Solar photocatalytic water splitting for hydrogen production represents an ideal approach to address the current energy and environmental challenges, while also achieving “carbon peak and carbon neutrality” goals. The incorporation of photothermal effect into photocatalysis enables dual utilization of both light and heat energies, resulting in improved solar-to-hydrogen efficiency. In this review, we first discussed the behavior of energy flow and mass flow, and the characteristics of photogenerated carrier throughout the photocatalytic water splitting process, with particular focus on the behaviors induced by photothermal effect. Subsequently, we elaborate on strategies for designing high-efficiency photothermal catalytic systems and novel photothermal–photocatalytic integrated systems based upon concentrating-photothermal coupling effects. We then illustrate the development and large-scale demonstrations that utilize concentrated solar irradiation. Finally, we outline the challenges and highlight the future research directions of photothermal catalysis toward hydrogen production from water. This review aims to provide fundamental references and principal strategies for efficient utilization of solar energy in photothermal catalytic processes.

1.
R.
He
and
J.
Ran
, “
Dilemma faced by photocatalytic overall water splitting
,”
J. Mater. Sci. Technol.
157
,
107
109
(
2023
).
2.
C.
Xu
,
P. R.
Anusuyadevi
,
C.
Aymonier
,
R.
Luque
, and
S.
Marre
, “
Nanostructured materials for photocatalysis
,”
Chem. Soc. Rev.
48
,
3868
3902
(
2019
).
3.
C.
Bie
,
L.
Wang
, and
J.
Yu
, “
Challenges for photocatalytic overall water splitting
,”
Chem
8
,
1567
1574
(
2022
).
4.
M.
Sayed
,
J.
Yu
,
G.
Liu
, and
M.
Jaroniec
, “
Non-noble plasmonic metal-based photocatalysts
,”
Chem. Rev.
122
(
11
),
10484
10537
(
2022
).
5.
X.
Tao
,
Y.
Zhao
,
S.
Wang
,
C.
Li
, and
R.
Li
, “
Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts
,”
Chem. Soc. Rev.
51
,
3561
3608
(
2022
).
6.
Z.
Wang
,
Y.
Hu
,
S.
Zhang
, and
Y.
Sun
, “
Artificial photosynthesis systems for solar energy conversion and storage: Platforms and their realities
,”
Chem. Soc. Rev.
51
,
6704
6737
(
2022
).
7.
Q.
Liu
,
F.
Zhan
,
H.
Luo
,
X.
Luo
,
Q.
Yi
,
Q.
Sun
,
Z.
Xiao
,
Y.
Zhang
,
D.
Zhang
, and
C. R.
Bowen
, “
Na-Sm bimetallic regulation and band structure engineering in CaBi2Nb2O9 to enhance piezo-photo-catalytic performance
,”
Adv. Funct. Mater.
33
,
2303736
(
2023
).
8.
Y. P.
Zhu
,
J.
Yin
,
E. A.
Hamad
,
X.
Liu
,
W.
Chen
,
T.
Yao
,
O. F.
Mohammed
, and
H. N.
Alshareef
, “
Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production
,”
Adv. Mater.
32
,
1906368
(
2020
).
9.
G.
Liao
,
Y.
Gong
,
L.
Zhang
,
H.
Gao
,
G.
Yang
, and
B.
Fang
, “
Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light
,”
Energy Environ. Sci.
12
,
2080
2147
(
2019
).
10.
D.
McDowall
,
B. J.
Greeves
,
R.
Clowes
,
K.
McAulay
,
A. M.
Fuentes-Caparrós
,
L.
Thomson
,
N.
Khunti
,
N.
Cowieson
,
M.
Nolan
,
M.
Wallace
,
A. I.
Cooper
,
E. R.
Draper
,
A. J.
Cowan
, and
D. J.
Adams
, “
Controlling photocatalytic activity by self‐assembly-tuning perylene bisimide photocatalysts for the hydrogen evolution reaction
,”
Adv. Energy Mater.
10
,
2002469
(
2020
).
11.
C.
Wu
,
N.
Corrigan
,
C. H.
Lim
,
W.
Liu
,
G.
Miyake
, and
C.
Boyer
, “
Rational design of photocatalysts for controlled polymerization: Effect of structures on photocatalytic activities
,”
Chem. Rev.
122
(
6
),
5476
5518
(
2022
).
12.
T.
He
and
Y.
Zhao
, “
Covalent organic frameworks for energy conversion in photocatalysis
,”
Angew. Chem., Int. Ed.
62
,
e202303086
(
2023
).
13.
H.
Tang
,
R.
Wang
,
C.
Zhao
,
Z.
Chen
,
X.
Yang
,
D.
Bukhvalov
,
Z.
Lin
, and
Q.
Liu
, “
Oxamide-modified g-C3N4 nanostructures: Tailoring surface topography for high-performance visible light photocatalysis
,”
Chem. Eng. J.
374
,
1064
1075
(
2019
).
14.
X.
Zheng
,
Y.
Song
,
Y.
Liu
,
Y.
Yang
,
D.
Wu
,
Y.
Yang
,
S.
Feng
,
J.
Li
,
W.
Liu
,
Y.
Shen
, and
X.
Tian
, “
ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting
,”
Coord. Chem. Rev.
475
,
214898
(
2023
).
15.
A.
Dubey
,
C. H.
Keat
,
V. V.
Shvartsman
,
K. V.
Yusenko
,
M. E.
Castillo
,
A. G.
Buzanich
,
U.
Hagemann
,
S. A.
Kovalenko
,
J.
Stähler
, and
D. C.
Lupascu
, “
Mono-, di-, and tri-valent cation doped BiFe0.95Mn0.05O3 nanoparticles: Ferroelectric photocatalysts
,”
Adv. Funct. Mater.
32
,
2207105
(
2022
).
16.
C.
Li
,
X.
Liu
,
Y.
Yan
,
X.
Song
,
Y.
Yan
,
C.
Liu
,
R.
Xu
, and
P.
Huo
, “
Synergy between Cu doping and catalytic platform in 2D Ni-MOFs/Cu-Zn0.5Cd0.5S for efficient water-to-hydrogen conversion
,”
Chem. Eng. J.
410
,
128316
(
2021
).
17.
L.
Wu
,
F.
Su
,
T.
Liu
,
G.
Liu
,
Y.
Li
,
T.
Ma
,
Y.
Wang
,
C.
Zhang
,
Y.
Yang
, and
S.
Yu
, “
Phosphorus-doped single-crystalline quaternary sulfide nanobelts enable efficient visible-light photocatalytic hydrogen evolution
,”
J. Am. Chem. Soc.
144
(
45
),
20620
20629
(
2022
).
18.
C.
Wu
,
Z.
Xing
,
S.
Yang
,
Z.
Li
, and
W.
Zhou
, “
Nanoreactors for photocatalysis
,”
Coord. Chem. Rev.
477
,
214939
(
2023
).
19.
L.
Zhang
,
J.
Zhang
,
H.
Yu
, and
J.
Yu
, “
Emerging S-scheme photocatalyst
,”
Adv. Mater.
34
,
2107668
(
2022
).
20.
H.
Dang
,
Y.
Wang
, and
J.
Wu
, “
Z-scheme photocatalyst Pt/GaP-TiO2-SiO2:Rh for the separated H2 evolution from photocatalytic seawater splitting
,”
Appl. Catal. B
296
,
120339
(
2021
).
21.
W.
Zhao
,
Y.
Feng
,
H.
Huang
,
P.
Zhou
,
J.
Li
,
L.
Zhang
,
B.
Dai
,
J.
Xu
,
F.
Zhu
,
N.
Sheng
, and
D. Y.
Leung
, “
A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism
,”
Appl. Catal. B
245
,
448
458
(
2019
).
22.
K.
Kruczała
,
S.
Neubert
,
K.
Dhaka
,
D.
Mitoraj
,
P.
Jánošíková
,
C.
Adler
,
I.
Krivtsov
,
J.
Patzsch
,
J.
Bloh
,
J.
Biskupek
,
U.
Kaiser
,
R.
Hocking
,
M. C.
Toroker
, and
R.
Beranek
, “
Enhancing photocatalysis: Understanding the mechanistic diversity in photocatalysts modified with single-atom catalytic sites
,”
Adv. Sci.
10
,
2303571
(
2023
).
23.
F.
Zhang
,
Y.
Zhu
,
Q.
Lin
,
L.
Zhang
,
X.
Zhang
, and
H.
Wang
, “
Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis
,”
Energy Environ. Sci.
14
,
2954
3009
(
2021
).
24.
B.
Wang
,
H.
Cai
, and
S.
Shen
, “
Single metal atom photocatalysis
,”
Small Methods
3
,
1800447
(
2019
).
25.
C.
Hu
,
S.
Tu
,
N.
Tian
,
T.
Ma
,
Y.
Zhang
, and
H.
Huang
, “
Photocatalysis enhanced by external fields
,”
Angew. Chem., Int. Ed.
60
,
16309
16328
(
2021
).
26.
C.
Zhang
,
D.
Lei
,
C.
Xie
,
X.
Hang
,
C.
He
, and
H.
Jiang
, “
Piezo-photocatalysis over metal-organic frameworks: Promoting photocatalytic activity by piezoelectric effect
,”
Adv. Mater.
33
,
2106308
(
2021
).
27.
B.
Zhong
,
S.
Li
,
J.
Hu
,
X.
Yang
,
Y.
Cai
,
C.
Li
, and
J.
Qu
, “
Advances in ultrasound-assisted photocatalyst synthesis and piezo-photocatalysts
,”
J. Mater. Chem. A
11
,
22608
22630
(
2023
).
28.
T.
Lv
,
J.
Li
,
N.
Arif
,
L.
Qi
,
J.
Lu
,
Z.
Ye
, and
Y.
Zeng
, “
Polarization and external-field enhanced photocatalysis
,”
Matter
5
,
2685
2721
(
2022
).
29.
D.
Zhao
,
Y.
Wang
,
C.
Dong
,
Y.
Huang
,
J.
Chen
,
F.
Xue
,
S.
Shen
, and
L.
Guo
, “
Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting
,”
Nat. Energy
6
,
388
397
(
2021
).
30.
Y.
Yang
,
H.
Tan
,
B.
Cheng
,
J.
Fan
,
J.
Yu
, and
W.
Ho
, “
Near‐infrared‐responsive photocatalysts
,”
Small Methods
5
,
2001042
(
2021
).
31.
Z.
Xu
,
W.
Yue
,
C.
Li
,
L.
Wang
,
Y.
Xu
,
Z.
Ye
, and
J.
Zhang
, “
Rational synthesis of Au-CdS composite photocatalysts for broad-spectrum photocatalytic hydrogen evolution
,”
ACS Nano
17
(
12
),
11655
11664
(
2023
).
32.
B.
Dai
,
J.
Fang
,
Y.
Yu
,
M.
Sun
,
H.
Huang
,
C.
Lu
,
J.
Kou
,
Y.
Zhao
, and
Z.
Xu
, “
Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution
,”
Adv. Mater.
32
,
1906361
(
2020
).
33.
R.
Ma
,
J.
Sun
,
D. H.
Li
, and
J.
Wei
, “
Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications
,”
Int. J. Hydrogen Energy
45
,
30288
30324
(
2020
).
34.
Y.
Zhao
,
W.
Gao
,
S.
Li
,
G. R.
Williams
,
A. H.
Mahadi
, and
D.
Ma
, “
Solar-versus thermal-driven catalysis for energy conversion
,”
Joule
3
,
920
937
(
2019
).
35.
F.
Wang
,
L.
Ma
,
Z.
Cheng
,
J.
Tan
,
X.
Huang
, and
L.
Liu
, “
Radiative heat transfer in solar thermochemical particle reactor: A comprehensive review
,”
Renew. Sustain. Energy Rev.
73
,
935
949
(
2017
).
36.
W.
Wang
,
Y.
Li
,
X.
Yu
,
L.
Zhang
,
Y.
Wang
,
H.
He
,
H.
Zhao
,
W.
Chen
,
J.
Li
,
L.
Deng
, and
Y.
Liu
, “
Photothermal interface with high-adhesive superhydrophobicity to construct vapor splitting module for hydrogen evolution from seawater
,”
Appl. Catal. B: Environ.
346
,
123743
(
2024
).
37.
Z.
Zeng
,
B.
Luo
,
D.
Jing
, and
L.
Guo
, “
Hydrogen production versus photocatalyst dimension under concentrated solar light: A case over titanium dioxide
,”
Sol. Energy
230
,
538
548
(
2021
).
38.
L.
Guo
,
Y.
Chen
,
J.
Su
,
M.
Liu
, and
Y.
Liu
, “
Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow
,”
Energy
172
,
1079
1086
(
2019
).
39.
J.
Liu
,
H.
Zhu
,
J.
Zhang
,
W.
Tian
, and
X.
Ma
, “
Mass transfer-based heterogeneous photocatalysis: Hollow porous polystyrene nanospheres as a platform for efficient energy transport of iridium (III) complex
,”
J. Catal.
425
,
322
332
(
2023
).
40.
J.
Zhou
,
W.
He
,
H.
Liu
, and
C. Z.
Huang
, “
Energy flow during the plasmon resonance-driven photocatalytic reactions on single nanoparticles
,”
ACS Catal.
12
(
2
),
847
853
(
2022
).
41.
C.
Dai
and
B.
Liu
, “
Conjugated polymers for visible-light-driven photocatalysis
,”
Energy Environ. Sci.
13
,
24
52
(
2020
).
42.
K.
Feng
,
L.
Zhang
,
J.
Gong
,
J.
Qu
, and
R.
Niu
, “
Visible light triggered exfoliation of COF micro/nanomotors for efficient photocatalysis
,”
Green Energy Environ.
8
,
567
578
(
2023
).
43.
L.
Wang
,
X.
Xu
,
Q.
Cheng
,
S.
Dou
, and
Y.
Du
, “
Near‐infrared‐driven photocatalysts: Design, construction, and applications
,”
Small
17
,
1904107
(
2021
).
44.
Z.
Lian
,
F.
Wu
,
J.
Zi
,
G.
Li
,
W.
Wang
, and
H.
Li
, “
Infrared light-induced anomalous defect-mediated plasmonic hot electron transfer for enhanced photocatalytic hydrogen evolution
,”
J. Am. Chem. Soc.
145
(
28
),
15482
15487
(
2023
).
45.
S.
Lv
,
Y.
Du
,
F.
Wu
,
Y.
Cai
, and
T.
Zhou
, “
Review on LSPR assisted photocatalysis: Effects of physical fields and opportunities in multifield decoupling
,”
Nanoscale Adv.
4
,
2608
2631
(
2022
).
46.
K.
Ogawa
,
R.
Sakamoto
,
C.
Zhong
,
H.
Suzuki
,
K.
Kato
,
O.
Tomita
,
K.
Nakashima
,
A.
Yamakata
,
T.
Tachikawa
,
A.
Saeki
,
H.
Kageyama
, and
R.
Abe
, “
Manipulation of charge carrier flow in Bi4NbO8Cl nanoplate photocatalyst with metal loading
,”
Chem. Sci.
13
,
3118
3128
(
2022
).
47.
Y.
Shi
,
L.
Li
,
Z.
Xu
,
F.
Guo
, and
W.
Shi
, “
Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production
,”
Chem. Eng. J.
459
,
141549
(
2023
).
48.
X.
Meng
,
L.
Liu
,
S.
Ouyang
,
H.
Xu
,
D.
Wang
,
N.
Zhao
, and
J.
Ye
, “
Nanometals for solar‐to‐chemical energy conversion: From semiconductor‐based photocatalysis to plasmon‐mediated photocatalysis and photo‐thermocatalysis
,”
Adv. Mater.
28
,
6781
6803
(
2016
).
49.
M.
Malayeri
,
C. S.
Lee
,
F.
Haghighat
, and
L.
Klimes
, “
Modeling of gas-phase heterogeneous photocatalytic oxidation reactor in the presence of mass transfer limitation and axial dispersion
,”
Chem. Eng. J.
386
,
124013
(
2020
).
50.
S.
Castelletto
and
A.
Boretti
, “
Luminescence solar concentrators: A technology update
,”
Nano Energy
109
,
108269
(
2023
).
51.
A.
Zhakeyev
,
M. C.
Jones
,
C. G.
Thomson
,
J. M.
Tobin
,
H.
Wang
,
F.
Vilela
, and
J.
Xuan
, “
Additive manufacturing of intricate and inherently photocatalytic flow reactor components
,”
Addit. Manuf.
38
,
101828
(
2021
).
52.
Y.
You
,
M. J.
Kim
,
G. N.
Ahn
,
S.
Bae
,
D.
Kim
,
J. K.
Kim
,
Y.
Kwon
,
J.
Ryu
,
J.
Lee
, and
D. P.
Kim
, “
Bimodal light-harvesting microfluidic system using up conversion nanocrystals for enhanced flow photocatalysis
,”
Adv. Mater. Technol.
7
,
2101656
(
2022
).
53.
Y.
Wei
,
N.
Yang
,
K.
Huang
,
J.
Wan
,
F.
You
,
R.
Yu
,
S.
Feng
, and
D.
Wang
, “
Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport
,”
Adv. Mater.
32
,
2002556
(
2020
).
54.
H.
Lu
,
X.
Jin
,
S.
Tong
,
M.
Jin
,
Z.
Zhu
,
J.
Fang
,
G.
Zhong
,
J.
Chen
,
M.
Deng
, and
F.
Chen
, “
Modulating catalyst-reactant interface microenvironment for efficient photocatalysis on bismuth sulfide
,”
Chem. Eng. Technol.
46
(
10
),
2233
2238
(
2023
).
55.
L.
Xiao
,
P.
Chen
,
W.
Yang
,
X.
Zhao
, and
F.
Dong
, “
Photocatalytic reaction mechanisms at the gas-solid interface for environmental and energy applications
,”
Catal. Sci. Technol.
11
,
7807
7839
(
2021
).
56.
S.
Wang
,
X.
Zhang
,
D.
Su
,
X.
Yan
,
H.
Zhou
,
X.
Xue
,
Y.
Wang
, and
T.
Zhang
, “
Enhanced photocatalytic reactions via plasmonic metal-semiconductor heterostructures combing with solid-liquid-gas interfaces
,”
Appl. Catal. B
306
,
121102
(
2022
).
57.
H.
Zhang
,
Y.
Liu
,
N.
Liu
, and
S.
Kang
, “
Understanding the interface properties of photocatalytic reactors for rational engineering applications
,”
Chem. Eng. J.
472
,
145057
(
2023
).
58.
B.
Dai
,
Y.
Zhou
,
X.
Xiao
,
Y.
Chen
,
J.
Guo
,
C.
Gao
,
Y.
Xie
, and
J.
Chen
, “
Fluid field modulation in mass transfer for efficient photocatalysis
,”
Adv. Sci.
9
,
2203057
(
2022
).
59.
J.
Das
,
S.
Mandal
,
A.
Borbora
,
S.
Rani
,
M.
Tenjimbayashi
, and
U.
Manna
, “
Modulating force of nucleated hydrogen bubble adhesion to boost electrochemical water splitting
,”
Adv. Funct. Mater.
34
,
2311648
(
2024
).
60.
T.
Solymosi
,
M.
Geißelbrecht
,
S.
Mayer
,
M.
Auer
,
P.
Leicht
,
M.
Terlinden
,
P.
Malgaretti
,
A.
Bösmann
,
P.
Preuster
,
J.
Harting
,
M.
Thommes
,
N.
Vogel
, and
P.
Wasserscheid
, “
Nucleation as a rate-determining step in catalytic gas generation reactions from liquid phase systems
,”
Sci. Adv.
8
,
3262
(
2022
).
61.
Y.
Liu
,
H.
Jiang
, and
Z.
Hou
, “
Local field induced mass transfer: New insight into nano-electrocatalysis
,”
Chem. Eur. J.
27
,
17726
17735
(
2021
).
62.
M. A.
Isaacs
,
N.
Robinson
,
B.
Barbero
,
L. J.
Durndell
,
J. C.
Manayil
,
C. M. A.
Parlett
,
C.
Agostino
,
K.
Wilson
, and
A. F.
Lee
, “
Unravelling mass transport in hierarchically porous catalysts
,”
J. Mater. Chem. A
7
,
11814
11825
(
2019
).
63.
K. P.
Sundar
,
K.
Sellapa
, and
M. N.
Venkatesa
, “
The study on the effect of hydrodynamic flow on the photocatalytic performance of photocatalytic reactors
,”
Environ. Sci. Pollut. Res.
30
,
72514
72522
(
2023
).
64.
M.
Sun
,
Y.
Wang
,
T.
Dong
,
L.
Zhou
,
A.
Dai
,
J.
Kou
, and
C.
Lu
, “
Construction of an interfacial photocatalytic mode based on carbonized mushrooms to enhance infrared light-assisted photocatalytic water splitting performance
,”
Langmuir
38
(
9
),
2811
2820
(
2022
).
65.
Q.
Xia
,
C.
Wang
,
N.
Xu
,
J.
Yang
,
G.
Gao
, and
J.
Ding
, “
A floating integrated solar micro-evaporator for self-cleaning desalination and organic degradation
,”
Adv. Funct. Mater.
33
,
2214769
(
2023
).
66.
Y.
Lu
,
H.
Zhang
,
Y.
Wang
,
X.
Zhu
,
W.
Xiao
,
H.
Xu
,
G.
Li
,
Y.
Li
,
D.
Fan
,
H.
Zeng
,
Z.
Chen
, and
X.
Yang
, “
Solar-driven interfacial evaporation accelerated electrocatalytic water splitting on 2D perovskite Oxide/MXene heterostructure
,”
Adv. Funct. Mater.
33
,
2215061
(
2023
).
67.
M. Q.
Yang
,
M.
Gao
,
M.
Hong
, and
G. W.
Ho
, “
Visible-to-NIR photon harvesting: Progressive engineering of catalysts for solar-powered environmental purification and fuel production
,”
Adv. Mater.
30
,
1802894
(
2018
).
68.
C.
Lv
,
X.
Bai
,
S.
Ning
,
C.
Song
,
Q.
Guan
,
B.
Liu
,
Y.
Li
, and
J.
Ye
, “
Nanostructured materials for photothermal carbon dioxide hydrogenation: Regulating solar utilization and catalytic performance
,”
ACS Nano
17
(
3
),
1725
1738
(
2023
).
69.
X.
Cui
,
Q.
Ruan
,
X.
Zhuo
,
X.
Xia
,
J.
Hu
,
R.
Fu
,
Y.
Li
,
J.
Wang
, and
H.
Xu
, “
Photothermal nanomaterials: A powerful light-to-heat converter
,”
Chem. Rev.
123
,
6891
6952
(
2023
).
70.
J.
Zhang
,
H.
Chen
,
X.
Duan
,
H.
Sun
, and
S.
Wang
, “
Photothermal catalysis: From fundamentals to practical applications
,”
Mater. Today
68
,
234
253
(
2023
).
71.
M.
Cai
,
X.
Tong
,
H.
Zhao
,
P.
Liao
,
L.
Pan
,
G.
Li
, and
Z. M.
Wang
, “
Regulating intragap states in colloidal quantum dots for universal photocatalytic hydrogen evolution
,”
Appl. Catal. B
343
,
123572
(
2024
).
72.
C.
Choi
,
F.
Zhao
,
J. L.
Hart
,
Y.
Gao
,
F.
Menges
,
C. L.
Rooney
,
N. J.
Harmon
,
B.
Shang
,
Z.
Xu
,
S.
Suo
,
Q.
Sam
,
J. J.
Cha
,
T.
Lian
, and
H.
Wang
, “
Synergizing electron and heat flows in photocatalyst for direct conversion of captured CO2
,”
Angew. Chem., Int. Ed.
62
,
e2023021
(
2023
).
73.
R.
Xiong
,
X.
Ke
,
W.
Jia
,
Y.
Xiao
,
B.
Cheng
, and
S.
Lei
, “
Photothermal-coupled solar photocatalytic CO2 reduction with high efficiency and selectivity on a MoO3−x@ZnIn2S4 core-shell S-scheme heterojunction
,”
J. Mater. Chem. A
11
,
2178
2190
(
2023
).
74.
H.
Ge
,
Y.
Kuwahara
,
K.
Kusu
,
Z.
Bian
, and
H.
Yamashita
, “
Ru/HxMoO3-y with plasmonic effect for boosting photothermal catalytic CO2 methanation
,”
Appl. Catal. B
317
,
121734
(
2022
).
75.
Z.
Wu
,
C.
Li
,
Z.
Li
,
K.
Feng
,
M.
Cai
,
D.
Zhang
,
S.
Wang
,
M.
Chu
,
C.
Zhang
,
J.
Shen
,
Z.
Huang
,
Y.
Xiao
,
G. A.
Ozin
,
X.
Zhang
, and
L.
He
, “
Niobium and Titanium Carbides (MXenes) as superior photothermal supports for CO2 photocatalysis
,”
ACS Nano
15
(
3
),
5696
5705
(
2021
).
76.
Y.
Li
,
X.
Bai
,
D.
Yuan
,
F.
Zhang
,
B.
Li
,
X.
San
,
B.
Liang
,
S.
Wang
,
J.
Luo
, and
G.
Fu
, “
General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy
,”
Nat. Commun.
13
,
776
(
2022
).
77.
Y.
Wang
,
M.
Liu
,
C.
Wu
,
J.
Gao
,
M.
Li
,
Z.
Xing
,
Z.
Li
, and
W.
Zhou
, “
Hollow nanoboxes Cu2-xS@ZnIn2S4 core-shell S-scheme heterojunction with broad-spectrum response and enhanced photothermal-photocatalytic performance
,”
Small
18
,
2202544
(
2022
).
78.
F.
Wang
,
J.
Li
,
X.
Yu
,
H.
Tang
,
J.
Xu
,
L.
Sun
, and
Q.
Liu
, “
Unveiling the role of metallic CoP@Ni2P sea-urchin-like nanojunction as a photothermal cocatalyst for enhancing the H2 generation and benzaldehyde formation over CdZnS nanoparticles
,”
J. Mater. Sci. Technol.
146
,
49
60
(
2023
).
79.
B.
He
,
S.
Jia
,
M.
Zhao
,
Y.
Wang
,
T.
Chen
,
S.
Zhao
,
Z.
Li
,
Z.
Lin
,
Y.
Zhao
, and
X.
Liu
, “
General and robust photothermal-heating-enabled high-efficiency photoelectrochemical water splitting
,”
Adv. Mater.
33
,
2004406
(
2021
).
80.
D.
Mateo
,
J. L.
Cerrillo
,
S.
Durini
, and
J.
Gascon
, “
Fundamentals and applications of photo-thermal catalysis
,”
Soc. Rev.
50
,
2173
2210
(
2021
).
81.
C.
Song
,
Z.
Wang
,
Z.
Yin
,
D.
Xiao
, and
D.
Ma
, “
Principles and applications of photothermal catalysis
,”
Chem Catal.
2
,
52
83
(
2022
).
82.
J.
Zhang
,
Y.
Li
,
X.
Zhao
,
L.
Wang
,
H.
Chen
,
S.
Wang
,
X.
Xu
,
L.
Shi
,
L.
Zhang
,
Y.
Zhu
,
H.
Zhang
,
Y.
Liu
,
G.
Nealon
,
S.
Zhang
,
M.
Wu
,
S.
Wang
, and
H.
Sun
, “
Aligning potential differences within carbon nitride based photocatalysis for efficient solar energy harvesting
,”
Nano Energy
89
,
106357
(
2021
).
83.
J.
Zhang
,
Y.
Li
,
X.
Zhao
,
H.
Zhang
,
L.
Wang
,
H.
Chen
,
S.
Wang
,
X.
Xu
,
L.
Shi
,
L.
Zhang
,
J.
Veder
,
S.
Zhao
,
G.
Nealon
,
M.
Wu
,
S.
Wang
, and
H.
Sun
, “
A hydrogen-initiated chemical epitaxial growth strategy for in-plane heterostructured photocatalyst
,”
ACS Nano
14
,
17505
17514
(
2020
).
84.
X.
Li
,
S.
Guo
,
C.
Kan
,
J.
Zhu
,
T.
Tong
,
S.
Ke
,
W.
Choy
, and
B.
Wei
, “
Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect
,”
Nano Energy
30
,
549
558
(
2016
).
85.
M.
Li
,
J.
Sun
,
G.
Chen
,
S.
Yao
,
B.
Cong
, and
P.
Liu
, “
Construction photothermal/pyroelectric property of hollow FeS2/Bi2S3 nanostructure with enhanced full spectrum photocatalytic activity
,”
Appl. Catal. B
298
,
120573
(
2021
).
86.
R.
Ma
,
H.
Su
,
J.
Sun
,
D.
Li
,
Z.
Zhang
, and
J.
Wei
, “
Concentrating photo-thermo-organized single-atom and 2D-raft Cu catalyst for full-spectrum solar harmonic conversion of aqueous urea and urine into hydrogen
,”
Appl. Catal. B
315
,
121493
(
2022
).
87.
B.
Wang
,
Y.
Fu
,
C.
Zhang
,
J.
Huang
,
W.
Chen
,
L.
Guo
,
N.
Li
,
O. V.
Prezhdo
, and
M.
Liu
, “
Fermi level pinning in concentrated light-induced band edge tuning maximizes photocatalytic solar-to-hydrogen efficiency
,”
J. Phys. Chem. Lett.
14
,
10825
10831
(
2023
).
88.
J.
Zhang
,
K.
Xie
,
Y.
Jiang
,
M.
Li
,
X.
Tan
,
Y.
Yang
,
X.
Zhao
,
L.
Wang
,
Y.
Wang
,
X.
Wang
,
Y.
Zhu
,
H.
Chen
,
M.
Wu
,
H.
Sun
, and
S.
Wang
, “
Photoinducing different mechanisms on a Co-Ni bimetallic alloy in catalytic dry reforming of methane
,”
ACS Catal.
13
(
16
),
10855
10865
(
2023
).
89.
J.
Zhang
,
L.
Wang
,
X.
Zhao
,
L.
Shi
,
H.
Chen
,
S.
Zhang
,
P.
Zhang
,
S.
Wang
,
L.
Zhang
,
Y.
Wang
,
X.
Wang
,
Y.
Zhu
,
H.
Zhang
,
X.
Duan
,
M.
Wu
,
G.
Shao
,
S.
Wang
, and
H.
Sun
, “
The nature of active sites for plasmon-mediated photothermal catalysis and heat-coupled photocatalysis in dry reforming of methane
,”
Energy Environ. Mater.
6
(
5
),
e12416
(
2023
).
90.
Z.
Zeng
,
D.
Jing
, and
L.
Guo
, “
Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam
,”
Energy
228
,
120578
(
2021
).
91.
R.
Ma
,
J.
Sun
,
D. H.
Li
, and
J. J.
Wei
, “
Exponentially self-promoted hydrogen evolution by uni-source photo-thermal synergism in concentrating photocatalysis on co-catalyst-free P25 TiO2
,”
J. Catal.
392
,
165
174
(
2020
).
92.
M. G.
Kibria1
,
F. A.
Chowdhury
,
S.
Zhao
,
B.
Alotaibi
,
M. L.
Trudeau
,
H.
Guo
, and
Z.
Mi
, “
Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays
,”
Nat. Commun.
6
,
6797
(
2019
).
93.
P.
Zhou
,
I. A.
Navid
,
Y.
Ma
,
Y.
Xiao
,
P.
Wang
,
Z.
Ye
,
B.
Zhou
,
K.
Sun
, and
Z.
Mi
, “
Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting
,”
Nature
5
,
613
(
2023
).
94.
M.
Gao
,
T.
Zhang
, and
G. W.
Ho
, “
Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation
,”
Nano Res.
15
,
9985
10005
(
2022
).
95.
F.
He
,
Y.
Lu
,
Y.
Wu
,
S.
Wang
,
Y.
Zhang
,
P.
Dong
,
Y.
Wang
,
C.
Zhao
,
S.
Wang
,
J.
Zhang
, and
S.
Wang
, “
Rejoint of carbon nitride fragments into multi-interfacial order-disorder homojunction for robust photo-driven generation of H2O2
,”
Adv. Mater.
36
,
2307490
(
2024
).
96.
J.
Zhang
,
M.
Li
,
X.
Tan
,
L.
Shi
,
K.
Xie
,
X.
Zhao
,
S.
Wang
,
S.
Zhao
,
H.
Zhang
,
X.
Duan
,
H.
Chen
,
Y.
Zhu
,
M.
Wu
,
H.
Sun
, and
S.
Wang
, “
Confined FeNi alloy nanoparticles in carbon nanotubes for photothermal oxidative dehydrogenation of ethane by carbon dioxide
,”
Appl. Catal. B: Environ.
339
,
123166
(
2023
).
97.
J.
Zhang
,
Y.
Li
,
J.
Sun
,
H.
Chen
,
Y.
Zhu
,
X.
Zhao
,
L.
Zhang
,
S.
Wang
,
H.
Zhang
,
X.
Duan
,
L.
Shi
,
S.
Zhang
,
P.
Zhang
,
G.
Shao
,
M.
Wu
,
S.
Wang
, and
H.
Sun
, “
Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis
,”
Appl. Catal. B
309
,
121263
(
2022
).
98.
W.
Li
,
J.
Tang
,
D.
Casanova
, and
O.
Prezhdo
, “
Time-domain ab initio analysis rationalizes the unusual temperature dependence of charge carrier relaxation in lead halide perovskite
,”
ACS Energy Lett.
3
,
2713
–−
2720
(
2018
).
99.
L.
Zhang
,
W.
Chu
,
C.
Zhao
,
Q.
Zheng
,
O.
Prezhdo
, and
J.
Zhao
, “
Dynamics of photoexcited small polarons in transition-metal oxides
,”
J. Phys. Chem. Lett.
12
,
2191
2198
(
2021
).
100.
H.
Song
,
X.
Meng
,
Z.
Wang
,
Z.
Wang
,
H.
Chen
,
Y.
Weng
,
F.
Ichihara
,
M.
Oshikiri
,
T.
Kako
, and
J.
Ye
, “
Visible-lightmediated methane activation for steam methane reforming under mild conditions: A case study of Rh/TiO2 catalysts
,”
ACS Catal.
8
,
7556
7565
(
2018
).
101.
Y. H.
Guo
and
G. H.
Yu
, “
Engineering hydrogels for efficient solar desalination and water purification
,”
Acc. Mater. Res.
2
(
5
),
374
384
(
2021
).
102.
Z. Y.
Sun
,
J. J.
Wang
,
Q. L.
Wu
,
Z. Y.
Wang
,
Z.
Wang
,
J.
Sun
, and
C. J.
Liu
, “
Plasmon based double-layer hydrogel device for a highly efficient solar vapor generation
,”
Adv. Funct. Mater.
29
(
29
),
1901312
(
2019
).
103.
H. W.
Liu
,
C. J.
Chen
,
H.
Wen
,
R. X.
Guo
,
N. A.
Williams
,
B. D.
Wang
,
F. J.
Chen
, and
L. B.
Hu
, “
Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification
,”
J. Mater. Chem. A
6
(
39
),
18839
18846
(
2018
).
104.
Y.
Zeng
,
J. F.
Yao
,
B. A.
Horri
,
K.
Wang
,
Y. Z.
Wu
,
D.
Li
, and
H. T.
Wang
, “
Solar evaporation enhancement using floating light-absorbing magnetic particles
,”
Energy Environ. Sci.
4
(
10
),
4074
4078
(
2011
).
105.
W. X.
Guan
,
Y. H.
Guo
, and
G. H.
Yu
, “
Carbon materials for solar water evaporation and desalination
,”
Small
17
(
48
),
2007176
(
2021
).
106.
M. W.
Zhu
,
Y. J.
Li
,
G.
Chen
,
F.
Jiang
,
Z.
Yang
,
X. G.
Luo
,
Y. B.
Wang
,
S. D.
Lacey
,
J. Q.
Dai
,
C. W.
Wang
,
C.
Jia
,
J. Y.
Wan
,
Y. G.
Yao
,
A.
Gong
,
B.
Yang
,
Z. F.
Yu
,
S.
Das
, and
L. B.
Hu
, “
Tree-inspired design for high-efficiency water extraction
,”
Adv. Mater.
29
(
44
),
1704107
(
2017
).
107.
M. L.
Sun
,
L.
Zhou
,
T. G.
Dong
,
H. M.
Huang
,
Z. G.
Fang
,
J. H.
Kou
,
C. H.
Lu
, and
Z. Z.
Xu
, “
Interfacial design to enhance photocatalytic hydrogen evolution via optimizing energy and mass flows
,”
ACS Appl. Mater. Interfaces
13
(
18
),
21207
21216
(
2021
).
108.
H.
Yoshida
,
R.
Yamada
, and
T.
Yoshida
, “
Platinum cocatalyst loaded on calcium titanate photocatalyst for water splitting in a flow of water vapor
,”
ChemSusChem
12
(
9
),
1958
1965
(
2019
).
109.
H.
Huang
,
R.
Shi
,
X.
Zhang
,
J.
Zhao
,
C.
Su
, and
T.
Zhang
, “
Photothermal-assisted triphase photocatalysis over a multifunctional bilayer paper
,”
Angew. Chem., Int. Ed.
60
,
22963
22969
(
2021
).
110.
T.
Suguro
,
F.
Kishimoto
,
N.
Kariya
,
T.
Fukui
,
M.
Nakabayashi
,
N.
Shibata
,
T.
Takata
,
K.
Domen
, and
K.
Takanabe
, “
A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
,”
Nat. Commun.
13
(
1
),
5698
(
2022
).
111.
H. T.
Han
,
K. L.
Huang
,
Y.
Yao
,
Z. Z.
Li
, and
X. C.
Meng
, “
Enhanced photocatalytic splitting of photothermally induced water vapor to evolve hydrogen
,”
Chem. Eng. J.
450
,
138419
(
2022
).
112.
H. M.
Qiblawey
and
F.
Banat
, “
Solar thermal desalination technologies
,”
Desalination
220
,
633
644
(
2008
).
113.
M. W.
Higgins
,
A. R. S.
Rahmaan
,
R. R.
Devarapalli
,
M. V.
Shelke
, and
N.
Jha
, “
Carbon fabric based solar steam generation for waste water treatment
,”
Sol. Energy
159
,
800
810
(
2018
).
114.
M.
Elimelech
and
W. A.
Phillip
, “
The future of seawater desalination: Energy, technology, and the environment
,”
Science
333
(
6043
),
712
717
(
2011
).
115.
P. H.
Yang
,
K.
Liu
,
Q.
Chen
,
J.
Li
,
J. J.
Duan
,
G. B.
Xue
,
Z. S.
Xu
,
W. K.
Xie
, and
J.
Zhou
, “
Solar-driven simultaneous steam production and electricity generation from salinity
,”
Energy Environ. Sci.
10
(
9
),
1923
1927
(
2017
).
116.
O.
Neumann
,
C.
Feronti
,
A. D.
Neumann
,
A. J.
Dong
,
K.
Schell
,
B.
Lu
,
E.
Kim
,
M.
Quinn
,
S.
Thompson
,
N.
Grady
,
P.
Nordlander
,
M.
Oden
, and
N. J.
Halas
, “
Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
29
),
11677
(
2013
).
117.
Z.
Lin
,
J.
Li
,
Z.
Zheng
,
L.
Li
,
L.
Yu
,
C.
Wang
, and
G.
Yang
, “
A floating sheet for efficient photocatalytic water splitting
,”
Adv. Energy Mater.
6
(
15
),
1600510
(
2016
).
118.
L.
Ding
,
K.
Li
,
J.
Li
,
Q.
Lu
,
F.
Fang
,
T.
Wang
, and
K.
Chang
, “
Integrated coupling utilization of the solar full spectrum for promoting water splitting activity over a CIZS semiconductor
,”
ACS Nano
17
(
12
),
11616
11625
(
2023
).
119.
J. H.
Li
,
L.
Ding
,
Z.
Su
,
K.
Li
,
F.
Fang
,
R.
Sun
,
Y.
Qin
, and
K.
Chang
, “
Non-lignin constructing the gas-solid interface for enhancing the photothermal catalytic water vapor splitting
,”
Adv. Mater.
35
,
2305535
(
2023
).
120.
S.
Guo
,
X.
Li
,
J.
Li
, and
B.
Wei
, “
Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems
,”
Nat. Commun.
12
,
1343
(
2021
).
121.
Y.
Wang
,
W.
Huang
,
S. H.
Guo
,
X.
Xin
,
Y. Z.
Zhang
,
P.
Guo
,
S. W.
Tang
, and
X. H.
Li
, “
Sulfur-deficient ZnIn2S4/oxygen-deficient WO3 hybrids with carbon layer bridges as a novel photothermal/photocatalytic integrated system for Z-scheme overall water splitting
,”
Adv. Energy Mater.
11
(
46
),
2102452
(
2021
).
122.
S.
Wang
,
K.
Lu
,
A.
Hu
,
N.
Li
,
Y.
Feng
,
D.
Jing
, and
M.
Liu
, “
Decoupling gaseous hydrogen production from liquid water using a magnetic-photo-thermal coupling reactor
,”
AIChE J.
68
(
11
),
e17855
(
2022
).
123.
S.
Zhao
,
C.
Zhang
,
S.
Wang
,
K.
Lu
,
B.
Wang
,
J.
Huang
,
H.
Peng
,
N.
Li
, and
M.
Liu
, “
Photothermally driven decoupling of gas evolution at the solid-liquid interface for boosted photocatalytic hydrogen production
,”
Nanoscale
16
,
152
162
(
2024
).
124.
H.
Han
and
X.
Meng
, “
Hydrothermal preparation of C3N4 on carbonized wood for photothermal-photocatalytic water splitting to efficiently evolve hydrogen
,”
J. Colloid Interface Sci.
650
,
846
856
(
2023
).
125.
W. H.
Lee
,
C. W.
Lee
,
G. D.
Cha
,
B. H.
Lee
,
J. H.
Jeong
,
H.
Park
,
J.
Heo
,
M. S.
Bootharaju
,
S. H.
Sunwoo
,
J. H.
Kim
,
K. H.
Ahn
,
D. H.
Kim
, and
T.
Hyeon
, “
Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production
,”
Nat. Nanotechnol.
18
(
7
),
754
(
2023
).
126.
M.
Romero
and
A.
Steinfeld
, “
Concentrating solar thermal power and thermochemical fuels
,”
Energy Environ. Sci.
5
,
9234
9245
(
2012
).
127.
Y.
Fu
,
Y.
Wang
,
J.
Huang
,
K.
Lu
, and
M.
Liu
, “
Solar fuel production through concentrating light irradiation
,”
Green Energy Environ.
(in press) (
2024
).
128.
X.
Xin
,
Y.
Li
,
Y.
Zhang
,
Y.
Wang
,
X.
Chi
,
Y.
Wei
,
C.
Diao
,
J.
Su
,
R.
Wang
,
P.
Guo
,
J.
Yu
,
J.
Zhang
,
A.
Sobrido
,
M.
Titirici
, and
X.
Li
, “Large electronegativity differences between adjacent atomic sites activate and stabilize ZnIn2S4 for efficient photocatalytic overall water splitting,”
Nat. Commun.
15
,
337
(
2024
).
129.
T.
Takata
,
J.
Jiang
,
Y.
Sakata
,
M.
Nakabayashi
,
N.
Shibata
,
V.
Nandal
,
K.
Seki
,
T.
Hisatomi
, and
K.
Domen
, “
Photocatalytic water splitting with a quantum efficiency of almost unity
,”
Nature
581
,
411
414
(
2020
).
130.
J. H.
Kim
,
D.
Hansora
,
P.
Sharma
,
J. W.
Jang
, and
J. S.
Lee
, “
Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge
,”
Chem. Soc. Rev.
48
,
1908
1971
(
2019
).
131.
J.
Jia
,
L. C.
Seitz
,
J. D.
Benck
,
Y.
Huo
,
Y.
Chen
,
J. W. D.
Ng
,
T.
Bilir
,
J. S.
Harris
, and
T. F.
Jaramillo
, “
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
,”
Nat. Commun.
7
,
13237
(
2016
).
132.
R. J.
Detz
,
J. N. H.
Reek
, and
B. C. C.
Zwaan
, “
The future of solar fuels: When could they become competitive
,”
Energy Environ. Sci.
11
,
1653
1669
(
2018
).
133.
S. M.
Rodríguez
,
J. B.
Gálvez
,
M. I. M.
Rubio
,
P. F.
Ibáñez
,
D. A.
Padilla
,
M. C.
Pereira
,
J. F.
Mendes
, and
J. C.
Oliveira
, “
Engineering of solar photocatalytic collectors
,”
Sol. Energy
77
,
513
524
(
2004
).
134.
F.
Cao
,
H.
Liu
,
Q.
Wei
,
L.
Zhao
, and
L.
Guo
, “
Experimental study of direct solar photocatalytic water splitting for hydrogen production under natural circulation conditions
,”
Int. J. Hydrogen Energy
43
,
13727
13737
(
2018
).
135.
F.
Cao
,
Q.
Wei
,
H.
Liu
,
N.
Lu
,
L.
Zhao
, and
L.
Guo
, “
Development of the direct solar photocatalytic water splitting system for hydrogen production in Northwest China: Design and evaluation of photoreactor
,”
Renewable Energy
121
,
153
163
(
2018
).
136.
F.
Cao
,
H.
Li
,
H.
Chao
,
L.
Zhao
, and
L.
Guo
, “
Optimization of the concentration field in a suspended photocatalytic reactor
,”
Energy
74
,
140
146
(
2014
).
137.
F.
Liu
,
Y.
Fu
,
K.
Lu
,
S.
Wang
,
B.
Wang
,
J.
Huang
,
X.
Yan
,
Y.
Zheng
,
L.
Guo
, and
M.
Liu
, “
Solar reforming lignocellulose into H2 over pH-triggered hydroxyl-functionalized chalcogenide nanotwins
,”
ACS Catal.
13
,
15591
15602
(
2023
).
138.
L.
Zhao
,
L.
Fan
,
D.
Jing
,
W.
Liu
,
F.
Cao
,
X.
Zhu
,
J.
Yang
, and
H.
Zhang
, “
Study on the radiation distribution in a fluidized tubular reactor for heterogeneous photocatalytic hydrogen production
,”
Procedia Environ. Sci.
12
,
285
292
(
2012
).
139.
L.
Ling
,
H.
Tugaoen
,
J.
Brame
,
S.
Sinha
,
C.
Li
,
J.
Schoepf
,
K.
Hristovski
,
J. H.
Kim
,
C.
Shang
, and
P.
Westerhoff
, “
Coupling light emitting diodes with photocatalyst-coated optical fibers improves quantum yield of pollutant oxidation
,”
Environ. Sci. Technol.
51
,
13319
13326
(
2017
).
140.
Y.
Song
,
L.
Ling
,
P.
Westerhoff
, and
C.
Shang
, “
Evanescent waves modulate energy efficiency of photocatalysis within TiO2 coated optical fibers illuminated using LEDs
,”
Nat. Commun.
12
,
4101
(
2021
).
141.
J. B.
Pérez-Sánchez
,
A.
Koner
,
N. P.
Stern
, and
J.
Yuen-Zhou
, “
Simulating molecular polaritons in the collective regime using few-molecule models
,”
Proc. Natl. Acad. Sci.
120
,
e2219223120
(
2023
).
142.
J.
Zhou
,
W.
Xiong
, and
T.
Shegai
, “
Polariton chemistry: Molecules in cavities and plasmonic media
,”
J. Chem. Phys.
156
,
030401
(
2022
).
143.
P.
Simón Marqués
,
B. D.
Frank
,
A.
Savateev
, and
L.
Zeininger
, “
Janus emulsion solar concentrators as photocatalytic droplet microreactors
,”
Adv. Opt. Mater.
9
,
2101139
(
2021
).
You do not currently have access to this content.