
).
34.
M. S.
Suleman
,
K. K.
Lau
, and
Y. F.
Yeong
, “
Plasticization and swelling in polymeric membranes in CO2 removal from natural gas
,”
Chem. Eng. Technol.
39
,
1604
1616
(
2016
).
35.
A. F.
Ismail
and
W.
Lorna
, “
Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane
,”
Sep. Purif. Technol.
27
,
173
194
(
2002
).
36.
J. E.
Bachman
,
Z. P.
Smith
,
T.
Li
,
T.
Xu
, and
J. R.
Long
, “
Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals
,”
Nat. Mater.
15
,
845
849
(
2016
).
37.
A.
Bos
,
I.
Pünt
,
H.
Strathmann
, and
M.
Wessling
, “
Suppression of gas separation membrane plasticization by homogeneous polymer blending
,”
AIChE J.
47
,
1088
1093
(
2001
).
38.
W. F.
Yong
,
K. H. A.
Kwek
,
K.-S.
Liao
, and
T.-S.
Chung
, “
Suppression of aging and plasticization in highly permeable polymers
,”
Polymer
77
,
377
386
(
2015
).
39.
D. Q.
Vu
,
W. J.
Koros
, and
S. J.
Miller
, “
Effect of condensable impurities in CO2/CH4 gas feeds on carbon molecular sieve hollow-fiber membranes
,”
Ind. Eng. Chem. Res.
42
,
1064
1075
(
2003
).
40.
L. S.
White
,
T. A.
Blinka
,
H. A.
Kloczewski
, and
I.
Wang
, “
Properties of a polyimide gas separation membrane in natural gas streams
,”
J. Membr. Sci.
103
,
73
82
(
1995
).
41.
N.
Tanihara
,
H.
Shimazaki
,
Y.
Hirayama
,
S.
Nakanishi
,
T.
Yoshinaga
, and
Y.
Kusuki
, “
Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber
,”
J. Membr. Sci.
160
,
179
186
(
1999
).
42.
M.
Minelli
,
S.
Oradei
,
M.
Fiorini
, and
G. C.
Sarti
, “
CO2 plasticization effect on glassy polymeric membranes
,”
Polymer
163
,
29
35
(
2019
).
43.
C.-C.
Chen
,
W.
Qiu
,
S. J.
Miller
, and
W. J.
Koros
, “
Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide
,”
J. Membr. Sci.
382
,
212
221
(
2011
).
44.
N. R.
Horn
and
D. R.
Paul
, “
Carbon dioxide plasticization and conditioning effects in thick vs. thin glassy polymer films
,”
Polymer
52
,
1619
1627
(
2011
).
45.
D.
Dollimore
, “
Physical aging in amorphous polymers and other materials
,”
Thermochim. Acta
54
,
242
243
(
1982
).
46.
B. W.
Rowe
,
B. D.
Freeman
, and
D. R.
Paul
, “
Physical aging of membranes for gas separations
,” in
Membrane Engineering for the Treatment of Gases: Gas-separation Problems with Membranes
(
The Royal Society of Chemistry
,
2011
), Chap. 3, pp.
58
83
.
47.
T. M.
Murphy
,
G. T.
Offord
, and
D. R.
Paul
, “
Fundamentals of membrane gas separation
,” in
Membrane Operations
(
John Wiley & Sons, Ltd
.,
2009
), pp.
63
82
.
48.
B. W.
Rowe
,
B. D.
Freeman
, and
D. R.
Paul
, “
Physical aging of ultrathin glassy polymer films tracked by gas permeability
,”
Polymer
50
,
5565
5575
(
2009
).
49.
T.
Visser
,
N.
Masetto
, and
M.
Wessling
, “
Materials dependence of mixed gas plasticization behavior in asymmetric membranes
,”
J. Membr. Sci.
306
,
16
28
(
2007
).
50.
F. Y.
Li
,
Y.
Xiao
,
T.-S.
Chung
, and
S.
Kawi
, “
High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development
,”
Macromolecules
45
,
1427
1437
(
2012
).
51.
Y.
Liu
,
M.
Ding
, and
J.
Xu
, “
Gas permeabilities and permselectivity of photochemically crosslinked polyimides
,”
J. Appl. Polym. Sci.
58
,
485
489
(
1995
).
52.
D.
He
,
H.
Susanto
, and
M.
Ulbricht
, “
Photo-irradiation for preparation, modification and stimulation of polymeric membranes
,”
Prog. Polym. Sci.
34
,
62
98
(
2009
).
53.
C. H.
Lau
,
P. T.
Nguyen
,
M. R.
Hill
,
A. W.
Thornton
,
K.
Konstas
,
C. M.
Doherty
,
R. J.
Mulder
,
L.
Bourgeois
,
A. C. Y.
Liu
,
D. J.
Sprouster
,
J. P.
Sullivan
,
T. J.
Bastow
,
A. J.
Hill
,
D. L.
Gin
, and
R. D.
Noble
, “
Ending aging in super glassy polymer membranes
,”
Angew. Chem. Int. Ed.
53
,
5322
5326
(
2014
).
54.
T.
Corrado
,
Z.
Huang
,
J.
Aboki
, and
R.
Guo
, “
Microporous polysulfones with enhanced separation performance via integration of the triptycene moiety
,”
Ind. Eng. Chem. Res.
59
,
5351
5361
(
2020
).
55.
S.
Bandehali
,
A.
Ebadi Amooghin
,
H.
Sanaeepur
,
R.
Ahmadi
,
A.
Fuoco
,
J. C.
Jansen
, and
S.
Shirazian
, “
Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation
,”
Sep. Purif. Technol.
278
,
119513
(
2021
).
56.
P. M.
Budd
,
K. J.
Msayib
,
C. E.
Tattershall
,
B. S.
Ghanem
,
K. J.
Reynolds
,
N. B.
McKeown
, and
D.
Fritsch
, “
Gas separation membranes from polymers of intrinsic microporosity
,”
J. Membr. Sci.
251
,
263
269
(
2005
).
57.
H.
Sanaeepur
,
A.
Ebadi Amooghin
,
S.
Bandehali
,
A.
Moghadassi
,
T.
Matsuura
, and
B.
Van Der Bruggen
, “
Polyimides in membrane gas separation: Monomer's molecular design and structural engineering
,”
Prog. Polym. Sci.
91
,
80
125
(
2019
).
58.
M.
Vinoba
,
M.
Bhagiyalakshmi
,
Y.
Alqaheem
,
A. A.
Alomair
,
A.
Pérez
, and
M. S.
Rana
, “
Recent progress of fillers in mixed matrix membranes for CO2 separation: A review
,”
Sep. Purif. Technol.
188
,
431
450
(
2017
).
59.
J. Y.
Park
and
D. R.
Paul
, “
Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method
,”
J. Membr. Sci.
125
,
23
39
(
1997
).
60.
D.
Feldman
, “
Properties of Polymers, 3rd ed., edited by D. W. van Krevelen (Elsevier Science Publishers, Amsterdam, Oxford, New York, 1990), p. 875
,”
J. Polym. Sci., Part B: Polym. Phys.
29
,
1654
(
1991
).
61.
M.
Salame
and
S.
Steingiser
, “
Barrier polymers
,”
Polym.-Plast. Technol. Eng.
8
,
155
175
(
1977
).
62.
M.
Salame
, “
Prediction of gas barrier properties of high polymers
,”
Polym. Eng. Sci.
26
,
1543
1546
(
1986
).
63.
J.
Bicerano
,
Prediction of Polymer Properties
, 3rd ed. (
CRC Press
,
Boca Raton
,
2002
).
64.
W. M.
Lee
, “
Selection of barrier materials from molecular structure
,”
Polym. Eng. Sci.
20
,
65
69
(
1980
).
65.
O. V.
Malykh
,
A. Y.
Golub
, and
V. V.
Teplyakov
, “
Polymeric membrane materials: New aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases
,”
Adv. Colloid Interface Sci.
164
,
89
99
(
2011
).
66.
Materials Science of Membranes for Gas and Vapor Separation
, 1st ed., edited by
Y.
Yampolskii
,
I.
Pinnau
, and
B.
Freeman
(
Wiley
,
2006
).
67.
E.
Mjolsness
and
D.
DeCoste
, “
Machine learning for science: State of the art and future prospects
,”
Science
293
,
2051
2055
(
2001
).
68.
M. I.
Jordan
and
T. M.
Mitchell
, “
Machine learning: Trends, perspectives, and prospects
,”
Science
349
,
255
260
(
2015
).
69.
J.
Wei
,
X.
Chu
,
X.-Y.
Sun
,
K.
Xu
,
H.-X.
Deng
,
J.
Chen
,
Z.
Wei
, and
M.
Lei
, “
Machine learning in materials science
,”
InfoMat
1
,
338
358
(
2019
).
70.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
, “
Machine learning for molecular and materials science
,”
Nature
559
,
547
555
(
2018
).
71.
L.
Chen
,
G.
Pilania
,
R.
Batra
,
T. D.
Huan
,
C.
Kim
,
C.
Kuenneth
, and
R.
Ramprasad
, “
Polymer informatics: Current status and critical next steps
,”
Mater. Sci. Eng., R
144
,
100595
(
2021
).
72.
W.
Sha
,
Y.
Li
,
S.
Tang
,
J.
Tian
,
Y.
Zhao
,
Y.
Guo
,
W.
Zhang
,
X.
Zhang
,
S.
Lu
,
Y.-C.
Cao
, and
S.
Cheng
, “
Machine learning in polymer informatics
,”
InfoMat
3
,
353
361
(
2021
).
73.
K.
Hatakeyama-Sato
, “
Recent advances and challenges in experiment-oriented polymer informatics
,”
Polym. J.
55
,
117
131
(
2023
).
74.
C.
Kuenneth
,
A. C.
Rajan
,
H.
Tran
,
L.
Chen
,
C.
Kim
, and
R.
Ramprasad
, “
Polymer informatics with multi-task learning
,”
Patterns
2
,
100238
(
2021
).
75.
D. J.
Audus
and
J. J.
de Pablo
, “
Polymer informatics: Opportunities and challenges
,”
ACS Macro Lett.
6
,
1078
1082
(
2017
).
76.
C.
Kim
,
A.
Chandrasekaran
,
T. D.
Huan
,
D.
Das
, and
R.
Ramprasad
, “
Polymer genome: A data-powered polymer informatics platform for property predictions
,”
J. Phys. Chem. C
122
,
17575
17585
(
2018
).
77.
S.
Wu
,
H.
Yamada
,
Y.
Hayashi
,
M.
Zamengo
, and
R.
Yoshida
, “
Potentials and challenges of polymer informatics: Exploiting machine learning for polymer design
,” arXiv:2010.07683 (
2020
).
78.
M. M.
Cencer
,
J. S.
Moore
, and
R. S.
Assary
, “
Machine learning for polymeric materials: An introduction
,”
Polym. Int.
71
,
537
542
(
2022
).
79.
J. S.
Peerless
,
N. J. B.
Milliken
,
T. J.
Oweida
,
M. D.
Manning
, and
Y. G.
Yingling
, “
Soft Matter Informatics: Current progress and challenges
,”
Adv. Theory Simul.
2
,
1800129
(
2019
).
80.
S. S.
Shukla
,
C.
Kuenneth
, and
R.
Ramprasad
, “
Polymer informatics beyond homopolymers
,”
MRS Bull.
49
,
17
24
(
2024
).
81.
E.
Ricci
and
M. G. D.
Angelis
, “
A perspective on data-driven screening and discovery of polymer membranes for gas separation, from the molecular structure to the industrial performance
,”
Rev. Chem. Eng.
40
,
567
(
2024
).
82.
See https://polymer.nims.go.jp/en/ for Polymer Database(PoLyInfo) - DICE:: National Institute for Materials Science.
83.
M.
Wang
and
J.
Jiang
, “
Accelerating discovery of high fractional free volume polymers from a data-driven approach
,”
ACS Appl. Mater. Interfaces
14
,
31203
(
2022
).
84.
L.
Tao
,
J.
He
,
T.
Arbaugh
,
J. R.
McCutcheon
, and
Y.
Li
, “
Machine learning prediction on the fractional free volume of polymer membranes
,”
J. Membr. Sci.
665
,
121131
(
2023
).
85.
R.
Ma
and
T.
Luo
, “
PI1M: A benchmark database for polymer informatics
,”
J. Chem. Inf. Model.
60
,
4684
4690
(
2020
).
86.
J.
Yang
,
L.
Tao
,
J.
He
,
J. R.
McCutcheon
, and
Y.
Li
, “
Machine learning enables interpretable discovery of innovative polymers for gas separation membranes
,”
Sci. Adv.
8
,
eabn9545
(
2022
).
87.
S.
Kim
,
C. M.
Schroeder
, and
N. E.
Jackson
, “
Open macromolecular genome: Generative design of synthetically accessible polymers
,”
ACS Polym. Au
3
,
318
330
(
2023
).
88.
M.
Ohno
,
Y.
Hayashi
,
Q.
Zhang
,
Y.
Kaneko
, and
R.
Yoshida
, “
SMiPoly: Generation of a synthesizable polymer virtual library using rule-based polymerization reactions
,”
J. Chem. Inf. Model.
63
,
5539
5548
(
2023
).
89.
S. P.
Tiwari
,
W.
Shi
,
S.
Budhathoki
,
J.
Baker
,
A. K.
Sekizkardes
,
L.
Zhu
,
V. A.
Kusuma
,
D. P.
Hopkinson
, and
J. A.
Steckel
, “
Creation of polymer datasets with targeted backbones for screening of high-performance membranes for gas separation
,”
J. Chem. Inf. Model.
64
,
638
652
(
2024
).
90.
J.
Bicerano
,
D.
Rigby
,
C.
Freeman
,
B.
LeBlanc
, and
J.
Aubry
, “
Polymer expert—A software tool for de novo polymer design
,”
Comput. Mater. Sci.
235
,
112810
(
2024
).
91.
See https://research.csiro.au/virtualscreening/membrane-database-polymer-gas-separation-membranes/ for Virtual Screening of Materials, “
Membrane Database - Polymer Gas Separation Membranes
” (2012).
92.
H. W. H.
Lai
,
F. M.
Benedetti
,
J. M.
Ahn
,
A. M.
Robinson
,
Y.
Wang
,
I.
Pinnau
,
Z. P.
Smith
, and
Y.
Xia
, “
Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations
,”
Science
375
,
1390
1392
(
2022
).
93.
W. H.
Lee
,
J. G.
Seong
,
X.
Hu
, and
Y. M.
Lee
, “
Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting trade-off lines
,”
J. Polym. Sci.
58
,
2450
2466
(
2020
).
94.
J.
Yang
(
2024
). “PolymerGasMembraneML (pgmML),”
GitHub
. https://github.com/jsunn-y/PolymerGasMembraneML
95.
Tiwari
et al. (
2023
). “Polymer_backbones_paper_data,”
GitHub
. https://github.com/sptiwari/polymer_backbones_paper_data
96.
See https://poly.chemnetbase.com for CHEMnetBASE (2024).
97.
See https://pppdb.uchicago.edu/ for Polymer Property Predictor and Database (2017).
98.
B.
Blaiszik
et al., “
The materials data facility: Data services to advance materials science research
,”
JOM
68
,
2045
(
2016
).
99.
R.
Giro
,
H.
Hsu
,
A.
Kishimoto
,
T.
Hama
,
R. F.
Neumann
,
B.
Luan
,
S.
Takeda
,
L.
Hamada
, and
M. B.
Steiner
, “
AI powered, automated discovery of polymer membranes for carbon capture
,”
npj Comput. Mater.
9
,
133
(
2023
).
100.
J.
Choi
,
H.
Kang
,
J. H.
Lee
,
S. H.
Kwon
, and
S. G.
Lee
, “
Predicting the properties of high-performance epoxy resin by machine learning using molecular dynamics simulations
,”
Nanomaterials
12
,
2353
(
2022
).
101.
R.
Ma
,
H.
Zhang
,
J.
Xu
,
L.
Sun
,
Y.
Hayashi
,
R.
Yoshida
,
J.
Shiomi
,
J.
Wang
, and
T.
Luo
, “
Machine learning-assisted exploration of thermally conductive polymers based on high-throughput molecular dynamics simulations
,”
Mater. Today Phys.
28
,
100850
(
2022
).
102.
G. S.
Larsen
,
P.
Lin
,
K. E.
Hart
, and
C. M.
Colina
, “
Molecular simulations of PIM-1-like polymers of intrinsic microporosity
,”
Macromolecules
44
,
6944
6951
(
2011
).
103.
W.
Fang
,
L.
Zhang
, and
J.
Jiang
, “
Polymers of intrinsic microporosity for gas permeation: A molecular simulation study
,”
Mol. Simul.
36
,
992
1003
(
2010
).
104.
E.
Kucukpinar
and
P.
Doruker
, “
Molecular simulations of small gas diffusion and solubility in copolymers of styrene
,”
Polymer
44
,
3607
3620
(
2003
).
105.
F.
Mozaffari
,
H.
Eslami
, and
J.
Moghadasi
, “
Molecular dynamics simulation of diffusion and permeation of gases in polystyrene
,”
Polymer
51
,
300
307
(
2010
).
106.
K.
Golzar
,
H.
Modarress
, and
S.
Amjad-Iranagh
, “
Separation of gases by using pristine, composite and nanocomposite polymeric membranes: A molecular dynamics simulation study
,”
J. Membr. Sci.
539
,
238
256
(
2017
).
107.
M.
Zhao
,
C.
Zhang
,
F.
Yang
, and
Y.
Weng
, “
Gas barrier properties of furan-based polyester films analyzed experimentally and by molecular simulations
,”
Polymer
233
,
124200
(
2021
).
108.
H.
Sun
,
S. J.
Mumby
,
J. R.
Maple
, and
A. T.
Hagler
, “
An ab initio CFF93 all-atom force field for polycarbonates
,”
J. Am. Chem. Soc.
116
,
2978
2987
(
1994
).
109.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
110.
H.
Sun
,
P.
Ren
, and
J. R.
Fried
, “
The COMPASS force field: Parameterization and validation for phosphazenes
,”
Comput. Theor. Polym. Sci.
8
,
229
246
(
1998
).
111.
R. P.
White
and
J. E. G.
Lipson
, “
Polymer free volume and its connection to the glass transition
,”
Macromolecules
49
,
3987
4007
(
2016
).
112.
A.
Thran
,
G.
Kroll
, and
F.
Faupel
, “
Correlation between fractional free volume and diffusivity of gas molecules in glassy polymers
,”
J. Polym. Sci., Part B: Polym. Phys.
37
,
3344
3358
(
1999
).
113.
A. X.
Wu
,
S.
Lin
,
K.
Mizrahi Rodriguez
,
F. M.
Benedetti
,
T.
Joo
,
A. F.
Grosz
,
K. R.
Storme
,
N.
Roy
,
D.
Syar
, and
Z. P.
Smith
, “
Revisiting group contribution theory for estimating fractional free volume of microporous polymer membranes
,”
J. Membr. Sci.
636
,
119526
(
2021
).
114.
A.
Bondi
, “
van der Waals volumes and radii
,”
J. Phys. Chem.
68
,
441
451
(
1964
).
115.
C.
Jang
,
T. W.
Sirk
,
J. W.
Andzelm
, and
C. F.
Abrams
, “
Comparison of crosslinking algorithms in molecular dynamics simulation of thermosetting polymers
,”
Macromol. Theory Simul.
24
,
260
270
(
2015
).
116.
A.
Sherstinsky
, “
Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
,”
Phys. Nonlinear Phenom.
404
,
132306
(
2020
).
117.
S.
Kim
,
J.
Chen
,
T.
Cheng
,
A.
Gindulyte
,
J.
He
,
S.
He
,
Q.
Li
,
B. A.
Shoemaker
,
P. A.
Thiessen
,
B.
Yu
,
L.
Zaslavsky
,
J.
Zhang
, and
E. E.
Bolton
, “
PubChem 2023 update
,”
Nucl. Acids Res.
51
,
D1373
D1380
(
2023
).
118.
D.
Weininger
, “
SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
,”
J. Chem. Inf. Comput. Sci.
28
,
31
36
(
1988
).
119.
M.
Krenn
,
F.
Häse
,
A.
Nigam
,
P.
Friederich
, and
A.
Aspuru-Guzik
, “
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
,”
Mach. Learn. Sci. Technol.
1
,
045024
(
2020
).
120.
T.-S.
Lin
,
C. W.
Coley
,
H.
Mochigase
,
H. K.
Beech
,
W.
Wang
,
Z.
Wang
,
E.
Woods
,
S. L.
Craig
,
J. A.
Johnson
,
J. A.
Kalow
,
K. F.
Jensen
, and
B. D.
Olsen
, “
BigSMILES: A structurally-based line notation for describing macromolecules
,”
ACS Cent. Sci.
5
,
1523
1531
(
2019
).
121.
See https://www.rdkit.org/ for RDKit (2024).
122.
L.
Tao
,
V.
Varshney
, and
Y.
Li
, “
Benchmarking machine learning models for polymer informatics: An example of glass transition temperature
,”
J. Chem. Inf. Model.
61
,
5395
5413
(
2021
).
123.
A. R.
Katritzky
,
V. S.
Lobanov
, and
M.
Karelson
, “
QSPR: The correlation and quantitative prediction of chemical and physical properties from structure
,”
Chem. Soc. Rev.
24
,
279
(
1995
).
124.
Chemoinformatics and Computational Chemical Biology
, Methods in Molecular Biology Vol. 672, edited by
J.
Bajorath
(
Humana Press
,
Totowa, NJ, USA
,
2011
).
125.
H. C.
Patel
,
J. S.
Tokarski
, and
A. J.
Hopfinger
, “
Molecular modeling of polymers 16. Gaseous diffusion in polymers: A quantitative structure-property relationship (QSPR) analysis
,”
Pharm. Res.
14
,
1349
1354
(
1997
).
127.
D.
Rogers
and
M.
Hahn
, “
Extended-connectivity fingerprints
,”
J. Chem. Inf. Model.
50
,
742
754
(
2010
).
128.
See https://www.daylight.com/ Daylight (2022).
129.
R.
Nilakantan
,
N.
Bauman
,
J. S.
Dixon
, and
R.
Venkataraghavan
, “
Topological torsion: A new molecular descriptor for SAR applications. Comparison with other descriptors
,”
J. Chem. Inf. Comput. Sci.
27
,
82
85
(
1987
).
130.
J.
Zhou
,
G.
Cui
,
S.
Hu
,
Z.
Zhang
,
C.
Yang
,
Z.
Liu
,
L.
Wang
,
C.
Li
, and
M.
Sun
, “
Graph neural networks: A review of methods and applications
,”
AI Open
1
,
57
81
(
2020
).
131.
S.
Zhang
,
H.
Tong
,
J.
Xu
, and
R.
Maciejewski
, “
Graph convolutional networks: A comprehensive review
,”
Comput. Soc. Networks
6
,
11
(
2019
).
132.
K.
Xu
,
W.
Hu
,
J.
Leskovec
, and
S.
Jegelka
, “
How powerful are graph neural networks?
,” arXiv:1810.00826 (
2019
).
133.
R.
Gurnani
,
C.
Kuenneth
,
A.
Toland
, and
R.
Ramprasad
, “
Polymer informatics at scale with multitask graph neural networks
,”
Chem. Mater.
35
,
1560
1567
(
2023
).
134.
O.
Queen
,
G. A.
McCarver
,
S.
Thatigotla
,
B. P.
Abolins
,
C. L.
Brown
,
V.
Maroulas
, and
K. D.
Vogiatzis
, “
Polymer graph neural networks for multitask property learning
,”
npj Comput. Mater.
9
,
90
(
2023
).
135.
M.
Aldeghi
and
C. W.
Coley
, “
A graph representation of molecular ensembles for polymer property prediction
,”
Chem. Sci.
13
,
10486
10498
(
2022
).
136.
J.
Park
,
Y.
Shim
,
F.
Lee
,
A.
Rammohan
,
S.
Goyal
,
M.
Shim
,
C.
Jeong
, and
D. S.
Kim
, “
Prediction and interpretation of polymer properties using the graph convolutional network
,”
ACS Polym. Au
2
,
213
222
(
2022
).
137.
M.
Zeng
,
J. N.
Kumar
,
Z.
Zeng
,
R.
Savitha
,
V. R.
Chandrasekhar
, and
K.
Hippalgaonkar
, “
Graph convolutional neural networks for polymers property prediction
,” arXiv:1811.06231 (
2018
).
138.
G.
Liu
,
T.
Zhao
,
J.
Xu
,
T.
Luo
, and
M.
Jiang
, “
Graph rationalization with environment-based augmentations
,” in
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD'22
(
Association for Computing Machinery
,
New York, NY, USA
,
2022
), pp.
1069
1078
.
139.
G.
Liu
,
E.
Inae
,
T.
Zhao
,
J.
Xu
,
T.
Luo
, and
M.
Jiang
, “
Data-centric learning from unlabeled graphs with diffusion model
,” in Proceedings of the 37th International Conference on Neural Information Processing Systems (NIPS '23) (Curran Associates Inc., Red Hook, NY, 2024), pp. 21039–21057.
140.
I.
Sutskever
,
O.
Vinyals
, and
Q. V.
Le
, “
Sequence to sequence learning with neural networks
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc
.,
2014
), Vol.
27
.
141.
A.
Vaswani
,
N.
Shazeer
,
N.
Parmar
,
J.
Uszkoreit
,
L.
Jones
,
A. N.
Gomez
,
Ł.
ukasz Kaiser
, and
I.
Polosukhin
, “
Attention is all you need
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc
.,
2017
), Vol.
30
.
142.
S.
Jaeger
,
S.
Fulle
, and
S.
Turk
, “
Mol2vec: Unsupervised machine learning approach with chemical intuition
,”
J. Chem. Inf. Model.
58
,
27
35
(
2018
).
143.
P. J.
Flory
and
A.
Vrij
, “
Melting points of linear-chain homologs. the normal paraffin hydrocarbons
,”
J. Am. Chem. Soc.
85
,
3548
3553
(
1963
).
144.
R.
Ma
,
Z.
Liu
,
Q.
Zhang
,
Z.
Liu
, and
T.
Luo
, “
Evaluating polymer representations via quantifying structure–property relationships
,”
J. Chem. Inf. Model.
59
,
3110
(
2019
).
145.
L.
Wang
,
C.
Shao
,
H.
Wang
, and
H.
Wu
, “
Radial basis function neural networks-based modeling of the membrane separation process: Hydrogen recovery from refinery gases
,”
J. Nat. Gas Chem.
15
,
230
234
(
2006
).
146.
A.
Shahsavand
and
M. P.
Chenar
, “
Neural networks modeling of hollow fiber membrane processes
,”
J. Membr. Sci.
297
,
59
73
(
2007
).
147.
A.
Ghadimi
,
M.
Sadrzadeh
, and
T.
Mohammadi
, “
Prediction of ternary gas permeation through synthesized PDMS membranes by using principal component analysis (PCA) and fuzzy logic (FL)
,”
J. Membr. Sci.
360
,
509
521
(
2010
).
148.
M.
Rostamizadeh
,
M.
Rezakazemi
,
K.
Shahidi
, and
T.
Mohammadi
, “
Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling
,”
Int. J. Hydrogen Energy
38
,
1128
1135
(
2013
).
149.
S.
Ebrahimi
,
S.
Mollaiy-Berneti
,
H.
Asadi
,
M.
Peydayesh
,
F.
Akhlaghian
, and
T.
Mohammadi
, “
PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: Experimental and modeling
,”
Chem. Eng. Res. Des.
109
,
647
656
(
2016
).
150.
M.
Fakhroleslam
,
A.
Samimi
,
S. A.
Mousavi
, and
R.
Rezaei
, “
Prediction of the effect of polymer membrane composition in a dry air humidification process via neural network modeling
,”
Iran. J. Chem. Eng.
13
,
73
83
(
2016
).
151.
R.
Nasir
,
H.
Suleman
, and
K.
Maqsood
, “
Multiparameter neural network modeling of facilitated transport mixed matrix membranes for carbon dioxide removal
,”
Membranes
12
,
421
(
2022
).
152.
S. A.
Abdollahi
and
S. F.
Ranjbar
, “
Modeling the CO2 separation capability of poly(4-methyl-1-pentane) membrane modified with different nanoparticles by artificial neural networks
,”
Sci. Rep.
13
,
8812
(
2023
).
153.
H.
Yin
,
M.
Xu
,
Z.
Luo
,
X.
Bi
,
J.
Li
,
S.
Zhang
, and
X.
Wang
, “
Machine learning for membrane design and discovery
,”
Green Energy Environ.
9
,
54
70
(
2024
).
154.
J.
Wang
,
K.
Tian
,
D.
Li
,
M.
Chen
,
X.
Feng
,
Y.
Zhang
,
Y.
Wang
, and
B.
Van der Bruggen
, “
Machine learning in gas separation membrane developing: Ready for prime time
,”
Sep. Purif. Technol.
313
,
123493
(
2023
).
155.
P.
Xu
,
H.
Chen
,
M.
Li
, and
W.
Lu
, “
New opportunity: machine learning for polymer materials design and discovery
,”
Adv. Theory Simul.
5
,
2100565
(
2022
).
156.
R.
Choudhary
and
H. K.
Gianey
, “
Comprehensive review on supervised machine learning algorithms
,” in
2017 International Conference on Machine Learning and Data Science (MLDS)
(
IEEE
,
2017
), pp.
37
43
.
157.
I. G.
Maglogiannis
,
Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in EHealth, HCI, Information Retrieval and Pervasive Technologies
(
IOS Press
,
2007
).
158.
S.
Ray
, “
A quick review of machine learning algorithms
,” in
2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon)
(
IEEE
,
2019
), pp.
35
39
.
159.
M.
Wessling
,
M. H. V.
Mulder
,
A.
Bos
,
M.
van der Linden
,
M.
Bos
, and
W. E.
van der Linden
, “
Modelling the permeability of polymers: A neural network approach
,”
J. Membr. Sci.
86
,
193
198
(
1994
).
160.
H.
Hasnaoui
,
M.
Krea
, and
D.
Roizard
, “
Neural networks for the prediction of polymer permeability to gases
,”
J. Membr. Sci.
541
,
541
549
(
2017
).
161.
G.
Zhu
,
C.
Kim
,
A.
Chandrasekarn
,
J. D.
Everett
,
R.
Ramprasad
, and
R. P.
Lively
, “
Polymer genome–based prediction of gas permeabilities in polymers
,”
J. Polym. Eng.
40
,
451
457
(
2020
).
162.
J. W.
Barnett
,
C. R.
Bilchak
,
Y.
Wang
,
B. C.
Benicewicz
,
L. A.
Murdock
,
T.
Bereau
, and
S. K.
Kumar
, “
Designing exceptional gas-separation polymer membranes using machine learning
,”
Sci. Adv.
6
,
eaaz4301
(
2020
).
163.
M.
Zhao
,
C.
Zhang
, and
Y.
Weng
, “
Improved artificial neural networks (ANNs) for predicting the gas separation performance of polyimides
,”
J. Membr. Sci.
681
,
121765
(
2023
).
164.
Q.
Yuan
,
M.
Longo
,
A. W.
Thornton
,
N. B.
McKeown
,
B.
Comesaña-Gándara
,
J. C.
Jansen
, and
K. E.
Jelfs
, “
Imputation of missing gas permeability data for polymer membranes using machine learning
,”
J. Membr. Sci.
627
,
119207
(
2021
).
165.
G.
Liu
,
T.
Zhao
,
E.
Inae
,
T.
Luo
, and
M.
Jiang
, “
Semi-supervised graph imbalanced regression
,” in
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD'23
(
Association for Computing Machinery
,
New York, NY, USA
,
2023
), pp.
1453
1465
.
166.
A. N.
Wilson
,
P. C.
St John
,
D. H.
Marin
,
C. B.
Hoyt
,
E. G.
Rognerud
,
M. R.
Nimlos
,
R. M.
Cywar
,
N. A.
Rorrer
,
K. M.
Shebek
,
L. J.
Broadbelt
,
G. T.
Beckham
, and
M. F.
Crowley
, “
PolyID: Artificial intelligence for discovering performance-advantaged and sustainable polymers
,”
Macromolecules
56
,
8547
8557
(
2023
).
167.
C.
Kuenneth
and
R.
Ramprasad
, “
polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics
,”
Nat. Commun.
14
,
4099
(
2023
).
168.
Y.
Basdogan
,
D. R.
Pollard
,
T.
Shastry
,
M. R.
Carbone
,
S. K.
Kumar
, and
Z.-G.
Wang
, “
Machine learning-guided discovery of polymer membranes for CO2 separation with genetic algorithm
,”
J. Membr. Sci.
712
,
123169
(
2024
).
169.
J.
Xu
,
A.
Suleiman
,
G.
Liu
,
M.
Perez
,
R.
Zhang
,
M.
Jiang
,
R.
Guo
, and
T.
Luo
, “
Superior polymeric gas separation membrane designed by explainable graph machine learning
,”
Cell Rep. Phys. Sci.
5
,
102067
(
2024
).
170.
Y.
Yampolskii
,
S.
Shishatskii
,
A.
Alentiev
, and
K.
Loza
, “
Group contribution method for transport property predictions of glassy polymers: Focus on polyimides and polynorbornenes
,”
J. Membr. Sci.
149
,
203
220
(
1998
).
171.
S.
Naeem
,
A.
Ali
,
S.
Anam
, and
M.
Ahmed
, “
An unsupervised machine learning algorithms: Comprehensive review
,”
Int. J. Comput. Digital Syst.
13
,
911
921
(
2023
).
172.
B. K.
Tripathy
,
A.
Sundareswaran
, and
S.
Ghela
,
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
(
CRC Press
,
2021
).
173.
A.
Merchant
,
S.
Batzner
,
S. S.
Schoenholz
,
M.
Aykol
,
G.
Cheon
, and
E. D.
Cubuk
, “
Scaling deep learning for materials discovery
,”
Nature
624
,
80
85
(
2023
).
174.
S.
Kirklin
,
J. E.
Saal
,
B.
Meredig
,
A.
Thompson
,
J. W.
Doak
,
M.
Aykol
,
S.
Rühl
, and
C.
Wolverton
, “
The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies
,”
Npj Comput. Mater.
1
,
15010
(
2015
).
175.
N.
Schapin
,
M.
Majewski
,
A.
Varela-Rial
,
C.
Arroniz
, and
G. D.
Fabritiis
, “
Machine learning small molecule properties in drug discovery
,”
Artif. Intell. Chem.
1
,
100020
(
2023
).
176.
A.
Belsky
,
M.
Hellenbrandt
,
V. L.
Karen
, and
P.
Luksch
, “
New developments in the inorganic crystal structure database (ICSD): Accessibility in support of materials research and design
,”
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
58
,
364
369
(
2002
).
177.
C.
Shorten
and
T. M.
Khoshgoftaar
, “
A survey on image data augmentation for deep learning
,”
J. Big Data
6
,
60
(
2019
).
178.
W.
Hu
,
B.
Liu
,
J.
Gomes
,
M.
Zitnik
,
P.
Liang
,
V.
Pande
, and
J.
Leskovec
, “
Strategies for pre-training graph neural networks
,” arXiv:1905.12265 (
2020
).
179.
Y.
Rong
,
W.
Huang
,
T.
Xu
, and
J.
Huang
, “
DropEdge: Towards deep graph convolutional networks on node classification
,” arXiv:1907.10903 (
2020
).
180.
M.
Sun
,
J.
Xing
,
H.
Wang
,
B.
Chen
, and
J.
Zhou
, “
MoCL: Data-driven molecular fingerprint via knowledge-aware contrastive learning from molecular graph
,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD'21
(
Association for Computing Machinery
,
New York, NY, USA
,
2021
), pp.
3585
3594
.
181.
T.
Zhao
,
W.
Jin
,
Y.
Liu
,
Y.
Wang
,
G.
Liu
,
S.
Günnemann
,
N.
Shah
, and
M.
Jiang
, “
Graph data augmentation for graph machine learning: A survey
,” arXiv:2202.08871 (
2023
).
182.
K.
Ding
,
Z.
Xu
,
H.
Tong
, and
H.
Liu
, “
Data augmentation for deep graph learning: A survey
,”
ACM SIGKDD Explor. Newsl.
24
,
61
77
(
2022
).
183.
D.-H.
Lee
, “
Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
,” in
Workshop on Challenges in Representation Learning
(
ICML
,
Atlanta
,
2013
), Vol.
3
, p.
896
.
184.
Y.
Gal
and
Z.
Ghahramani
, “
Dropout as a Bayesian approximation: representing model uncertainty in deep learning
,” in
Proceedings of the 33rd International Conference on Machine Learning
(
PMLR
,
2016
), pp.
1050
1059
.
185.
N.
Tagasovska
and
D.
Lopez-Paz
, “
Single-model uncertainties for deep learning
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc
.,
2019
), Vol.
32
.
186.
A.
Amini
,
W.
Schwarting
,
A.
Soleimany
, and
D.
Rus
, “
Deep evidential regression
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc
.,
2020
), Vol.
33
, pp.
14927
14937
.
187.
B.
Settles
, “
Active learning literature survey
,”
Technical Report No. TR1648
(
University of Wisconsin-Madison Department of Computer Sciences
,
2009
).
188.
J. S.
Smith
,
B.
Nebgen
,
N.
Lubbers
,
O.
Isayev
, and
A. E.
Roitberg
, “
Less is more: Sampling chemical space with active learning
,”
J. Chem. Phys.
148
,
241733
(
2018
).
189.
A.
Tharwat
and
W.
Schenck
, “
A survey on active learning: State-of-the-art, practical challenges and research directions
,”
Mathematics
11
,
820
(
2023
).
190.
C.
Kim
,
A.
Chandrasekaran
,
A.
Jha
, and
R.
Ramprasad
, “
Active-learning and materials design: The example of high glass transition temperature polymers
,”
MRS Commun.
9
,
860
866
(
2019
).
191.
A.
Rakhimbekova
,
A.
Lopukhov
,
N.
Klyachko
,
A.
Kabanov
,
T. I.
Madzhidov
, and
A.
Tropsha
, “
Efficient design of peptide-binding polymers using active learning approaches
,”
J. Controlled Release
353
,
903
914
(
2023
).
192.
P. S.
Ramesh
and
T. K.
Patra
, “
Polymer sequence design via active learning
,” arXiv:2111.09659 (
2021
).
193.
S.
Pruksawan
,
G.
Lambard
,
S.
Samitsu
,
K.
Sodeyama
, and
M.
Naito
, “
Prediction and optimization of epoxy adhesive strength from a small dataset through active learning
,”
Sci. Technol. Adv. Mater.
20
,
1010
1021
(
2019
).
194.
J.
Xu
and
T.
Luo
, “
Unlocking enhanced thermal conductivity in polymer blends through active learning
,”
npj Comput. Mater.
10
,
74
(
2024
).
195.
F.
Zhuang
,
Z.
Qi
,
K.
Duan
,
D.
Xi
,
Y.
Zhu
,
H.
Zhu
,
H.
Xiong
, and
Q.
He
, “
A comprehensive survey on transfer learning
,”
Proc. IEEE
109
,
43
76
(
2021
).
196.
K.
Weiss
,
T. M.
Khoshgoftaar
, and
D.
Wang
, “
A survey of transfer learning
,”
J. Big Data
3
,
9
(
2016
).
197.
R.
Ma
,
Y. J.
Colón
, and
T.
Luo
, “
Transfer learning study of gas adsorption in metal–organic frameworks
,”
ACS Appl. Mater. Interfaces
12
,
34041
34048
(
2020
).
198.
S.
Wu
,
Y.
Kondo
,
M.
Kakimoto
,
B.
Yang
,
H.
Yamada
,
I.
Kuwajima
,
G.
Lambard
,
K.
Hongo
,
Y.
Xu
,
J.
Shiomi
,
C.
Schick
,
J.
Morikawa
, and
R.
Yoshida
, “
Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
,”
npj Comput. Mater.
5
,
66
(
2019
).
199.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc
.,
2019
), Vol.
32
.
200.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
, “
Quantum chemistry structures and properties of 134 k molecules
,”
Sci. Data
1
,
140022
(
2014
).
201.
G.
Liu
and
M.
Jiang
, “
Transfer learning with diffusion model for polymer property prediction
” in
Workshop on Machine Learning for Materials
(
2023
).
202.
Z.
Zhang
,
Q.
Liu
,
H.
Wang
,
C.
Lu
, and
C.-K.
Lee
, “
Motif-based graph self-supervised learning for molecular property prediction
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc
.,
2021
), vol.
34
, pp.
15870
15882
.
203.
Y.
You
,
T.
Chen
,
Y.
Shen
, and
Z.
Wang
, “
Graph contrastive learning automated
,” in
Proceedings of the 38th International Conference on Machine Learning
(
PMLR
,
2021
), pp.
12121
12132
.
204.
D.
Kim
,
J.
Baek
, and
S. J.
Hwang
, “
Graph self-supervised learning with accurate discrepancy learning
,” in 36th Conference on Neural Information Processing Systems (NeurIPS 2022) (Curran Associates, 2022), Vol. 35, pp. 14085–14098.
205.
R.
Sun
,
H.
Dai
, and
A. W.
Yu
, “
Does GNN pretraining help molecular representation?
,” in
Proceedings of the 36th International Conference on Neural Information Processing Systems, NIPS'22
(
Curran Associates, Inc
.,
Red Hook, NY, USA
,
2024
), pp.
12096
12109
.
206.
F. L.
Lee
,
J.
Park
,
S.
Goyal
,
Y.
Qaroush
,
S.
Wang
,
H.
Yoon
,
A.
Rammohan
, and
Y.
Shim
, “
Comparison of machine learning methods towards developing interpretable polyamide property prediction
,”
Polymers
13
,
3653
(
2021
).
207.
B. M.
Greenwell
, “
pdp: An R package for constructing partial dependence plots
,”
R J.
9
,
421
(
2017
).
208.
A.
Goldstein
,
A.
Kapelner
,
J.
Bleich
, and
E.
Pitkin
, “
Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
,”
J. Comput. Graph. Stat.
24
,
44
65
(
2015
).
209.
M. T.
Ribeiro
,
S.
Singh
, and
C.
Guestrin
, “
Why should i trust you?': Explaining the predictions of any classifier
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'16
(
Association for Computing Machinery
,
New York, NY, USA
,
2016
), pp.
1135
1144
.
210.
S. M.
Lundberg
and
S.-I.
Lee
, “
A unified approach to interpreting model predictions
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc
.,
2017
), Vol.
30
.
211.
K.
Sattari
,
Y.
Xie
, and
J.
Lin
, “
Data-driven algorithms for inverse design of polymers
,”
Soft Matter
17
,
7607
7622
(
2021
).
212.
C.
Kim
,
R.
Batra
,
L.
Chen
,
H.
Tran
, and
R.
Ramprasad
, “
Polymer design using genetic algorithm and machine learning
,”
Comput. Mater. Sci.
186
,
110067
(
2021
).
213.
S.
Takeda
,
T.
Hama
,
H.-H.
Hsu
,
V. A.
Piunova
,
D.
Zubarev
,
D. P.
Sanders
,
J. W.
Pitera
,
M.
Kogoh
,
T.
Hongo
,
Y.
Cheng
,
W.
Bocanett
,
H.
Nakashika
,
A.
Fujita
,
Y.
Tsuchiya
,
K.
Hino
,
K.
Yano
,
S.
Hirose
,
H.
Toda
,
Y.
Orii
, and
D.
Nakano
, “
Molecular inverse-design platform for material industries
,” in
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD'20
(
Association for Computing Machinery
,
New York, NY, USA
,
2020
), pp.
2961
2969
.
214.
W.
Gao
,
T.
Fu
,
J.
Sun
, and
C.
Coley
, “
Sample efficiency matters: A benchmark for practical molecular optimization
,” in 36th Conference on Neural Information Processing Systems (NeurIPS 2022) (Curran Associates, 2022), Vol. 35, pp. 21342–21357.
215.
C.
Bilodeau
,
W.
Jin
,
T.
Jaakkola
,
R.
Barzilay
, and
K. F.
Jensen
, “
Generative models for molecular discovery: Recent advances and challenges
,”
WIREs Comput. Mol. Sci.
12
,
e1608
(
2022
).
216.
C.
Vignac
,
I.
Krawczuk
,
A.
Siraudin
,
B.
Wang
,
V.
Cevher
, and
P.
Frossard
, “
DiGress: Discrete denoising diffusion for graph generation
,” arXiv:2209.14734 (
2023
).
217.
M.
Popova
,
M.
Shvets
,
J.
Oliva
, and
O.
Isayev
, “
MolecularRNN: Generating realistic molecular graphs with optimized properties
,” arXiv:1905.13372 (
2019
).
218.
Y.
Xie
,
C.
Shi
,
H.
Zhou
,
Y.
Yang
,
W.
Zhang
,
Y.
Yu
, and
L.
Li
, “
MARS: Markov molecular sampling for multi-objective drug discovery
,” arXiv:2103.10432 (
2021
).
219.
W.
Jin
,
R.
Barzilay
, and
T.
Jaakkola
, “
Junction tree variational autoencoder for molecular graph generation
,” in
Proceedings of the 35th International Conference on Machine Learning
(
PMLR
,
2018
), pp.
2323
2332
.
220.
N.
Brown
,
M.
Fiscato
,
M. H. S.
Segler
, and
A. C.
Vaucher
, “
GuacaMol: Benchmarking models for de novo molecular design
,”
J. Chem. Inf. Model.
59
,
1096
1108
(
2019
).
221.
G.
Liu
,
J.
Xu
,
T.
Luo
, and
M.
Jiang
, “
Inverse molecular design with multi-conditional diffusion guidance
,” arXiv:2401.13858 (
2024
).
222.
Z.
Liang
,
Z.
Li
,
S.
Zhou
,
Y.
Sun
,
J.
Yuan
, and
C.
Zhang
, “
Machine-learning exploration of polymer compatibility
,”
Cell Rep. Phys. Sci.
3
,
100931
(
2022
).
223.
P.
Shetty
,
A. C.
Rajan
,
C.
Kuenneth
,
S.
Gupta
,
L. P.
Panchumarti
,
L.
Holm
,
C.
Zhang
, and
R.
Ramprasad
, “
A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing
,”
npj Comput. Mater.
9
,
52
(
2023
).
224.
Y.
Wang
,
X.
Ma
,
B. S.
Ghanem
,
F.
Alghunaimi
,
I.
Pinnau
, and
Y.
Han
, “
Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations
,”
Mater. Today Nano
3
,
69
95
(
2018
).
225.
A. A.
Volk
,
R. W.
Epps
,
D. T.
Yonemoto
,
B. S.
Masters
,
F. N.
Castellano
,
K. G.
Reyes
, and
M.
Abolhasani
, “
AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning
,”
Nat. Commun.
14
,
1403
(
2023
).
226.
J. A.
Bennett
and
M.
Abolhasani
, “
Autonomous chemical science and engineering enabled by self-driving laboratories
,”
Curr. Opin. Chem. Eng.
36
,
100831
(
2022
).
227.
N. J.
Szymanski
,
B.
Rendy
,
Y.
Fei
,
R. E.
Kumar
,
T.
He
,
D.
Milsted
,
M. J.
McDermott
,
M.
Gallant
,
E. D.
Cubuk
,
A.
Merchant
,
H.
Kim
,
A.
Jain
,
C. J.
Bartel
,
K.
Persson
,
Y.
Zeng
, and
G.
Ceder
, “
An autonomous laboratory for the accelerated synthesis of novel materials
,”
Nature
624
,
86
91
(
2023
).
228.
E. O.
Pyzer-Knapp
,
J. W.
Pitera
,
P. W. J.
Staar
,
S.
Takeda
,
T.
Laino
,
D. P.
Sanders
,
J.
Sexton
,
J. R.
Smith
, and
A.
Curioni
, “
Accelerating materials discovery using artificial intelligence, high performance computing and robotics
,”
npj Comput. Mater.
8
,
84
(
2022
).
229.
Y. C.
Teo
,
H. W. H.
Lai
, and
Y.
Xia
, “
Synthesis of ladder polymers: Developments, challenges, and opportunities
,”
Chem. A Eur. J.
23
,
14101
14112
(
2017
).
230.
L. M.
Robeson
,
Polymer Blends: A Comprehensive Review
(
Hanser
,
Munich Cincinnati, Ohio
,
2007
).
231.
C.
Kuenneth
,
W.
Schertzer
, and
R.
Ramprasad
, “
Copolymer informatics with multitask deep neural networks
,”
Macromolecules
54
,
5957
5961
(
2021
).
232.
L.
Tao
,
T.
Arbaugh
,
J.
Byrnes
,
V.
Varshney
, and
Y.
Li
, “
Unified machine learning protocol for copolymer structure-property predictions
,”
STAR Protoc.
3
,
101875
(
2022
).
233.
K.-H.
Tu
,
H.
Huang
,
S.
Lee
,
W.
Lee
,
Z.
Sun
,
A.
Alexander-Katz
, and
C. A.
Ross
, “
Machine learning predictions of block copolymer self-assembly
,”
Adv. Mater.
32
,
e2005713
(
2020
).
234.
P.
Ertl
and
A.
Schuffenhauer
, “
Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions
,”
J. Cheminform.
1
,
8
(
2009
).
235.
C. W.
Coley
,
L.
Rogers
,
W. H.
Green
, and
K. F.
Jensen
, “
SCScore: Synthetic complexity learned from a reaction corpus
,”
J. Chem. Inf. Model.
58
,
252
261
(
2018
).
236.
M.
Voršilák
,
M.
Kolář
,
I.
Čmelo
, and
D.
Svozil
, “
SYBA: Bayesian estimation of synthetic accessibility of organic compounds
,”
J. Cheminform.
12
,
35
(
2020
).
237.
A.
Thakkar
,
V.
Chadimová
,
E. J.
Bjerrum
,
O.
Engkvist
, and
J.-L.
Reymond
, “
Retrosynthetic accessibility score (RAscore)—rapid machine learned synthesizability classification from AI driven retrosynthetic planning
,”
Chem. Sci.
12
,
3339
3349
(
2021
).
238.
J.
Law
,
Z.
Zsoldos
,
A.
Simon
,
D.
Reid
,
Y.
Liu
,
S. Y.
Khew
,
A. P.
Johnson
,
S.
Major
,
R. A.
Wade
, and
H. Y.
Ando
, “
Route designer: A retrosynthetic analysis tool utilizing automated retrosynthetic rule generation
,”
J. Chem. Inf. Model.
49
,
593
602
(
2009
).
239.
C. W.
Coley
,
W. H.
Green
, and
K. F.
Jensen
, “
RDChiral: An RDKit wrapper for handling stereochemistry in retrosynthetic template extraction and application
,”
J. Chem. Inf. Model.
59
,
2529
2537
(
2019
).
240.
B.
Liu
,
B.
Ramsundar
,
P.
Kawthekar
,
J.
Shi
,
J.
Gomes
,
Q.
Luu Nguyen
,
S.
Ho
,
J.
Sloane
,
P.
Wender
, and
V.
Pande
, “
Retrosynthetic reaction prediction using neural sequence-to-sequence models
,”
ACS Cent. Sci.
3
,
1103
1113
(
2017
).
241.
B.
Chen
,
T.
Shen
,
T. S.
Jaakkola
, and
R.
Barzilay
, “
Learning to make generalizable and diverse predictions for retrosynthesis
,” arXiv:1910.09688 (
2019
).
242.
K.
Lin
,
Y.
Xu
,
J.
Pei
, and
L.
Lai
, “
Automatic retrosynthetic route planning using template-free models
,”
Chem. Sci.
11
,
3355
3364
(
2020
).
243.
L.
Chen
,
J.
Kern
,
J. P.
Lightstone
, and
R.
Ramprasad
, “
Data-assisted polymer retrosynthesis planning
,”
Appl. Phys. Rev.
8
,
031405
(
2021
).
244.
A. D.
White
,
G. M.
Hocky
,
H. A.
Gandhi
,
M.
Ansari
,
S.
Cox
,
G. P.
Wellawatte
,
S.
Sasmal
,
Z.
Yang
,
K.
Liu
,
Y.
Singh
, and
W. J.
Peña Ccoa
, “
Do large language models know chemistry?
,” chemRxiv.
245.
K. M.
Jablonka
,
Q.
Ai
,
A.
Al-Feghali
,
S.
Badhwar
,
J. D.
Bocarsly
,
A. M.
Bran
,
S.
Bringuier
,
L. C.
Brinson
,
K.
Choudhary
,
D.
Circi
,
S.
Cox
,
W. A.
de Jong
,
M. L.
Evans
,
N.
Gastellu
,
J.
Genzling
,
M. V.
Gil
,
A. K.
Gupta
,
Z.
Hong
,
A.
Imran
,
S.
Kruschwitz
,
A.
Labarre
,
J.
Lála
,
T.
Liu
,
S.
Ma
,
S.
Majumdar
,
G. W.
Merz
,
N.
Moitessier
,
E.
Moubarak
,
B.
Mouriño
,
B.
Pelkie
,
M.
Pieler
,
M. C.
Ramos
,
B.
Ranković
,
S. G.
Rodriques
,
J. N.
Sanders
,
P.
Schwaller
,
M.
Schwarting
,
J.
Shi
,
B.
Smit
,
B. E.
Smith
,
J.
Van Herck
,
C.
Völker
,
L.
Ward
,
S.
Warren
,
B.
Weiser
,
S.
Zhang
,
X.
Zhang
,
G. A.
Zia
,
A.
Scourtas
,
K. J.
Schmidt
,
I.
Foster
,
A. D.
White
, and
B.
Blaiszik
, “
14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon
,”
Digital Discovery
2
,
1233
1250
(
2023
).
246.
T.
Guo
,
K.
Guo
,
B.
Nan
,
Z.
Liang
,
Z.
Guo
,
N.
Chawla
,
O.
Wiest
, and
X.
Zhang
, “
What can large language models do in chemistry? A comprehensive benchmark on eight tasks
,” in 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (Curran Associates, 2023), pp. 59662–59688.
247.
F. W.
Mercer
and
M. T.
McKenzie
, “
Dielectric and thermal characterization of fluorinated polyimides containing heterocyclic moieties
,”
High Perform. Polym.
5
,
97
106
(
1993
).
248.
A.
Ghosh
,
S. K.
Sen
,
S.
Banerjee
, and
B.
Voit
, “
Solubility improvements in aromatic polyimides by macromolecular engineering
,”
RSC Adv.
2
,
5900
5926
(
2012
).
249.
N. J.
Olsavsky
,
V. M.
Kearns
,
C. P.
Beckman
,
P. L.
Sheehan
,
F. J.
Burpo
,
H. D.
Bahaghighat
, and
E. A.
Nagelli
, “
Research and regulatory advancements on remediation and degradation of fluorinated polymer compounds
,”
Appl. Sci.
10
,
6921
(
2020
).
250.
A. R.
Bock
and
B. E.
Laird
, “
PFAS regulations: Past and present and their impact on fluoropolymers
” in
Perfluoroalkyl Substances
(
The Royal Society of Chemistry
,
2022
), p.
634
.
251.
R.
Lohmann
,
I. T.
Cousins
,
J. C.
DeWitt
,
J.
Glüge
,
G.
Goldenman
,
D.
Herzke
,
A. B.
Lindstrom
,
M. F.
Miller
,
C. A.
Ng
,
S.
Patton
,
M.
Scheringer
,
X.
Trier
, and
Z.
Wang
, “
Are fluoropolymers really of low concern for human and environmental health and separate from other PFAS?
,”
Environ. Sci. Technol.
54
,
12820
12828
(
2020
).
252.
I. T.
Cousins
,
G.
Goldenman
,
D.
Herzke
,
R.
Lohmann
,
M.
Miller
,
C. A.
Ng
,
S.
Patton
,
M.
Scheringer
,
X.
Trier
,
L.
Vierke
,
Z.
Wang
, and
J. C.
DeWitt
, “
The concept of essential use for determining when uses of PFASs can be phased out
,”
Environ. Sci.: Processes Impacts
21
,
1803
1815
(
2019
).
You do not currently have access to this content.