Manipulation of magnetic materials is a cornerstone of digital data storage technologies. Recently, it has been shown that femtosecond laser pulses are capable of switching the magnetization in a material between two stable configurations faster than ever before. One state-of-the-art method is to use laser pulses to control the magnetic anisotropy by photoexciting crystal-field transitions. The photoinduced change in anisotropy applies a torque to the magnetic moment, which reorientates it in a different direction. So far, research has focused solely on condensed matter materials. However, there is a huge variety of molecule-based magnetic materials that have been and continue to be developed. In particular, single-molecule magnets (SMMs) provide a highly tunable platform and have the added advantage of operating on nanometer length scales. This review discusses recent research in the area of ultrafast magnetism in SMMs, with a focus on manganese(III)-based transition metal complexes. Experimental data are reviewed, showing that control of the strength of the photoinduced anisotropy, the lifetime of excited states, and the dephasing times are possible and can be used to develop some design criteria for the best optically controllable SMMs.

1.
D.
Rydning
,
J.
Reinsel
, and
J.
Gantz
,
The Digitization of the World From Edge to Core
(
International Data Corporation
,
Framingham
,
2018
), Vol.
16
, pp.
1
28
.
2.
I.
Tudosa
,
C.
Stamm
,
A.
Kashuba
,
F.
King
,
H.
Siegmann
,
J.
Stöhr
,
G.
Ju
,
B.
Lu
, and
D.
Weller
, “
The ultimate speed of magnetic switching in granular recording media
,”
Nature
428
,
831
833
(
2004
).
3.
C.
Back
and
D.
Pescia
, “
Speed limit ahead
,”
Nature
428
,
808
809
(
2004
).
4.
D.
Strickland
and
G.
Mourou
, “
Compression of amplified chirped optical pulses
,”
Opt. Commun.
55
,
447
449
(
1985
).
5.
D. E.
Spence
,
P. N.
Kean
, and
W.
Sibbett
, “
60 fs pulse generation from a self-mode-locked Ti:sapphire laser
,”
Opt. Lett.
16
,
42
44
(
1991
).
6.
H.
Piller
, “
Faraday rotation
,” in
Semiconductors and Semimetals
(
Elsevier
,
1972
), Vol.
8
, pp.
103
179
.
7.
E.
Beaurepaire
,
J.-C.
Merle
,
A.
Daunois
, and
J.-Y.
Bigot
, “
Ultrafast spin dynamics in ferromagnetic nickel
,”
Phys. Rev. Lett.
76
,
4250
(
1996
).
8.
H.
Zhao
,
B.
Glass
,
P. K.
Amiri
,
A.
Lyle
,
Y.
Zhang
,
Y.-J.
Chen
,
G.
Rowlands
,
P.
Upadhyaya
,
Z.
Zeng
,
J.
Katine
et al, “
Sub-200 ps spin transfer torque switching in in-plane magnetic tunnel junctions with interface perpendicular anisotropy
,”
J. Phys. D: Appl. Phys.
45
,
025001
(
2011
).
9.
A. V.
Kimel
,
A.
Kirilyuk
, and
T.
Rasing
, “
Femtosecond opto-magnetism: Ultrafast laser manipulation of magnetic materials
,”
Laser Photonics Rev.
1
,
275
287
(
2007
).
10.
A. V.
Kimel
,
A.
Kirilyuk
,
F.
Hansteen
,
R. V.
Pisarev
, and
T.
Rasing
, “
Nonthermal optical control of magnetism and ultrafast laser-induced spin dynamics in solids
,”
J. Phys.: Condens. Matter
19
,
043201
(
2007
).
11.
A.
Kirilyuk
,
A. V.
Kimel
, and
T.
Rasing
, “
Ultrafast optical manipulation of magnetic order
,”
Rev. Mod. Phys.
82
,
2731
(
2010
).
12.
A. M.
Kalashnikova
,
A. V.
Kimel
, and
R. V.
Pisarev
, “
Ultrafast opto-magnetism
,”
Phys.-Usp.
58
,
969
(
2015
).
13.
J.
Mentink
, “
Manipulating magnetism by ultrafast control of the exchange interaction
,”
J. Phys.: Condens. Matter
29
,
453001
(
2017
).
14.
K.
Carva
,
P.
Baláž
, and
I.
Radu
, “
Laser-induced ultrafast magnetic phenomena
,”
Handb. Magn. Mater.
26
,
291
463
(
2017
).
15.
A. V.
Kimel
and
M.
Li
, “
Writing magnetic memory with ultrashort light pulses
,”
Nat. Rev. Mater.
4
,
189
200
(
2019
).
16.
F.
Hansteen
,
A.
Kimel
,
A.
Kirilyuk
, and
T.
Rasing
, “
Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films
,”
Phys. Rev. Lett.
95
,
047402
(
2005
).
17.
S.
Tomimoto
,
M.
Matsubara
,
T.
Ogasawara
,
H.
Okamoto
,
T.
Kimura
, and
Y.
Tokura
, “
Optical control of the magnetic anisotropy of ferromagnetic bilayered manganites
,”
Phys. Rev. Lett.
98
,
017402
(
2007
).
18.
F.
Atoneche
,
A.
Kalashnikova
,
A.
Kimel
,
A.
Stupakiewicz
,
A.
Maziewski
,
A.
Kirilyuk
, and
T.
Rasing
, “
Large ultrafast photoinduced magnetic anisotropy in a cobalt-substituted yttrium iron garnet
,”
Phys. Rev. B
81
,
214440
(
2010
).
19.
J.
Stöhr
and
H. C.
Siegmann
, “
Magnetism
,” in
Solid-State Sciences
(
Springer
,
Berlin, Heidelberg
,
2006
), Vol.
5
, pp.
294
299
.
20.
A.
Kirilyuk
,
A.
Kimel
,
F.
Hansteen
,
T.
Rasing
, and
R. V.
Pisarev
, “
Ultrafast all-optical control of the magnetization in magnetic dielectrics
,”
Low Temp. Phys.
32
,
748
767
(
2006
).
21.
S.
Baierl
,
M.
Hohenleutner
,
T.
Kampfrath
,
A.
Zvezdin
,
A. V.
Kimel
,
R.
Huber
, and
R.
Mikhaylovskiy
, “
Nonlinear spin control by terahertz-driven anisotropy fields
,”
Nat. Photonics
10
,
715
718
(
2016
).
22.
A.
Stupakiewicz
,
K.
Szerenos
,
D.
Afanasiev
,
A.
Kirilyuk
, and
A.
Kimel
, “
Ultrafast nonthermal photo-magnetic recording in a transparent medium
,”
Nature
542
,
71
74
(
2017
).
23.
T. F.
Nova
,
A.
Cartella
,
A.
Cantaluppi
,
M.
Först
,
D.
Bossini
,
R. V.
Mikhaylovskiy
,
A. V.
Kimel
,
R.
Merlin
, and
A.
Cavalleri
, “
An effective magnetic field from optically driven phonons
,”
Nat. Phys.
13
,
132
136
(
2017
).
24.
D.
Afanasiev
,
J. R.
Hortensius
,
M.
Matthiesen
,
S.
Mañas-Valero
,
M.
Šiškins
,
M.
Lee
,
E.
Lesne
,
H. S.
van Der Zant
,
P. G.
Steeneken
,
B. A.
Ivanov
et al, “
Controlling the anisotropy of a van der Waals antiferromagnet with light
,”
Sci. Adv.
7
,
eabf3096
(
2021
).
25.
D.
Afanasiev
,
J.
Hortensius
,
B.
Ivanov
,
A.
Sasani
,
E.
Bousquet
,
Y.
Blanter
,
R.
Mikhaylovskiy
,
A.
Kimel
, and
A.
Caviglia
, “
Ultrafast control of magnetic interactions via light-driven phonons
,”
Nat. Mater.
20
,
607
611
(
2021
).
26.
A.
Stupakiewicz
,
K.
Szerenos
,
M.
Davydova
,
K.
Zvezdin
,
A.
Zvezdin
,
A.
Kirilyuk
, and
A.
Kimel
, “
Selection rules for all-optical magnetic recording in iron garnet
,”
Nat. Commun.
10
,
612
(
2019
).
27.
J.
Wang
,
C.
Sun
,
Y.
Hashimoto
,
J.
Kono
,
G. A.
Khodaparast
,
Ł.
Cywiński
,
L.
Sham
,
G. D.
Sanders
,
C. J.
Stanton
, and
H.
Munekata
, “
Ultrafast magneto-optics in ferromagnetic III V semiconductors
,”
J. Phys.: Condens. Matter
18
,
R501
(
2006
).
28.
D.
Gatteschi
, “
Molecular magnetism: A basis for new materials
,”
Adv. Mater.
6
,
635
645
(
1994
).
29.
J.
Mroziński
, “
New trends of molecular magnetism
,”
Coord. Chem. Rev.
249
,
2534
2548
(
2005
).
30.
E.
Coronado
,
P.
Delhaès
,
D.
Gatteschi
, and
J. S.
Miller
,
Molecular Magnetism: From Molecular Assemblies to the Devices
(
Springer Science & Business Media
,
2013
), Vol.
321
.
31.
E.
Coronado
, “
Molecular magnetism: From chemical design to spin control in molecules, materials and devices
,”
Nat. Rev. Mater.
5
,
87
104
(
2020
).
32.
O.
Kahn
,
Molecular Magnetism
(
Dover Publications
,
2021
).
33.
T. J.
Penfold
,
J. O.
Johansson
, and
J.
Eng
, “
Towards understanding and controlling ultrafast dynamics in molecular photomagnets
,”
Coord. Chem. Rev.
494
,
215346
(
2023
).
34.
G.
Christou
,
D.
Gatteschi
,
D. N.
Hendrickson
, and
R.
Sessoli
, “
Single-molecule magnets
,”
MRS Bull.
25
,
66
71
(
2000
).
35.
D. N.
Woodruff
,
R. E.
Winpenny
, and
R. A.
Layfield
, “
Lanthanide single-molecule magnets
,”
Chem. Rev.
113
,
5110
5148
(
2013
).
36.
R. A.
Layfield
, “
Organometallic single-molecule magnets
,”
Organometallics
33
,
1084
1099
(
2014
).
37.
D.
Shao
and
X.-Y.
Wang
, “
Development of single-molecule magnets
,”
Chin. J. Chem.
38
,
1005
1018
(
2020
).
38.
F.
Pineider
,
E.
Pedrueza-Villalmanzo
,
M.
Serri
,
A. M.
Adamu
,
E.
Smetanina
,
V.
Bonanni
,
G.
Campo
,
L.
Poggini
,
M.
Mannini
,
C.
de Julián Fernández
et al, “
Plasmon-enhanced magneto-optical detection of single-molecule magnets
,”
Mater. Horiz.
6
,
1148
1155
(
2019
).
39.
G.
Aromí
and
E. K.
Brechin
, “
Synthesis of 3D metallic single-molecule magnets
,” in
Single-Molecule Magnets Related Phenomena
(
Springer
,
2006
), pp.
1
67.
40.
N. F.
Chilton
, “
Design criteria for high-temperature single-molecule magnets
,”
Inorg. Chem.
54
,
2097
2099
(
2015
).
41.
M.
Perfetti
,
M. A.
Sørensen
,
U. B.
Hansen
,
H.
Bamberger
,
S.
Lenz
,
P. P.
Hallmen
,
T.
Fennell
,
G. G.
Simeoni
,
A.
Arauzo
,
J.
Bartolomé
et al, “
Magnetic anisotropy switch: Easy axis to easy plane conversion and vice versa
,”
Adv. Funct. Mater.
28
,
1801846
(
2018
).
42.
M.
Perfetti
and
J.
Bendix
, “
The multiple faces, and phases, of magnetic anisotropy
,”
Inorg. Chem.
58
,
11875
11882
(
2019
).
43.
P.
Parois
,
S. A.
Moggach
,
J.
Sanchez-Benitez
,
K. V.
Kamenev
,
A. R.
Lennie
,
J. E.
Warren
,
E. K.
Brechin
,
S.
Parsons
, and
M.
Murrie
, “
Pressure-induced JahnTeller switching in a Mn12 nanomagnet
,”
Chem. Commun.
46
,
1881
1883
(
2010
).
44.
A.
Raza
and
M.
Perfetti
, “
Electronic structure and magnetic anisotropy design of functional metal complexes
,”
Coord. Chem. Rev.
490
,
215213
(
2023
).
45.
X.
Feng
,
C.
Mathonière
,
I.-R.
Jeon
,
M.
Rouzières
,
A.
Ozarowski
,
M. L.
Aubrey
,
M. I.
Gonzalez
,
R.
Clérac
, and
J. R.
Long
, “
Tristability in a light-actuated single-molecule magnet
,”
J. Am. Chem. Soc.
135
,
15880
15884
(
2013
).
46.
H. A.
Jahn
and
E.
Teller
, “
Stability of polyatomic molecules in degenerate electronic states I—orbital degeneracy
,”
Proc. R. Soc. London, Ser. A
161
,
220
235
(
1937
).
47.
R.
Englman
,
The Jahn–Teller Effect in Molecules and Crystals
(
Wiley-Interscience
,
New York
,
1972
).
48.
U.
Öpik
and
M. H. L.
Pryce
, “
Studies of the JahnTeller effect. I. A survey of the static problem
,”
Proc. R. Soc. London, Ser. A
238
,
425
447
(
1957
).
49.
R. J.
Deeth
and
M. A.
Hitchman
, “
Factors influencing JahnTeller distortions in six-coordinate copper (II) and low-spin nickel (II) complexes
,”
Inorg. Chem.
25
,
1225
1233
(
1986
).
50.
R.
Boča
, “
Zero-field splitting in metal complexes
,”
Coord. Chem. Rev.
248
,
757
815
(
2004
).
51.
S. M.
Aldoshin
,
D. V.
Korchagin
,
A. V.
Palii
, and
B. S.
Tsukerblat
, “
Some new trends in the design of single molecule magnets
,”
Pure Appl. Chem.
89
,
1119
1143
(
2017
).
52.
S.
Mossin
,
B. L.
Tran
,
D.
Adhikari
,
M.
Pink
,
F. W.
Heinemann
,
J.
Sutter
,
R. K.
Szilagyi
,
K.
Meyer
, and
D. J.
Mindiola
, “
A mononuclear Fe(III) single molecule magnet with a 3/2   5/2 spin crossover
,”
J. Am. Chem. Soc.
134
,
13651
13661
(
2012
).
53.
L.
Chen
,
J.
Song
,
W.
Zhao
,
G.
Yi
,
Z.
Zhou
,
A.
Yuan
,
Y.
Song
,
Z.
Wang
, and
Z.-W.
Ouyang
, “
A mononuclear five-coordinate Co(II) single molecule magnet with a spin crossover between the s = 1/2 and 3/2 states
,”
Dalton Trans.
47
,
16596
16602
(
2018
).
54.
H.
Hao
,
X.
Zheng
,
L.
Song
,
R.
Wang
, and
Z.
Zeng
, “
Electrostatic spin crossover in a molecular junction of a single-molecule magnet Fe2
,”
Phys. Rev. Lett.
108
,
017202
(
2012
).
55.
R.
Sessoli
,
D.
Gatteschi
,
A.
Caneschi
, and
M.
Novak
, “
Magnetic bistability in a metal-ion cluster
,”
Nature
365
,
141
143
(
1993
).
56.
Y.
Suzuki
,
K.
Takeda
, and
K.
Awaga
, “
Enhancement of JahnTeller isomerism in Mn12Ac under high quasi-hydrostatic pressure
,”
Phys. Rev. B
67
,
132402
(
2003
).
57.
E.
Rivière
,
B.
Donnio
,
E.
Voirin
,
G.
Rogez
,
J.-P.
Kappler
, and
J.-L.
Gallani
, “
Magneto-optical control of a Mn12 nanomagnet
,”
J. Mater. Chem.
20
,
7165
7168
(
2010
).
58.
B.
Donnio
,
E.
Riviere
,
E.
Terazzi
,
E.
Voirin
,
C.
Aronica
,
G.
Chastanet
,
D.
Luneau
,
G.
Rogez
,
F.
Scheurer
,
L.
Joly
et al, “
Magneto-optical interactions in single-molecule magnets: Low-temperature photon-induced demagnetization
,”
Solid State Sci.
12
,
1307
1313
(
2010
).
59.
E.
Ovchenkova
,
N.
Bichan
, and
T.
Lomova
, “
Photoinduced absorption spectra of donor–acceptor systems based on cobalt(II) and manganese(III) phthalocyanine complexes with femtosecond time resolution
,”
Russ. J. Phys. Chem. A
96
,
717
723
(
2022
).
60.
J.
Jung
,
K.
Ohkubo
,
K. A.
Prokop-Prigge
,
H. M.
Neu
,
D. P.
Goldberg
, and
S.
Fukuzumi
, “
Photochemical oxidation of a manganese(III) complex with oxygen and toluene derivatives to form a manganese (V)-oxo complex
,”
Inorg. Chem.
52
,
13594
13604
(
2013
).
61.
Y. H.
Kim
,
S. D.
Jung
,
M. H.
Lee
,
C.
Im
,
Y.-H.
Kim
,
Y. J.
Jang
,
S. K.
Kim
, and
D. W.
Cho
, “
Photoinduced reduction of manganese (III) meso-tetrakis (1-methylpyridinium-4-yl) porphyrin at AT and GC base pairs
,”
J. Phys. Chem. B
117
,
9585
9590
(
2013
).
62.
F. A.
Schaberle
,
A. R.
Abreu
,
N. P.
Goncalves
,
G. F.
Sa
,
M. M.
Pereira
, and
L. G.
Arnaut
, “
Ultrafast dynamics of manganese(III), manganese(II), and free-base bacteriochlorin: Is there time for photochemistry?
,”
Inorg. Chem.
56
,
2677
2689
(
2017
).
63.
F.
Liedy
,
J.
Eng
,
R.
McNab
,
R.
Inglis
,
T. J.
Penfold
,
E. K.
Brechin
, and
J. O.
Johansson
, “
Vibrational coherences in manganese single-molecule magnets after ultrafast photoexcitation
,”
Nat. Chem.
12
,
452
458
(
2020
).
64.
R.
Inglis
,
S. M.
Taylor
,
L. F.
Jones
,
G. S.
Papaefstathiou
,
S. P.
Perlepes
,
S.
Datta
,
S.
Hill
,
W.
Wernsdorfer
, and
E. K.
Brechin
, “
Twisting, bending, stretching: Strategies for making ferromagnetic [ Mn3III] triangles
,”
Dalton Trans.
9157
9168
(
2009
).
65.
K.
Barlow
,
R.
Phelps
,
J.
Eng
,
T.
Katayama
,
E.
Sutcliffe
,
M.
Coletta
,
E. K.
Brechin
,
T. J.
Penfold
, and
J. O.
Johansson
, “
Tracking nuclear motion in single-molecule magnets using femtosecond x-ray absorption spectroscopy
,”
Nat. Commun.
15
,
4043
(
2024
).
66.
T.
Katayama
,
T.
Northey
,
W.
Gawelda
,
C. J.
Milne
,
G.
Vankó
,
F. A.
Lima
,
R.
Bohinc
,
Z.
Németh
,
S.
Nozawa
,
T.
Sato
et al, “
Tracking multiple components of a nuclear wavepacket in photoexcited Cu(I)-phenanthroline complex using ultrafast x-ray spectroscopy
,”
Nat. Commun.
10
,
3606
(
2019
).
67.
F.
De Groot
, “
High-resolution x-ray emission and x-ray absorption spectroscopy
,”
Chem. Rev.
101
,
1779
1808
(
2001
).
68.
J. E.
Penner-Hahn
,
Comprehensive Coordination Chemistry II
(
Pergamon
,
Oxford
,
2003
), pp.
159
186
.
69.
J.
Yano
and
V. K.
Yachandra
, “
X-ray absorption spectroscopy
,”
Photosynth. Res.
102
,
241
254
(
2009
).
70.
G. A.
Craig
and
M.
Murrie
, “
3D single-ion magnets
,”
Chem. Soc. Rev.
44
,
2135
2147
(
2015
).
71.
M.
Feng
and
M.-L.
Tong
, “
Single ion magnets from 3d to 5f: Developments and strategies
,”
Chem.–A Eur. J.
24
,
7574
7594
(
2018
).
72.
Y.
Rechkemmer
,
F. D.
Breitgoff
,
M.
Van Der Meer
,
M.
Atanasov
,
M.
Hakl
,
M.
Orlita
,
P.
Neugebauer
,
F.
Neese
,
B.
Sarkar
, and
J.
Van Slageren
, “
A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier
,”
Nat. Commun.
7
,
10467
(
2016
).
73.
F.
Habib
,
O. R.
Luca
,
V.
Vieru
,
M.
Shiddiq
,
I.
Korobkov
,
S. I.
Gorelsky
,
M. K.
Takase
,
L. F.
Chibotaru
,
S.
Hill
,
R. H.
Crabtree
et al, “
Influence of the ligand field on slow magnetization relaxation versus spin crossover in mononuclear cobalt complexes
,”
Angew. Chem. Int. Ed.
52
,
11290
11293
(
2013
).
74.
F.
Kobayashi
,
Y.
Komatsumaru
,
R.
Akiyoshi
,
M.
Nakamura
,
Y.
Zhang
,
L. F.
Lindoy
, and
S.
Hayami
, “
Water molecule-induced reversible magnetic switching in a bis-terpyridine cobalt(II) complex exhibiting coexistence of spin crossover and orbital transition behaviors
,”
Inorg. Chem.
59
,
16843
16852
(
2020
).
75.
E.
Biasin
,
T. B.
van Driel
,
K. S.
Kjaer
,
A. O.
Dohn
,
M.
Christensen
,
T.
Harlang
,
P.
Vester
,
P.
Chabera
,
Y.
Liu
,
J.
Uhlig
et al, “
Femtosecond x-ray scattering study of ultrafast photoinduced structural dynamics in solvated [Co(terpy)2]2+
,”
Phys. Rev. Lett.
117
,
013002
(
2016
).
[PubMed]
76.
S. E.
Canton
,
M.
Biednov
,
M.
Pápai
,
F. A.
Lima
,
T.-K.
Choi
,
F.
Otte
,
Y.
Jiang
,
P.
Frankenberger
,
M.
Knoll
,
P.
Zalden
et al, “
Ultrafast JahnTeller photoswitching in cobalt single-ion magnets
,”
Adv. Sci.
10
,
2206880
(
2023
).
77.
M.
Iwamura
,
S.
Takeuchi
, and
T.
Tahara
, “
Real-time observation of the photoinduced structural change of bis (2, 9-dimethyl-1, 10-phenanthroline) copper (I) by femtosecond fluorescence spectroscopy: A realistic potential curve of the JahnTeller distortion
,”
J. Am. Chem. Soc.
129
,
5248
5256
(
2007
).
78.
M.
Iwamura
,
H.
Watanabe
,
K.
Ishii
,
S.
Takeuchi
, and
T.
Tahara
, “
Coherent nuclear dynamics in ultrafast photoinduced structural change of bis (diimine) copper (I) complex
,”
J. Am. Chem. Soc.
133
,
7728
7736
(
2011
).
79.
M.
Iwamura
,
S.
Takeuchi
, and
T.
Tahara
, “
Substituent effect on the photoinduced structural change of Cu(I) complexes observed by femtosecond emission spectroscopy
,”
Phys. Chem. Chem. Phys.
16
,
4143
4154
(
2014
).
80.
M.
Iwamura
,
S.
Takeuchi
, and
T.
Tahara
, “
Ultrafast excited-state dynamics of copper (I) complexes
,”
Acc. Chem. Res.
48
,
782
791
(
2015
).
81.
W.
Kaszub
,
A.
Marino
,
M.
Lorenc
,
E.
Collet
,
E. G.
Bagryanskaya
,
E. V.
Tretyakov
,
V. I.
Ovcharenko
, and
M. V.
Fedin
, “
Ultrafast photoswitching in a copper-nitroxide-based molecular magnet
,”
Angew. Chem.
126
,
10812
10816
(
2014
).
82.
S-i
Ohkoshi
,
H.
Tokoro
, and
E.
Collet
, “
Thermally induced and photoinduced phase transitions in rubidium manganese hexacyanoferrate combining charge transfer and structural reorganization
,”
C. R. Chim.
22
,
498
507
(
2019
).
83.
G.
Azzolina
,
E.
Collet
,
C.
Mariette
,
M.
Cammarata
,
E.
Trzop
,
M.
Sander
,
M.
Levantino
,
K.
Nakagawa
,
H.
Tokoro
,
S-i
Ohkoshi
et al, “
Single laser shot photoinduced phase transition of rubidium manganese hexacyanoferrate investigated by x-ray diffraction
,”
Eur. J. Inorg. Chem.
2019
,
3142
3147
.
84.
G.
Azzolina
,
R.
Bertoni
,
C.
Mariette
,
M.
Cammarata
,
E.
Trzop
,
C.
Ecolivet
,
M.
Sander
,
M.
Levantino
,
H.
Tokoro
,
K.
Imoto
et al, “
Out-of-equilibrium lattice response to photo-induced charge-transfer in a MnFe Prussian blue analogue
,”
J. Mater. Chem. C
9
,
6773
6780
(
2021a
).
85.
G.
Azzolina
,
H.
Tokoro
,
K.
Imoto
,
M.
Yoshikiyo
,
S-i
Ohkoshi
, and
E.
Collet
, “
Exploring ultrafast photoswitching pathways in RbMnFe Prussian blue analogue
,”
Angew. Chem.
133
,
23455
23461
(
2021
).
86.
K.
Barlow
and
J. O.
Johansson
, “
Ultrafast photoinduced dynamics in Prussian blue analogues
,”
Phys. Chem. Chem. Phys.
23
,
8118
8131
(
2021
).
87.
R.
Phelps
,
A.
Etcheverry-Berrios
,
E. K.
Brechin
, and
J. O.
Johansson
, “
Equatorial restriction of the photoinduced JahnTeller switch in Mn(III)-cyclam complexes
,”
Chem. Sci.
14
,
6621
6630
(
2023
).
88.
C. O.
Dietrich-Buchecker
,
P. A.
Marnot
,
J.-P.
Sauvage
,
J. R.
Kirchhoff
, and
D. R.
McMillin
, “
Bis (2, 9-diphenyl-1, 10-phenanthroline) copper (I): a copper complex with a long-lived charge-transfer excited state
,”
J. Chem. Soc., Chem. Commun.
1983
,
513
515
.
89.
N. A.
Gothard
,
M. W.
Mara
,
J.
Huang
,
J. M.
Szarko
,
B.
Rolczynski
,
J. V.
Lockard
, and
L. X.
Chen
, “
Strong steric hindrance effect on excited state structural dynamics of Cu(I) diimine complexes
,”
J. Phys. Chem. A
116
,
1984
1992
(
2012
).
90.
C. E.
McCusker
and
F. N.
Castellano
, “
Design of a long-lifetime, earth-abundant, aqueous compatible Cu(I) photosensitizer using cooperative steric effects
,”
Inorg. Chem.
52
,
8114
8120
(
2013
).
91.
L.
Gimeno
,
B. T.
Phelan
,
E. A.
Sprague-Klein
,
T.
Roisnel
,
E.
Blart
,
C.
Gourlaouen
,
L. X.
Chen
, and
Y.
Pellegrin
, “
Bulky and stable copper(I)-phenanthroline complex: Impact of steric strain and symmetry on the excited-state properties
,”
Inorg. Chem.
61
,
7296
7307
(
2022
).
92.
S. M.
Fatur
,
S. G.
Shepard
,
R. F.
Higgins
,
M. P.
Shores
, and
N. H.
Damrauer
, “
A synthetically tunable system to control MLCT excited-state lifetimes and spin states in iron(II) polypyridines
,”
J. Am. Chem. Soc.
139
,
4493
4505
(
2017
).
93.
R. A.
Marcus
, “
Electron transfer reactions in chemistry: Theory and experiment (nobel lecture)
,”
Angew. Chem. Int. Ed.
32
,
1111
1121
(
1993
).
94.
P. F.
Barbara
,
T. J.
Meyer
, and
M. A.
Ratner
, “
Contemporary issues in electron transfer research
,”
J. Phys. Chem.
100
,
13148
13168
(
1996
).
95.
K.
Kunnus
,
L.
Li
,
C. J.
Titus
,
S. J.
Lee
,
M. E.
Reinhard
,
S.
Koroidov
,
K. S.
Kjaer
,
K.
Hong
,
K.
Ledbetter
,
W. B.
Doriese
et al, “
Chemical control of competing electron transfer pathways in iron tetracyano-polypyridyl photosensitizers
,”
Chem. Sci.
11
,
4360
4373
(
2020
).
96.
A. Y.
Chan
,
A.
Ghosh
,
J. T.
Yarranton
,
J.
Twilton
,
J.
Jin
,
D. M.
Arias-Rotondo
,
H. A.
Sakai
,
J. K.
McCusker
, and
D. W.
MacMillan
, “
Exploiting the Marcus inverted region for first-row transition metal–based photoredox catalysis
,”
Science
382
,
191
197
(
2023
).
97.
B. C.
Paulus
,
S. L.
Adelman
,
L. L.
Jamula
, and
J. K.
McCusker
, “
Leveraging excited-state coherence for synthetic control of ultrafast dynamics
,”
Nature
582
,
214
218
(
2020
).
98.
K.
Barlow
,
J.
Eng
,
I.
Ivalo
,
M.
Coletta
,
E. K.
Brechin
,
T. J.
Penfold
, and
J. O.
Johansson
, “
Photoinduced JahnTeller switch in Mn(III) terpyridine complexes
,”
Dalton Trans.
51
,
10751
10757
(
2022
).
99.
S. R.
Rather
and
G. D.
Scholes
, “
Slow intramolecular vibrational relaxation leads to long-lived excited-state wavepackets
,”
J. Phys. Chem. A
120
,
6792
6799
(
2016
).
100.
T.
Biskup
, “
Structure–function relationship of organic semiconductors: Detailed insights from time-resolved EPR spectroscopy
,”
Front. Chem.
7
,
10
(
2019
).
101.
W.
Browett
,
A.
Fucaloro
,
T.
Morgan
, and
P.
Stephens
, “
Magnetic circular dichroism determination of zero-field splitting in chloro (meso-tetraphenylporphinato) iron(III)
,”
J. Am. Chem. Soc.
105
,
1868
1872
(
1983
).
102.
B. E.
Williamson
,
T. C.
VanCott
,
M. E.
Boyle
,
G. C.
Misener
,
M. J.
Stillman
, and
P. N.
Schatz
, “
Determination of the ground state of manganese phthalocyanine in an argon matrix using magnetic circular dichroism and absorption spectroscopy
,”
J. Am. Chem. Soc.
114
,
2412
2419
(
1992
).
103.
K.
Bane
,
R. A.
Geiger
,
S. A.
Chabolla
, and
T. A.
Jackson
, “
Determination of zero-field splitting parameters for a MnIV center using variable-temperature, variable-field magnetic circular dichroism spectroscopy: Comparison to electron paramagnetic resonance spectroscopy
,”
Inorg. Chim. Acta
380
,
135
140
(
2012
).
104.
J.
Sutcliffe
and
J. O.
Johansson
, “
A femtosecond magnetic circular dichroism spectrometer
,”
Rev. Sci. Instrum.
92
,
113001
(
2021
).
105.
J.
Lu
,
I. O.
Ozel
,
C. A.
Belvin
,
X.
Li
,
G.
Skorupskii
,
L.
Sun
,
B. K.
Ofori-Okai
,
M.
Dincă
,
N.
Gedik
, and
K. A.
Nelson
, “
Rapid and precise determination of zero-field splittings by terahertz time-domain electron paramagnetic resonance spectroscopy
,”
Chem. Sci.
8
,
7312
7323
(
2017
).
You do not currently have access to this content.