Metal–organic frameworks (MOFs) have emerged as a highly tunable class of porous materials with wide-ranging applications from gas capture to photocatalysis. Developing these exciting properties to their fullest extent requires a thorough mechanistic understanding of the structure–function relationships. We implement an ultrafast spectroscopic toolset, femtosecond transient absorption and femtosecond stimulated Raman spectroscopy (FSRS), to elucidate the correlated electronic and vibrational dynamics of two isostructural 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy)-based MOFs, which manifest drastically different photocatalytic behaviors. Systematic comparisons between the M3+-TBAPy MOFs and bare ligands in various environments reveal the unproductive dimer formation in Al-TBAPy, whereas Sc-TBAPy is dominated by a catalytically active charge-transfer (CT) process. Two ground-state FSRS marker bands of the TBAPy ligand at ∼1267 and 1617 cm−1 probe the chromophore environment at thermal equilibrium. For comparison, the excited-state FSRS of Sc-TBAPy suspended in neutral water unveils a key ∼300 fs twisting motion of the TBAPy peripheral phenyl groups toward planarity, promoting an efficient generation of CT species. This motion also exhibits high sensitivity to solvent environment, which can be a useful probe; we also showed the CT variation for ultrafast dynamics of Sc-TBAPy in the glyphosate aqueous solution. These new insights showcase the power of table-top tunable FSRS methodology to delineate structural dynamics of functional molecular systems in action, including MOFs and other photosensitive “nanomachines.” We expect the uncovered ligand motions (ultrafast planarization) to enable the targeted design of new MOFs with improved CT state characteristics (formation and lifetime) to power applications, including photocatalysis and herbicide removal from waterways.

1.
S. M.
Moosavi
,
A.
Nandy
,
K. M.
Jablonka
,
D.
Ongari
,
J. P.
Janet
,
P. G.
Boyd
,
Y.
Lee
,
B.
Smit
, and
H. J.
Kulik
, “
Understanding the diversity of the metal-organic framework ecosystem
,”
Nat. Commun.
11
,
4068
(
2020
).
2.
S.
Majumdar
,
S. M.
Moosavi
,
K. M.
Jablonka
,
D.
Ongari
, and
B.
Smit
, “
Diversifying databases of metal organic frameworks for high-throughput computational screening
,”
ACS Appl. Mater. Interfaces
13
,
61004
61014
(
2021
).
3.
K. C.
Stylianou
,
R.
Heck
,
S. Y.
Chong
,
J.
Bacsa
,
J. T. A.
Jones
,
Y. Z.
Khimyak
,
D.
Bradshaw
, and
M. J.
Rosseinsky
, “
A guest-responsive fluorescent 3D microporous metal−organic framework derived from a long-lifetime pyrene core
,”
J. Am. Chem. Soc.
132
,
4119
4130
(
2010
).
4.
S.
Sudan
,
A.
Gładysiak
,
B.
Valizadeh
,
J.-H.
Lee
, and
K. C.
Stylianou
, “
Sustainable capture of aromatic volatile organic compounds by a pyrene-based metal–organic framework under humid conditions
,”
Inorg. Chem.
59
,
9029
9036
(
2020
).
5.
N.-C.
Chiu
,
M. T.
Nord
,
L.
Tang
,
L. S.
Lancaster
,
J. S.
Hirschi
,
S. K.
Wolff
,
E. M.
Hutchinson
,
K. A.
Goulas
,
W. F.
Stickle
,
T. J.
Zuehlsdorff
,
C.
Fang
, and
K. C.
Stylianou
, “
Designing dual-functional metal–organic frameworks for photocatalysis
,”
Chem. Mater.
34
,
8798
8807
(
2022
).
6.
L.
Gan
,
M. T.
Nord
,
J. M.
Lessard
,
N. Q.
Tufts
,
A.
Chidambaram
,
M. E.
Light
,
H.
Huang
,
E.
Solano
,
J.
Fraile
,
F.
Suárez-García
,
C.
Viñas
,
F.
Teixidor
,
K. C.
Stylianou
, and
J. G.
Planas
, “
Biomimetic photodegradation of glyphosate in carborane-functionalized nanoconfined spaces
,”
J. Am. Chem. Soc.
145
,
13730
13741
(
2023
).
7.
V. A.
Milichko
,
S. V.
Makarov
,
A. V.
Yulin
,
A. V.
Vinogradov
,
A. A.
Krasilin
,
E.
Ushakova
,
V. P.
Dzyuba
,
E.
Hey-Hawkins
,
E. A.
Pidko
, and
P. A.
Belov
, “
Van der waals metal-organic framework as an excitonic material for advanced photonics
,”
Adv. Mater.
29
,
1606034
(
2017
).
8.
J.-H.
Qin
,
Y.-D.
Huang
,
Y.
Zhao
,
X.-G.
Yang
,
F.-F.
Li
,
C.
Wang
, and
L.-F.
Ma
, “
Highly dense packing of chromophoric linkers achievable in a pyrene-based metal–organic framework for photoelectric response
,”
Inorg. Chem.
58
,
15013
15016
(
2019
).
9.
J.
Yu
,
R.
Anderson
,
X.
Li
,
W.
Xu
,
S.
Goswami
,
S. S.
Rajasree
,
K.
Maindan
,
D. A.
Gómez-Gualdrón
, and
P.
Deria
, “
Improving energy transfer within metal–organic frameworks by aligning linker transition dipoles along the framework axis
,”
J. Am. Chem. Soc.
142
,
11192
11202
(
2020
).
10.
S.
Goswami
,
J.
Yu
,
S.
Patwardhan
,
P.
Deria
, and
J. T.
Hupp
, “
Light-harvesting “antenna” behavior in NU-1000
,”
ACS Energy Lett.
6
,
848
853
(
2021
).
11.
S. S.
Rajasree
,
J.
Yu
,
S. M.
Pratik
,
X.
Li
,
R.
Wang
,
A. S.
Kumbhar
,
S.
Goswami
,
C. J.
Cramer
, and
P.
Deria
, “
Superradiance and directional exciton migration in metal–organic frameworks
,”
J. Am. Chem. Soc.
144
,
1396
1406
(
2022
).
12.
A.
Cadiau
,
N.
Kolobov
,
S.
Srinivasan
,
M. G.
Goesten
,
H.
Haspel
,
A. V.
Bavykina
,
M. R.
Tchalala
,
P.
Maity
,
A.
Goryachev
,
A. S.
Poryvaev
,
M.
Eddaoudi
,
M. V.
Fedin
,
O. F.
Mohammed
, and
J.
Gascon
, “
A titanium metal–organic framework with visible-light-responsive photocatalytic activity
,”
Angew. Chem., Int. Ed.
59
,
13468
13472
(
2020
).
13.
F. P.
Kinik
,
A.
Ortega-Guerrero
,
F. M.
Ebrahim
,
C. P.
Ireland
,
O.
Kadioglu
,
A.
Mace
,
M.
Asgari
, and
B.
Smit
, “
Toward optimal photocatalytic hydrogen generation from water using pyrene-based metal–organic frameworks
,”
ACS Appl. Mater. Interfaces
13
,
57118
57131
(
2021
).
14.
M.
Gutierrez
,
B.
Cohen
,
F.
Sánchez
, and
A.
Douhal
, “
Photochemistry of Zr-based MOFs: Ligand-to-cluster charge transfer, energy transfer and excimer formation, what else is there?
,”
Phys. Chem. Chem. Phys.
18
,
27761
27774
(
2016
).
15.
Y.
Zhang
,
J.
Guo
,
L.
Shi
,
Y.
Zhu
,
K.
Hou
,
Y.
Zheng
, and
Z.
Tang
, “
Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis
,”
Sci. Adv.
3
,
e1701162
(
2017
).
16.
Q. L.
Guan
,
Y. H.
Xing
,
J.
Liu
,
C.
Han
,
C. Y.
Hou
, and
F. Y.
Bai
, “
Bismuth-carboxylate ligand 1,3,6,8-tetrakis(p-benzoic acid)pyrene frameworks, photophysical properties, biological imaging, and fluorescent sensor for biothiols
,”
J. Phys. Chem. C
123
,
23287
23296
(
2019
).
17.
M.
Raytchev
,
E.
Pandurski
,
I.
Buchvarov
,
C.
Modrakowski
, and
T.
Fiebig
, “
Bichromophoric interactions and time-dependent excited state mixing in pyrene derivatives. A femtosecond broad-band pump−probe study
,”
J. Phys. Chem. A
107
,
4592
4600
(
2003
).
18.
S.
Bernhardt
,
M.
Kastler
,
V.
Enkelmann
,
M.
Baumgarten
, and
K.
Müllen
, “
Pyrene as chromophore and electrophore: Encapsulation in a rigid polyphenylene shell
,”
Chem. Eur. J.
12
,
6117
6128
(
2006
).
19.
J.
Sung
,
P.
Kim
,
Y. O.
Lee
,
J. S.
Kim
, and
D.
Kim
, “
Characterization of ultrafast intramolecular charge transfer dynamics in pyrenyl derivatives: Systematic change of the number of peripheral N,N-dimethyaniline substituents
,”
J. Phys. Chem. Lett.
2
,
818
823
(
2011
).
20.
T. D.
Krueger
,
S. A.
Boulanger
,
L.
Zhu
,
L.
Tang
, and
C.
Fang
, “
Discovering a rotational barrier within a charge-transfer state of a photoexcited chromophore in solution
,”
Struct. Dyn.
7
,
024901
(
2020
).
21.
B. V.
Kramar
,
B. T.
Phelan
,
E. A.
Sprague-Klein
,
B. T.
Diroll
,
S.
Lee
,
K.-I.
Otake
,
R.
Palmer
,
M. W.
Mara
,
O. K.
Farha
,
J. T.
Hupp
, and
L. X.
Chen
, “
Single-atom metal oxide sites as traps for charge separation in the zirconium-based metal–organic framework NDC–NU-1000
,”
Energy Fuels
35
,
19081
19095
(
2021
).
22.
Y.
Xiao
,
J.
Liu
,
J.
Leng
,
Z.
Yin
,
Y.
Yin
,
F.
Zhang
,
C.
Sun
, and
S.
Jin
, “
Long-lived internal charge-separated state in two-dimensional metal–organic frameworks improving photocatalytic performance
,”
ACS Energy Lett.
7
,
2323
2330
(
2022
).
23.
P.
Deria
,
J.
Yu
,
T.
Smith
, and
R. P.
Balaraman
, “
Ground-state versus excited-state interchromophoric interaction: Topology dependent excimer contribution in metal–organic framework photophysics
,”
J. Am. Chem. Soc.
139
,
5973
5983
(
2017
).
24.
A.
Van Wyk
,
T.
Smith
,
J.
Park
, and
P.
Deria
, “
Charge-transfer within Zr-based metal–organic framework: The role of polar node
,”
J. Am. Chem. Soc.
140
,
2756
2760
(
2018
).
25.
J.
Yu
,
J.
Park
,
A.
Van Wyk
,
G.
Rumbles
, and
P.
Deria
, “
Excited-state electronic properties in Zr-based metal–organic frameworks as a function of a topological network
,”
J. Am. Chem. Soc.
140
,
10488
10496
(
2018
).
26.
K.
Maindan
,
X.
Li
,
J.
Yu
, and
P.
Deria
, “
Controlling charge-transport in metal–organic frameworks: Contribution of topological and spin-state variation on the iron–porphyrin centered redox hopping rate
,”
J. Phys. Chem. B
123
,
8814
8822
(
2019
).
27.
R. D.
Pensack
,
R. J.
Ashmore
,
A. L.
Paoletta
, and
G. D.
Scholes
, “
The nature of excimer formation in crystalline pyrene nanoparticles
,”
J. Phys. Chem. C
122
,
21004
21017
(
2018
).
28.
N.-C.
Chiu
,
J. M.
Lessard
,
E. N.
Musa
,
L. S.
Lancaster
,
C.
Wheeler
,
T. D.
Krueger
,
C.
Chen
,
T. C.
Gallagher
,
M. T.
Nord
,
H.
Huang
,
P. H.-Y.
Cheong
,
C.
Fang
, and
K. C.
Stylianou
, “
Elucidation of the role of metals in the adsorption and photodegradation of herbicides by metal-organic frameworks
,”
Nat. Commun.
15
,
1459
(
2024
).
29.
T.
Oyamada
,
S.
Akiyama
,
M.
Yahiro
,
M.
Saigou
,
M.
Shiro
,
H.
Sasabe
, and
C.
Adachi
, “
Unusual photoluminescence characteristics of tetraphenylpyrene (TPPy) in various aggregated morphologies
,”
Chem. Phys. Lett.
421
,
295
299
(
2006
).
30.
S.
Yamaguchi
,
I.
Yoshikawa
,
T.
Mutai
, and
K.
Araki
, “
Solid-state luminescence of tetraphenylpyrene derivatives: Mechano/vapochromic luminescence of 1,3,6,8-tetra(4′-carboxyphenyl)pyrene
,”
J. Mater. Chem.
22
,
20065
20070
(
2012
).
31.
P. G.
Boyd
,
A.
Chidambaram
,
E.
García-Díez
,
C. P.
Ireland
,
T. D.
Daff
,
R.
Bounds
,
A.
Gładysiak
,
P.
Schouwink
,
S. M.
Moosavi
,
M. M.
Maroto-Valer
,
J. A.
Reimer
,
J. A. R.
Navarro
,
T. K.
Woo
,
S.
Garcia
,
K. C.
Stylianou
, and
B.
Smit
, “
Data-driven design of metal–organic frameworks for wet flue gas CO2 capture
,”
Nature
576
,
253
256
(
2019
).
32.
S.
Shirai
and
S.
Inagaki
, “
Ab initio study on the excited states of pyrene and its derivatives using multi-reference perturbation theory methods
,”
RSC Adv.
10
,
12988
12998
(
2020
).
33.
Q.
Zhou
,
Y.
Guo
, and
Y.
Zhu
, “
Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks
,”
Nat. Catal.
6
,
574
584
(
2023
).
34.
V. S.
Vyas
,
S. V.
Lindeman
, and
R.
Rathore
, “
Photophysical properties of 1,3,6,8-tetraarylpyrenes and their cation radicals
,”
J. Photochem. Photobiol., A
375
,
209
218
(
2019
).
35.
T.
Kumpulainen
,
B.
Lang
,
A.
Rosspeintner
, and
E.
Vauthey
, “
Ultrafast elementary photochemical processes of organic molecules in liquid solution
,”
Chem. Rev.
117
,
10826
10939
(
2017
).
36.
C.
Fang
,
L.
Tang
, and
C.
Chen
, “
Unveiling coupled electronic and vibrational motions of chromophores in condensed phases
,”
J. Chem. Phys.
151
,
200901
(
2019
).
37.
N.
Agmon
,
D.
Huppert
,
A.
Masad
, and
E.
Pines
, “
Excited-state proton-transfer to methanol water mixtures
,”
J. Phys. Chem.
95
,
10407
10413
(
1991
).
38.
F.
Han
,
W.
Liu
, and
C.
Fang
, “
Excited-state proton transfer of photoexcited pyranine in water observed by femtosecond stimulated Raman spectroscopy
,”
Chem. Phys.
422
,
204
219
(
2013
).
39.
L.
Tang
,
L.
Zhu
,
Y.
Wang
, and
C.
Fang
, “
Uncovering the hidden excited state toward fluorescence of an intracellular pH indicator
,”
J. Phys. Chem. Lett.
9
,
4969
4975
(
2018
).
40.
M. L.
Horng
,
J. A.
Gardecki
,
A.
Papazyan
, and
M.
Maroncelli
, “
Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited
,”
J. Phys. Chem.
99
,
17311
17337
(
1995
).
41.
P.
Roy
,
A.
Jha
,
V. B.
Yasarapudi
,
T.
Ram
,
B.
Puttaraju
,
S.
Patil
, and
J.
Dasgupta
, “
Ultrafast bridge planarization in donor-π-acceptor copolymers drives intramolecular charge transfer
,”
Nat. Commun.
8
,
1716
(
2017
).
42.
S.
Kayal
,
K.
Roy
, and
S.
Umapathy
, “
Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: Ultrafast transient absorption and ultrafast Raman loss spectroscopic studies
,”
J. Chem. Phys.
148
,
024301
(
2018
).
43.
Z.
Piontkowski
and
D. W.
McCamant
, “
Excited-state planarization in donor–bridge dye sensitizers: Phenylene versus thiophene bridges
,”
J. Am. Chem. Soc.
140
,
11046
11057
(
2018
).
44.
T. D.
Krueger
,
G.
Giesbers
,
R. C.
Van Court
,
L.
Zhu
,
R.
Kim
,
C. M.
Beaudry
,
S. C.
Robinson
,
O.
Ostroverkhova
, and
C.
Fang
, “
Ultrafast dynamics and photoresponse of a fungi-derived pigment xylindein from solution to thin films
,”
Chem. Eur. J.
27
,
5627
5631
(
2021
).
45.
M. J.
Hong
,
L.
Zhu
,
C.
Chen
,
L.
Tang
,
Y.-H.
Lin
,
W.
Li
,
R.
Johnson
,
S.
Chattopadhyay
,
H. J.
Snaith
,
C.
Fang
, and
J. G.
Labram
, “
Time-resolved changes in dielectric constant of metal halide perovskites under illumination
,”
J. Am. Chem. Soc.
142
,
19799
19803
(
2020
).
46.
S. Y.
Kwang
and
R. R.
Frontiera
, “
Spatially offset femtosecond stimulated Raman spectroscopy: Observing exciton transport through a vibrational lens
,”
J. Phys. Chem. Lett.
11
,
4337
4344
(
2020
).
47.
J. B.
Segur
and
H. E.
Oberstar
, “
Viscosity of glycerol and its aqueous solutions
,”
Ind. Eng. Chem.
43
,
2117
2120
(
1951
).
48.
C.
Fang
,
R. R.
Frontiera
,
R.
Tran
, and
R. A.
Mathies
, “
Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy
,”
Nature
462
,
200
204
(
2009
).
49.
D. R.
Dietze
and
R. A.
Mathies
, “
Femtosecond stimulated Raman spectroscopy
,”
ChemPhysChem
17
,
1224
1251
(
2016
).
50.
W.
Liu
,
Y.
Wang
,
L.
Tang
,
B. G.
Oscar
,
L.
Zhu
, and
C.
Fang
, “
Panoramic portrait of primary molecular events preceding excited state proton transfer in water
,”
Chem. Sci.
7
,
5484
5494
(
2016
).
51.
F.
Provencher
,
N.
Bérubé
,
A. W.
Parker
,
G. M.
Greetham
,
M.
Towrie
,
C.
Hellmann
,
M.
Côté
,
N.
Stingelin
,
C.
Silva
, and
S. C.
Hayes
, “
Direct observation of ultrafast long-range charge separation at polymer-fullerene heterojunctions
,”
Nat. Commun.
5
,
4288
(
2014
).
52.
A. E.
Bragg
,
W.
Yu
,
J.
Zhou
, and
T.
Magnanelli
, “
Ultrafast Raman spectroscopy as a probe of local structure and dynamics in photoexcited conjugated materials
,”
J. Phys. Chem. Lett.
7
,
3990
4000
(
2016
).
53.
A. A.
Cassabaum
,
W. R.
Silva
,
C. C.
Rich
, and
R. R.
Frontiera
, “
Orientation and polarization dependence of ground- and excited-state FSRS in crystalline betaine-30
,”
J. Phys. Chem. C
123
,
12563
12572
(
2019
).
54.
T. D.
Krueger
and
C.
Fang
, “
Elucidating inner workings of naturally sourced organic optoelectronic materials with ultrafast spectroscopy
,”
Chem. Eur. J.
27
,
17736
17750
(
2021
).
55.
J. W. M.
Osterrieth
,
D.
Wright
,
H.
Noh
,
C.-W.
Kung
,
D.
Vulpe
,
A.
Li
,
J. E.
Park
,
R. P.
Van Duyne
,
P. Z.
Moghadam
,
J. J.
Baumberg
,
O. K.
Farha
, and
D.
Fairen-Jimenez
, “
Core–shell gold nanorod@zirconium-based metal–organic framework composites as in situ size-selective Raman probes
,”
J. Am. Chem. Soc.
141
,
3893
3900
(
2019
).
56.
A.
Weigel
,
A.
Dobryakov
,
B.
Klaumünzer
,
M.
Sajadi
,
P.
Saalfrank
, and
N. P.
Ernsting
, “
Femtosecond stimulated Raman spectroscopy of flavin after optical excitation
,”
J. Phys. Chem. B
115
,
3656
3680
(
2011
).
57.
C.
Chen
,
L.
Zhu
, and
C.
Fang
, “
Femtosecond stimulated Raman line shapes: Dependence on resonance conditions of pump and probe pulses
,”
Chin. J. Chem. Phys.
31
,
492
502
(
2018
).
58.
C.
Chen
,
W.
Liu
,
M. S.
Baranov
,
N. S.
Baleeva
,
I. V.
Yampolsky
,
L.
Zhu
,
Y.
Wang
,
A.
Shamir
,
K. M.
Solntsev
, and
C.
Fang
, “
Unveiling structural motions of a highly fluorescent superphotoacid by locking and fluorinating the GFP chromophore in solution
,”
J. Phys. Chem. Lett.
8
,
5921
5928
(
2017
).
59.
B. G.
Oscar
,
C.
Chen
,
W.
Liu
,
L.
Zhu
, and
C.
Fang
, “
Dynamic Raman line shapes on an evolving excited-state landscape: Insights from tunable femtosecond stimulated Raman spectroscopy
,”
J. Phys. Chem. A
121
,
5428
5441
(
2017
).
60.
C.
Fang
,
L.
Tang
,
B. G.
Oscar
, and
C.
Chen
, “
Capturing structural snapshots during photochemical reactions with ultrafast Raman spectroscopy: From materials transformation to biosensor responses
,”
J. Phys. Chem. Lett.
9
,
3253
3263
(
2018
).
61.
M.
Zhou
,
K.
Wang
,
Z.
Men
,
S.
Gao
,
Z.
Li
, and
C.
Sun
, “
Study of high-pressure Raman intensity behavior of aromatic hydrocarbons: Benzene, biphenyl and naphthalene
,”
Spectrochim. Acta, Part A
97
,
526
531
(
2012
).
62.
E. M.
Brovini
,
S. J.
Cardoso
,
G. R.
Quadra
,
J. A.
Vilas-Boas
,
J. R.
Paranaíba
,
R.
de Oliveira Pereira
, and
R. F.
Mendonça
, “
Glyphosate concentrations in global freshwaters: Are aquatic organisms at risk?
,”
Environ. Sci. Pollut. Res.
28
,
60635
60648
(
2021
).
63.
E. N.
Musa
,
S.
Kaur
,
T. C.
Gallagher
,
T. M.
Anthony
,
W. F.
Stickle
,
L.
Árnadóttir
, and
K. C.
Stylianou
, “
Two birds, one stone: Coupling hydrogen production with herbicide degradation over metal–organic framework-derived titanium dioxide
,”
ACS Catal.
13
,
3710
3722
(
2023
).

Supplementary Material

You do not currently have access to this content.