Electrical doping of organic semiconductors (OSCs) can be achieved using simple one-electron reductants and oxidants as n- and p-dopants, respectively, but for such dopants, increased doping strength is accompanied by increased sensitivity to ambient moisture and/or oxygen. “Indirect” or “complex” dopants—defined here as those that generate OSC radical cations or anions via pathways more complex than a single simple electron transfer, i.e., by multistep reactions—represent a means of circumventing this problem. This review highlights the importance of understanding the reaction mechanisms by which such dopants operate for: (i) ensuring a researcher knows the composition of a doped material; (ii) predicting the thermodynamic feasibility of achieving doping with related dopant:OSC combinations; and (iii) predicting whether thermodynamically feasible doping reactions are likely to be rapid or slow, or to require subsequent activation. The mechanistic information available to date for some of the wide variety of complex n- and p-dopants that have been reported is then reviewed, emphasizing that in many cases our knowledge is far from complete.

1.
K.
Walzer
,
B.
Maenning
,
M.
Pfeiffer
, and
K.
Leo
, “
Highly efficient organic devices based on electrically doped transport materials
,”
Chem. Rev.
107
,
1233
1271
(
2007
).
2.
B.
Lüssem
,
M.
Riede
, and
K.
Leo
, “
Doping of organic semiconductors
,”
Phys. Status Solidi A
210
,
9
43
(
2013
).
3.
I.
Salzmann
,
G.
Heimel
,
M.
Oehzelt
,
S.
Winkler
, and
N.
Koch
, “
Molecular electrical doping of organic semiconductors: Fundamental mechanisms and emerging dopant design rules
,”
Acc. Chem. Res.
49
,
370
378
(
2016
).
4.
S.
Barlow
,
S. R.
Marder
,
X.
Lin
,
F.
Zhang
, and
A.
Kahn
in
Handbook of Conducting Polymers
, 4th ed., edited by
J. R.
Reynolds
,
B. C.
Thompson
, and
T. A.
Skotheim
(
CRC Press
,
2019
).
5.
K.
Pei
, “
Recent advances in molecular doping of organic semiconductors
,”
Surf. Interfaces
30
,
101887
(
2022
).
6.
A.
Dai
,
Y.
Zhou
,
A. L.
Shu
,
S. K.
Mohapatra
,
H.
Wang
,
C.
Fuentes-Hernandez
,
Y.
Zhang
,
S.
Barlow
,
Y.-L.
Loo
,
S. R.
Marder
,
B.
Kippelen
, and
A.
Kahn
, “
Enhanced charge-carrier injection and collection via lamination of doped polymer layers p-doped with a solution-processible molybdenum complex
,”
Adv. Funct. Mater.
24
,
2197
2204
(
2014
).
7.
A.
Abate
,
T.
Leijtens
,
S.
Pathak
,
J.
Teuscher
,
R.
Avolio
,
M. E.
Errico
,
J.
Kirkpatrik
,
J. M.
Ball
,
P.
Docampo
,
I.
McPherson
, and
H. J.
Snaith
, “
Lithium salts as ‘redox active’ p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells
,”
Phys. Chem. Chem. Phys.
15
,
2572
2579
(
2013
).
8.
J.
Lee
,
T.
Son
,
K.
Min
,
S.
Park
,
Y.
Kim
, and
J.
Seo
, “
Rationally designed hole transporting layer system for efficient and stable perovskite solar cells
,”
EcoMat
5
,
e12414
(
2023
).
9.
Y.
Liu
,
B.
Nell
,
K.
Ortstein
,
Z.
Wu
,
Y.
Karpov
,
T.
Beryozkina
,
S.
Lenk
,
A.
Kiriy
,
K.
Leo
, and
S.
Reineke
, “
High electron affinity molecular dopant CN6-CP for efficient organic light-emitting diodes
,”
ACS Appl. Mater. Interfaces
11
,
11660
11666
(
2019
).
10.
L.
Zhao
,
K.
Roh
,
S.
Kacmoli
,
K. A.
Kurdi
,
S.
Jhulki
,
S.
Barlow
,
S. R.
Marder
,
C.
Gmachl
, and
B. P.
Rand
, “
Thermal management enables bright and stable perovskite light‐emitting diodes
,”
Adv. Mater.
32
,
2000752
(
2020
).
11.
J.
Tang
,
Y.-H.
Pai
, and
Z.
Liang
, “
Strategic insights into semiconducting polymer thermoelectrics by leveraging molecular structures and chemical doping
,”
ACS Energy Lett.
7
,
4299
4324
(
2022
).
12.
Y.
Xu
,
H.
Sun
,
A.
Liu
,
H.-H.
Zhu
,
W.
Li
,
Y.-F.
Lin
, and
Y.-Y.
Noh
, “
Doping: A key enabler for organic transistors
,”
Adv. Mater.
30
,
1801830
(
2018
).
13.
F.
Deschler
,
E.
Da Como
,
T.
Limmer
,
R.
Tautz
,
T.
Godde
,
M.
Bayer
,
E.
von Hauff
,
S.
Yilmaz
,
S.
Allard
,
U.
Scherf
, and
J.
Feldmann
, “
Reduced charge transfer exciton recombination in organic semiconductor heterojunctions by molecular doping
,”
Phys. Rev. Lett.
107
,
127402
(
2011
).
14.
We note that a few open-shell and odd-electron OSCs do exist, e.g. copper phthalocyanine. However, the principle remains that the charge carrying species are the one-electron oxidation or reduction products of these species. In addition, closed-shell doubly charged species (bipolarons) may be formed in some OSCs, especially at high dopant concentrations, but are not considered further in detail in this review.
15.
S.
Olthof
,
S. K.
Mohapatra
,
S.
Barlow
,
S.
Mehraeen
,
V.
Coropceanu
,
J.-L.
Brédas
,
S. R.
Marder
, and
A.
Kahn
, “
Ultralow doping in organic semiconductors: Evidence of trap filling
,”
Phys. Rev. Lett.
109
,
176601
(
2012
).
16.
In the case of doping in films, which may be deposited from doped solutions or by coevaporation of dopant and OSC, the relevant quantities are solid-state ionization energy (IE) and electron affinity (EA) of the species that donate and accept the electron, respectively. These can be obtained from solid-state ultraviolet photoelectron spectroscopy (UPS) and inverse photoelectron spectroscopy (IPES). In principle, the relevant dopant EA or IE values for determining the extent of ET in a lightly doped film would be those in a host matrix of the OSC, but the more practically determined values in neat films of dopant will generally be similar. However, IPES is not a commonly available technique and in any case often affords large uncertainties; accordingly, estimates of IE and EA based on solution electrochemistry are often used, often assuming a rigid offset between solution redox potentials and solid-state IE/EA values, although in principle no direct relation is to be expected due to differences in solvation and solid-state polarization energies and also different variations in these quantities for different types of molecule/polymer. Regardless of limitations of obtaining precise solid-state energetic estimates, solution electrochemistry still serves as a good first approximation for estimating the extent of doping reactions in the solid state.
17.
P.
Coppo
,
R.
Schroeder
,
M.
Grell
, and
M. L.
Turner
, “
Investigation of solution processed poly(4,4-dioctylcyclopentadithiophene) thin films as transparent conductors
,”
Synth. Met.
143
,
203
206
(
2004
).
18.
J.
Li
,
C. W.
Rochester
,
I. E.
Jacobs
,
E. W.
Aasen
,
S.
Friedrich
,
P.
Stroeve
, and
A. J.
Moulé
, “
The effect of thermal annealing on dopant site choice in conjugated polymers
,”
Org. Electron.
33
,
23
31
(
2016
).
19.
P.
Pingel
,
M.
Arvind
,
L.
Kölln
,
R.
Steyrleuthner
,
F.
Kraffert
,
J.
Behrends
,
S.
Janietz
, and
D.
Neher
, “
p-Type doping of poly(3-hexylthiophene) with the strong Lewis acid tris(pentafluorophenyl)borane
,”
Adv. Electron. Mater.
2
,
1600204
(
2016
).
20.
Y.
Yamashita
,
S.
Jhulki
,
D.
Bhardwaj
,
E.
Longhi
,
S.
Kumagai
,
S.
Watanabe
,
S.
Barlow
,
S. R.
Marder
, and
J.
Takeya
, “
Highly air-stable, n-doped conjugated polymers achieved by dimeric organometallic dopants
,”
J. Mater. Chem. C
9
,
4105
4110
(
2021
).
21.
Y.
Yamashita
,
J.
Tsurumi
,
M.
Ohno
,
R.
Fujimoto
,
S.
Kumagai
,
T.
Kurosawa
,
T.
Okamoto
,
J.
Takeya
, and
S.
Watanabe
, “
Efficient molecular doping of polymeric semiconductors driven by anion exchange
,”
Nature
572
,
634
638
(
2019
).
22.
Y.
Lu
,
J.-Y.
Wang
, and
J.
Pei
, “
Achieving efficient n-doping of conjugated polymers by molecular dopants
,”
Acc. Chem. Res.
54
,
2871
2883
(
2021
).
23.
S. K.
Mohapatra
,
S. R.
Marder
, and
S.
Barlow
, “
Organometallic and organic dimers: Moderately air-stable, yet highly reducing, n-dopants
,”
Acc. Chem. Res.
55
,
319
332
(
2022
).
24.
D.
Yuan
,
W.
Liu
, and
X.
Zhu
, “
Efficient and air-stable n-type doping in organic semiconductors
,”
Chem. Soc. Rev.
52
,
3842
3872
(
2023
).
25.
T. H.
Lowry
and
K. S.
Richardson
,
Mechanism and Theory in Organic Chemistry
, 3rd ed. (
Harper Collins
,
New York
,
1987
).
26.
H. T.
Nicolai
,
M.
Kuik
,
G. A. H.
Wetzelaer
,
B.
de Boer
,
C.
Campbell
,
C.
Risko
,
J. L.
Brédas
, and
P. W. M.
Blom
, “
Unification of trap-limited electron transport in semiconducting polymers
,”
Nat. Mater.
11
,
882
887
(
2012
).
27.
Z.
Ke
,
M. H.
Ahmed
,
A.
Abtahi
,
S.-H.
Hsu
,
W.
Wu
,
M. F.
Espenship
,
K. N.
Baustert
,
K. R.
Graham
,
J.
Laskin
,
L.
Pan
, and
J.
Mei
, “
Thermally activated aromatic ionic dopants (TA-AIDS) enabling stable doping, orthogonal processing and direct patterning
,”
Adv. Funct. Mater.
33
,
2211522
(
2023
).
28.
F.
Li
,
A.
Werner
,
M.
Pfeiffer
,
K.
Leo
, and
X.
Liu
, “
Leuco crystal violet as a dopant for n-doping of organic thin films of fullerene C60
,”
J. Phys. Chem. B
108
,
17076
17082
(
2004
).
29.
M.
Schwarze
,
B. D.
Naab
,
M. L.
Tietze
,
R.
Scholz
,
P.
Pahner
,
F.
Bussolotti
,
S.
Kera
,
D.
Kasemann
,
Z.
Bao
, and
K.
Leo
, “
Analyzing the n‐doping mechanism of an air-stable small-molecule precursor
,”
ACS Appl. Mater. Interfaces
10
,
1340
1346
(
2018
).
30.
S.
Jhulki
,
H.-I.
Un
,
Y.-F.
Ding
,
C.
Risko
,
S. K.
Mohapatra
,
J.
Pei
,
S.
Barlow
, and
S. R.
Marder
, “
Reactivity of an air-stable dihydrobenzoimidazole n-dopant with organic semiconductor molecules
,”
Chem
7
,
1050
1065
(
2021
).
31.
S.
Guo
,
S. K.
Mohapatra
,
A.
Romanov
,
T. V.
Timofeeva
,
K. I.
Hardcastle
,
K.
Yesudas
,
C.
Risko
,
J.-L.
Brédas
,
S. R.
Marder
, and
S.
Barlow
, “
n-Doping of organic electronic materials using air-stable organometallics: A mechanistic study of reduction by dimeric sandwich compounds
,”
Chem. Eur. J.
18
,
14760
14772
(
2012
).
32.
B. D.
Naab
,
S.
Guo
,
S.
Olthof
,
E. G. B.
Evans
,
P.
Wei
,
G. L.
Millhauser
,
A.
Kahn
,
S.
Barlow
,
S. R.
Marder
, and
Z.
Bao
, “
Mechanistic study on the solution-phase n‐doping of 1,3-dimethyl-2-aryl-2,3-dihydro‐1H‐benzoimidazole derivatives
,”
J. Am. Chem. Soc.
135
,
15018
15025
(
2013
).
33.
P. S.
Marqués
,
G.
Londi
,
B.
Yurash
,
T.-Q.
Nguyen
,
S.
Barlow
,
S. R.
Marder
, and
D.
Beljonne
, “
Understanding how Lewis acids dope organic semiconductors: A “complex” story
,”
Chem. Sci.
12
,
7012
7022
(
2021
).
34.
S.
Zhang
,
B. D.
Naab
,
E. V.
Jucov
,
S.
Parkin
,
E. G. B.
Evans
,
G. L.
Millhauser
,
T. V.
Timofeeva
,
C.
Risko
,
J.-L.
Brédas
,
Z.
Bao
,
S.
Barlow
, and
S. R.
Marder
, “
n-Dopants based on dimers of benzimidazoline radicals: Structures and mechanism of redox reactions
,”
Chem. Eur. J.
21
,
10878
10885
(
2015
).
35.
M. J.
Wade
, “
From Ockham's razor to Rube Goldberg: Don't rely on forensic age-dating miracles
,”
Environ. Forensics
17
,
131
135
(
2016
).
36.
A. G.
Werner
,
F.
Li
,
K.
Harada
,
M.
Pfeiffer
,
T.
Fritz
, and
K.
Leo
, “
Pyronin B as a donor for n-type doping of organic thin films
,”
Appl. Phys. Lett.
82
,
4495
4497
(
2003
).
37.
C. K.
Chan
,
E.-G.
Kim
,
J.-L.
Brédas
, and
A.
Kahn
, “
Molecular n-type doping of 1,4,5,8-naphthalene tetracarboxylic dianhydride by pyronin B studied using direct and inverse photoelectron spectroscopies
,”
Adv. Funct. Mater.
16
,
831
837
(
2006
).
38.
P.
Wei
,
T.
Menke
,
B. D.
Naab
,
K.
Leo
,
M.
Riede
, and
Z.
Bao
, “
2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films
,”
J. Am. Chem. Soc.
134
,
3999
4002
(
2012
).
39.
E. O.
Fischer
and
H.
Wawersik
, “
Über Aromatenkomplexe von Metallen. LXXXVIII. Über monomeres und dimeres Dicyclopentadienylrhodium and Dicyclopentadienyliridium and über ein neues Verfahren zur Darstellung ungeladener Metall-Aromaten-Komplexe
,”
J. Organomet. Chem.
5
,
559
567
(
1966
).
40.
J.-R.
Hamon
,
D.
Astruc
, and
P.
Michaud
, “
Syntheses, characterizations, and stereoelectronic stabilization of organometallic electron reservoirs: The 19-electron d7 redox catalysts η5-C5R5FeI-η6-C6R'6
,”
J. Am. Chem. Soc.
103
,
758
766
(
1981
).
41.
O. V.
Gusev
,
M. A.
Ievlev
,
M. G.
Peterleitner
,
S. M.
Peregudova
,
L. I.
Denisovich
,
P. V.
Petrovskii
, and
N. A.
Ustynyuk
, “
Reactions of ruthenium arenecyclopentadienyl complexes reactions induced by electron transfer
,”
J. Organomet. Chem.
534
,
57
66
(
1997
).
42.
O. V.
Gusev
,
M. G.
Peterleitner
,
M. A.
Ievlev
,
A. M.
Kal'sin
,
P. V.
Petrovskii
,
L. I.
Denisovich
, and
N. A.
Ustynyuk
, “
Reduction of iridocenium salts [Ir(η5-C5Me5)(η5-L)] + (L = C5H5, C5Me5, C9H7); ligand-to-ligand dimerisation induced by electron transfer
,”
J. Organomet. Chem
531
,
95
100
(
1997
).
43.
J.
Ludvík
,
F.
Pragst
, and
J.
Volke
, “
Electrochemical generation of triplet states. simplified estimation of triplet energies by electrogenerated chemiluminescence based on the anodic cleavage of dimeric dihydroheteroarenes
,”
J. Electroanal. Chem. Interfacial Electrochem.
180
,
141
156
(
1984
).
44.
R. C.
Haltiwanger
,
T. H.
Koch
,
J. A.
Olesen
,
S.
Kim
, and
N. K.
Kim
, “
Crystal and molecular structure of the photoreductive dimer of 5,6-dihydro-3,5,5-trimethyl-l,4-oxazin-2-one
,”
J. Am. Chem. Soc.
99
,
6327
6331
(
1977
).
45.
K.
Akiba
,
H.
Shiraishi
, and
N.
Inamoto
, “
Direct synthesis of 2,2-diaryl-3-methyl-2,3-dihydrobenzothiazoles from 3-methyl-2,3-dihydrobenzothiazole-2-thione and some mechanistic aspects
,”
Bull. Chem. Soc. Jpn.
52
,
156
159
(
1979
).
46.
E.
Tauer
and
K. H.
Grellmann
, “
Photochemical dehydrogenation, ring contraction, and ring expansion of hydrogenated derivatives of benzoxazino‐benzoxazine, quinoxalino‐quinoxaline, and bibenzothiazole
,”
Chem. Ber.
123
,
1149
1154
(
1990
).
47.
R. W.
Bennett
,
D. L.
Wharry
, and
T. H.
Koch
, “
Formation kinetics of an amino carboxy type merostabilized free radical
,”
J. Am. Chem. Soc.
102
,
2345
2349
(
1980
).
48.
A. K.
Colter
,
C. C.
Lai
,
A. G.
Parsons
,
N. B.
Ramsey
, and
G.
Saito
, “
Kinetics and mechanism of oxidation of N,N′-dimethyl-9,9′-biacridanyl by some π-acceptors and a one-electron oxidant
,”
Can. J. Chem.
63
,
445
451
(
1985
).
49.
E.
Longhi
,
C.
Risko
,
J.
Bacsa
,
V.
Khrustalev
,
S.
Rigin
,
K.
Moudgil
,
T. V.
Timofeeva
,
S. R.
Marder
, and
S.
Barlow
, “
Synthesis, structures, and reactivity of isomers of [RuCp*(1,4-(Me2N)2C6H4)]2
,”
Dalton Trans.
50
,
13020
13030
(
2021
).
50.
S. K.
Mohapatra
,
K.
Al Kurdi
,
S.
Jhulki
,
G.
Bogdanov
,
J.
Bacsa
,
M.
Conte
,
T. V.
Timofeeva
,
S. R.
Marder
, and
S.
Barlow
, “
Benzoimidazolium-derived dimeric and hydride n-dopants for organic electron-transport materials: Impact of substitution on structures, electrochemistry, and reactivity
,”
Beilstein J. Org. Chem.
19
,
1651
1663
(
2023
).
51.
K.
Moudgil
,
M. A.
Mann
,
C.
Risko
,
L. A.
Bottomley
,
S. R.
Marder
, and
S.
Barlow
, “
Dimers of nineteen-electron sandwich compounds: An electrochemical study of the kinetics of their formation
,”
Organometallics
34
,
3706
3712
(
2015
).
52.
S. K.
Mohapatra
,
A.
Fonari
,
C.
Risko
,
K.
Yesudas
,
K.
Moudgil
,
J. H.
Delcamp
,
T. V.
Timofeeva
,
J.-L.
Brédas
,
S. R.
Marder
, and
S.
Barlow
, “
Dimers of nineteen-electron sandwich compounds: Crystal and electronic structures, and comparison of reducing strengths
,”
Chem. Eur. J.
20
,
15385
15394
(
2014
).
53.
X.
Lin
,
B.
Wegner
,
K. M.
Lee
,
M. A.
Fusella
,
F.
Zhang
,
K.
Moudgil
,
B. P.
Rand
,
S.
Barlow
,
S. R.
Marder
,
N.
Koch
, and
A.
Kahn
, “
Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors
,”
Nat. Mater.
16
,
1209
1215
(
2017
).
54.
K.
Tang
,
M. R.
Brown
,
C.
Risko
,
M. K.
Gish
,
G.
Rumbles
,
P. H.
Pham
,
O. R.
Luca
,
S.
Barlow
, and
S. R.
Marder
, “
Beyond n-dopants for organic semiconductors: Use of bibenzo[d]imidazoles in UV-promoted dehalogenation reactions of organic halides
,”
Beilstein J. Org. Chem.
19
,
1912
1922
(
2023
).
55.
P.
Wei
,
J. H.
Oh
,
G.
Dong
, and
Z.
Bao
, “
Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors
,”
J. Am. Chem. Soc.
132
,
8852
8853
(
2010
).
56.
C.-Y.
Yang
,
Y.-F.
Ding
,
D.
Huang
,
J.
Wang
,
Z.-F.
Yao
,
C.-X.
Huang
,
Y.
Lu
,
H.-I.
Un
,
F.-D.
Zhuang
,
J.-H.
Dou
,
C.-A.
Di
,
D.
Zhu
,
J.-Y.
Wang
,
T.
Lei
, and
J.
Pei
, “
A thermally activated and highly miscible dopant for n-type organic thermoelectrics
,”
Nat. Commun.
11
,
3292
(
2020
).
57.
F.
Pallini
,
S.
Mattiello
,
N.
Manfredi
,
S.
Mecca
,
A.
Fedorov
,
M.
Sassi
,
K.
Al Kurdi
,
Y.-F.
Ding
,
C.-K.
Pan
,
J.
Pei
,
S.
Barlow
,
S. R.
Marder
,
T.-Q.
Nguyen
, and
L.
Beverina
, “
Direct detection of molecular hydrogen upon p- and n-doping of organic semiconductors with complex oxidants or reductants
,”
J. Mater. Chem. A
11
,
8192
8201
(
2023
).
58.
H.
Guo
,
C.-Y.
Yang
,
X.
Zhang
,
A.
Motta
,
K.
Feng
,
Y.
Xia
,
Y.
Shi
,
Z.
Wu
,
K.
Yang
,
J.
Chen
,
Q.
Liao
,
Y.
Tang
,
H.
Sun
,
H. Y.
Woo
,
S.
Fabiano
,
A.
Facchetti
, and
X.
Guo
, “
Transition metal-catalysed molecular n-doping of organic semiconductors
,”
Nature
599
,
67
73
(
2021
).
59.
J.
Liu
,
B.
Van der Zee
,
D. R.
Villava
,
G.
Ye
,
S.
Kahmann
,
M.
Kamperman
,
J.
Dong
,
L.
Qiu
,
G.
Portale
,
M. A.
Loi
,
J. C.
Hummelen
,
R. C.
Chiechi
,
D.
Baran
, and
L. J. A.
Koster
, “
Molecular doping directed by a neutral radical
,”
ACS Appl. Mater. Interfaces
13
,
29858
29865
(
2021
).
60.
C.-Z.
Li
,
C.-C.
Chueh
,
F.
Ding
,
H.-L.
Yip
,
P.-W.
Liang
,
X.
Li
, and
A. K.-Y.
Jen
, “
Doping of fullerenes via anion-induced electron transfer and its implication for surfactant facilitated high performance polymer solar cells
,”
Adv. Mater.
25
,
4425
4430
(
2013
).
61.
Y.
Han
,
Z.
Fei
,
Y.-H.
Lin
,
J.
Martin
,
F.
Tuna
,
T. D.
Anthopoulos
, and
M.
Heeney
, “
Anion-induced n-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors
,”
npj Flexible Electron.
2
,
11
(
2018
).
62.
C. D.
Weber
,
C.
Bradley
, and
M. C.
Lonergan
, “
Solution phase n-doping of C60 and PCBM using tetrabutylammonium fluoride
,”
J. Mater. Chem. A
2
,
303
(
2014
).
63.
S.
Guha
,
F. S.
Goodson
,
L. J.
Corson
, and
S.
Saha
, “
Boundaries of anion/naphthalenediimide interactions: From anion-π interactions to anion-induced charge-transfer and electron-transfer phenomena
,”
J. Am. Chem. Soc.
134
,
13679
13691
(
2012
).
64.
G.
Bélanger-Chabot
,
A.
Ali
, and
F. P.
Gabbaï
, “
On the reaction of naphthalene diimides with fluoride ions: Acid/base versus redox reactions
,”
Angew. Chem., Int. Ed
56
,
9958
9961
(
2017
).
65.
T. L. D.
Tam
and
J. W.
Xu
, “
The role of fluoride in anion-π interaction with naphthalene diimide
,”
Chem. Commun.
55
,
6225
6228
(
2019
).
66.
J.
Han
,
C.
Ganley
,
Q.
Hu
,
X.
Zhao
,
P.
Clancy
,
T. P.
Russell
, and
H. E.
Katz
, “
Using preformed Meisenheimer complexes as dopants for n-type organic thermoelectrics with high Seebeck coefficients and power factors
,”
Adv. Funct. Mater.
31
,
2010567
(
2021
).
67.
F.
Aniés
,
M. I.
Nugraha
,
A.
Fall
,
J.
Panidi
,
Y.
Zhao
,
P.
Vanelle
,
L.
Tsetseris
,
J.
Broggi
,
T. D.
Anthopoulos
, and
M.
Heeney
, “
In situ generation of n-type dopants by thermal decarboxylation
,”
Adv. Funct. Mater.
33
,
2212305
(
2023
).
68.
L.
Delaude
, “
Betaine adducts of N-heterocyclic carbenes: Synthesis, properties, and reactivity
,”
Eur. J. Inorg. Chem.
2009
,
1681
1699
.
69.
G.
Tintori
,
P.
Nabokoff
,
R.
Buhaibeh
,
D.
Bergé-Lefranc
,
S.
Redon
,
J.
Broggi
, and
P. P.
Vanelle
, “
Base-free generation of organic electron donors from air-stable precursors
,”
Angew. Chem., Int. Ed.
57
,
3148
3153
(
2018
).
70.
G.
Tintori
,
A.
Fall
,
N.
Assani
,
Y.
Zhao
,
D.
Bergé-Lefranc
,
S.
Redon
,
P.
Vanelle
, and
J.
Broggi
, “
Generation of powerful organic electron donors by water-assisted decarboxylation of benzimidazolium carboxylates
,”
Org. Chem. Front.
8
,
1197
1205
(
2021
).
71.
Y.-F.
Ding
,
C.-Y.
Yang
,
C.-X.
Huang
,
Y.
Lu
,
Z.-F.
Yao
,
C.-K.
Pan
,
J.-Y.
Wang
, and
J.
Pei
, “
Thermally activated n-doping of organic semiconductors achieved by N-heterocyclic carbene based dopant
,”
Angew. Chem., Int. Ed.
60
,
5816
5820
(
2021
).
72.
D.
Schmidt
,
D.
Bialas
, and
D. F.
Würthner
, “
Ambient stable zwitterionic perylene bisimide-centered radical
,”
Angew. Chem., Int. Ed.
127
,
3682
3685
(
2015
).
73.
T. L.
Amyes
,
S. T.
Diver
,
J. P.
Richard
,
F. M.
Rivas
, and
K.
Toth
, “
Formation and stability of N-heterocyclic carbenes in water: The carbon acid pKa of imidazolium cations in aqueous solution
,”
J. Am. Chem. Soc.
126
,
4366
4374
(
2004
).
74.
A. K. V.
Mruthunjaya
and
A. A. J.
Torriero
, “
Mechanistic aspects of the electrochemical oxidation of aliphatic amines and aniline derivatives
,”
Molecules
28
,
471
(
2023
).
75.
M. J.
Tauber
,
R. F.
Kelley
,
J. M.
Giaimo
,
B.
Rybtchinski
, and
M. R.
Wasielewski
, “
Electron hopping in π-stacked covalent and self-assembled perylene diimides observed by endor spectroscopy
,”
J. Am. Chem. Soc.
128
,
1782
1783
(
2006
).
76.
B.
Russ
,
M. J.
Robb
,
B. C.
Popere
,
E. E.
Perry
,
C.-K.
Mai
,
S. L.
Fronk
,
S. N.
Patel
,
T. E.
Mates
,
G. C.
Bazan
,
J. J.
Urban
,
M. L.
Chabinyc
,
C. J.
Hawker
, and
R. A.
Segalman
, “
Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors
,”
Chem. Sci.
7
,
1914
1919
(
2016
).
77.
Y.
Matsunaga
,
K.
Goto
,
K.
Kubono
,
K.
Sako
, and
T.
Shinmyozu
, “
Photoinduced color change and photomechanical effect of naphthalene diimides bearing alkylamine moieties in the solid state
,”
Chem. Eur. J.
20
,
7309
7316
(
2014
).
78.
P. J.
Smith
and
C. K.
Mann
, “
Electrochemical dealkylation of aliphatic amines
,”
J. Org. Chem.
34
,
1821
1826
(
1969
).
79.
Y.
Zhou
,
C.
Fuentes-Hernandez
,
J.
Shim
,
J.
Meyer
,
A. J.
Giordano
,
H.
Li
,
P.
Winget
,
T.
Papadopoulos
,
H.
Cheun
,
J.
Kim
,
M.
Fenoll
,
A.
Dindar
,
W.
Haske
,
E.
Najafabadi
,
T. M.
Khan
,
H.
Sojoudi
,
S.
Barlow
,
S.
Graham
,
J.-L.
Brédas
,
S. R.
Marder
,
A.
Kahn
, and
B.
Kippelen
, “
A universal method to produce low–work function electrodes for organic electronics
,”
Science
336
,
327
332
(
2012
).
80.
S.
Fabiano
,
S.
Braun
,
X.
Liu
,
E.
Weverberghs
,
P.
Gerbaux
,
M.
Fahlman
,
M.
Berggren
, and
X.
Crispin
, “
Poly(ethylene imine) impurities induce n-doping reaction in organic (semi)conductors
,”
Adv. Mater.
26
,
6000
6006
(
2014
).
81.
D. X.
Long
,
M.
Karakawa
, and
Y.-Y.
Noh
, “
An improvement of performance in n-channel organic field effect transistors with N-phenyl[60]fulleropyrrolidines by molecular doping
,”
Phys. Chem. Chem. Phys.
18
,
23904
23909
(
2016
).
82.
C.
Che
,
S.
Tong
,
Y.
Jia
,
J.
Yang
,
X.
He
,
S.
Han
,
Q.
Jiang
, and
Y.
Ma
, “
Chemical doping of unsubstituted perylene diimide to create radical anions with enhanced stability and tunable photothermal conversion efficiency
,”
Front. Chem.
11
,
1187378
(
2023
).
83.
S.
Song
,
R.
Hill
,
K.
Choi
,
K.
Wojciechowski
,
S.
Barlow
,
J.
Leisen
,
H. J.
Snaith
,
S. R.
Marder
, and
T.
Park
, “
Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells
,”
Nano Energy
49
,
324
332
(
2018
).
84.
T. P. A.
van der Pol
,
S. T.
Keene
,
B. W. H.
Saes
,
S. C. J.
Meskers
,
A.
Salleo
,
Y.
van de Burgt
, and
R. A. J.
Janssen
, “
The mechanism of dedoping PEDOT:PSS by aliphatic polyamines
,”
J. Phys. Chem.
123
,
24328
24337
(
2019
).
85.
I.
Cruz-Cruz
,
M.
Reyes-Reyes
,
I. A.
Rosales-Gallegos
,
A. Y.
Gorbatchev
,
J. M.
Flores-Camacho
, and
R.
López-Sandoval
, “
Visible luminescence of dedoped DBU-treated PEDOT:PSS films
,”
J. Phys. Chem. C
119
,
19305
19311
(
2015
).
86.
H.
Wei
,
Z.
Cheng
,
T.
Wu
,
Y.
Liu
,
J.
Guo
,
P.-A.
Chen
,
J.
Xia
,
H.
Xie
,
X.
Qiu
,
T.
Liu
,
B.
Zhang
,
J.
Hui
,
Z.
Zeng
,
Y.
Bai
, and
Y.
Hu
, “
Novel organic superbase dopants for ultraefficient n-doping of organic semiconductors
,”
Adv. Mater.
35
,
2300084
(
2023
).
87.
L.
Hu
,
T.
Liu
,
J.
Duan
,
X.
Ma
,
C.
Ge
,
Y.
Jiang
,
F.
Qin
,
S.
Xiong
,
F.
Jiang
,
B.
Hu
,
X.
Gao
,
Y.
Yi
, and
Y.
Zhou
, “
An amidine-type n-dopant for solution-processed field-effect transistors and perovskite solar cells
,”
Adv. Funct. Mater
27
,
1703254
(
2017
).
88.
H.
Wei
,
P.-A.
Chen
,
J.
Guo
,
Y.
Liu
,
X.
Qiu
,
H.
Chen
,
Z.
Zeng
,
T.-Q.
Nguyen
, and
Y.
Hu
, “
Low-cost nucleophilic organic bases as n-dopants for organic field-effect transistors and thermoelectric devices
,”
Adv. Funct. Mater.
31
,
2102768
(
2021
).
89.
N. G.
Connelly
and
W. E.
Geiger
, “
Chemical redox agents for organometallic chemistry
,”
Chem. Rev.
96
,
877
910
(
1996
).
90.
B.
Xu
,
E.
Gabrielsson
,
M.
Safdari
,
M.
Cheng
,
Y.
Hua
,
H.
Tian
,
J. M.
Gardner
,
L.
Kloo
, and
L.
Sun
, “
1,1,2,2-Tetrachloroethane (TECA) as a solvent additive for organic hole transport materials and its application in highly efficient solid-state dye-sensitized solar cells
,”
Adv. Energy Mater.
5
,
1402340
(
2015
).
91.
M.
Hu
,
X.
Wu
,
W. L.
Tan
,
B.
Tan
,
A. D.
Scully
,
L.
Ding
,
C.
Zhou
,
Y.
Xiong
,
F.
Huang
,
A. N.
Simonov
,
U.
Bach
,
Y.-B.
Cheng
,
S.
Wang
, and
J.
Lu
, “
Solvent engineering of a dopant-free spiro-ometad hole-transport layer for centimeter-scale perovskite solar cells with high efficiency and thermal stability
,”
ACS Appl. Mater. Interfaces
12
,
8260
8270
(
2020
).
92.
Y.
Zhang
,
B.
Huang
,
M.
Hu
,
B.
Tan
,
F.
Huang
,
Y.-B.
Cheng
,
A. N.
Simonov
, and
J.
Lu
, “
Radical doped hole transporting material for high-efficiency and thermostable perovskite solar cells
,”
J. Mater. Chem. A
10
,
10604
10613
(
2022
).
93.
M. E.
Peover
and
B. S.
White
, “
Electrolytic reduction of oxygen in aprotic solvents: The superoxide ion
,”
Electrochim. Acta
11
,
1061
1067
(
1966
).
94.
CRC Handbook of Chemistry and Physics
104th ed., edited by
J. R.
Rumble
(
CRC Press/Taylor & Francis
,
Boca Raton, FL
,
2023
).
95.
Y.
Wang
,
H.
Qu
,
C.
Zhang
, and
Q.
Chen
, “
Rapid oxidation of the hole transport layer in perovskite solar cells by a low-temperature plasma
,”
Sci. Rep.
9
,
459
(
2019
).
96.
S.
Wang
,
W.
Yuan
, and
Y. S.
Meng
, “
Spectrum-dependent spiro-OMeTAD oxidization mechanism in perovskite solar cells
,”
ACS Appl. Mater. Interfaces
7
,
24791
24798
(
2015
).
97.
M.
Ishii
,
Y.
Yamashita
,
S.
Watanabe
,
K.
Ariga
, and
J.
Takeya
, “
Doping of molecular semiconductors through proton-coupled electron transfer
,”
Nature
622
,
285
291
(
2023
).
98.
N.
Sakai
,
R.
Warren
,
F.
Zhang
,
S.
Nayak
,
S. V.
Kesava
,
Y.-H.
Lin
,
H. S.
Biswal
,
X.
Lin
,
A.
Kahn
,
M.
Riede
,
P. K.
Nayak
, and
H. J.
Snaith
, “
Adduct-based p-doping of organic semiconductors
,”
Nat. Mater.
20
,
1248
1254
(
2021
).
99.
G.
Majetich
,
R.
Hicks
, and
S.
Reister
, “
Electrophilic aromatic bromination using bromodimethylsulfonium bromide generated in situ
,”
J. Org. Chem.
62
,
4321
4326
(
1997
).
100.
M. B.
Floyd
,
M. T.
Du
,
P. F.
Fabio
,
L. A.
Jacob
, and
B. D.
Johnson
, “
The oxidation of acetophenones to arylglyoxals with aqueous hydrobromic acid in dimethyl sulfoxide
,”
J. Org. Chem.
50
,
5022
5027
(
1985
).
101.
A.
Abate
,
D. J.
Hollman
,
J. l
Teuscher
,
S.
Pathak
,
R.
Avolio
,
G.
D'Errico
,
G.
Vitiello
,
S.
Fantacci
, and
H. J.
Snaith
, “
Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells
,”
J. Am. Chem. Soc.
135
,
13538
13548
(
2013
).
102.
Z.
Li
,
J.
Tinkham
,
P.
Schulz
,
M.
Yang
,
D. H.
Kim
,
J.
Berry
,
A.
Sellinger
, and
K.
Zhu
, “
Acid additives enhancing the conductivity of spiro-OMeTAD toward high-efficiency and hysteresis-less planar perovskite solar cells
,”
Adv. Energy Mater.
7
,
1601451
(
2017
).
103.
E. J.
Lawrence
,
V. S.
Oganesyan
,
G. G.
Wildgoose
, and
A. E.
Ashley
, “
Exploring the fate of the tris(pentafluorophenyl)borane radical anion in weakly coordinating solvents
,”
Dalton Trans.
42
,
782
789
(
2013
).
104.
P.
Zalar
,
M.
Kuik
,
Z. B.
Henson
,
C.
Woellner
,
Y.
Zhang
,
A.
Sharenko
,
G. C.
Bazan
, and
T.-Q.
Nguyen
, “
Increased mobility induced by addition of a Lewis acid to a Lewis basic conjugated polymer
,”
Adv. Mater.
26
,
724
727
(
2014
).
105.
Y.
Han
,
G.
Barnes
,
Y.-H.
Lin
,
J.
Martin
,
M.
Al-Hashimi
,
S. Y.
AlQaradawi
,
T. D.
Anthopoulos
, and
M.
Heeney
, “
Doping of large ionization potential indenopyrazine polymers via Lewis acid complexation with tris(pentafluorophenyl)borane: A simple method for improving the performance of organic thin-film transistors
,”
Chem. Mater.
28
,
8016
8024
(
2016
).
106.
B.
Yurash
,
D. X.
Cao
,
V. V.
Brus
,
D.
Leifert
,
M.
Wang
,
A.
Dixon
,
M.
Seifrid
,
A. E.
Mansour
,
D.
Lungwitz
,
T.
Liu
,
P. J.
Santiago
,
K. R.
Graham
,
N.
Koch
,
G. C.
Bazan
, and
T.-Q.
Nguyen
, “
Towards understanding the doping mechanism of organic semiconductors by Lewis acids
,”
Nat. Mater.
18
,
1327
1334
(
2019
).
107.
M.
Arvind
,
C.
Tait
,
M.
Guerrini
,
J.
Krumland
,
A. M.
Valencia
,
C.
Cocchi
,
A. E.
Mansour
,
N.
Koch
,
S.
Barlow
,
S. R.
Marder
,
J.
Behrends
, and
D.
Neher
, “
Quantitative analysis of doping-induced polarons and chargetransfer complexes of poly(3-hexylthiophene) in solution
,”
J. Phys. Chem. B
124
,
7694
7708
(
2020
).
108.
J.
Liu
,
W.
Liu
,
E.
Aydin
,
G. T.
Harrison
,
F. H.
Isikgor
,
X.
Yang
,
A. S.
Subbiah
, and
S. D.
Wolf
, “
Lewis-acid doping of triphenylamine-based hole transport materials improves the performance and stability of perovskite solar cells
,”
ACS Appl. Mater. Interfaces
12
,
23874
23884
(
2020
).
109.
P.
Raval
,
M.
Dhennin
,
H.
Vezin
,
T.
Pawlak
,
P.
Roussel
,
T.-Q.
Nguyen
, and
G. N. M.
Reddy
, “
Understanding the p-doping of spiroOMeTAD by tris(pentafluorophenyl)borane
,”
Electrochim. Acta
424
,
140602
(
2022
).
110.
A. L.
Dixon
,
H.
Vezin
,
T.-Q.
Nguyen
, and
G. N. M.
Reddy
, “
Structural insights into Lewis acid- and F4TCNQ-doped conjugated polymers by solid-state magnetic resonance spectroscopy
,”
Mater. Horiz.
9
,
981
990
(
2022
).
111.
L.
Doerrer
and
M. L. H.
Green
, “
Oxidation of [M(η-C5H5)2], M = Cr, Fe or Co, by the new Brønsted acid H2O·B(C6F5)3 yielding the salts [M(η-C5H5)2]+A, where A = [(C6F5)3B(μ-OH)B(C6F5)3] or [(C6F5)3BOH…H2OB(C6F5)3]−
,”
J. Chem. Soc., Dalton Trans.
1999
,
4325
4329
.
112.
T.
Aoai
,
R.
Nishio
,
N.
Hayashi
, and
K.
Nomura
, “
Photo doping process of conductive polymer with PAG and application for organic thermoelectric materials
,”
J. Photopolym. Sci. Technol.
29
,
335
341
(
2016
).
113.
X.
Zheng
,
J.
Liu
,
T.
Liu
,
E.
Aydin
,
M.
Chen
,
W.
Yan
,
M.
De Bastiani
,
T. G.
Allen
,
S.
Yuan
,
A. R.
Kirmani
,
K. N.
Bauster
,
M. F.
Salvador
,
B.
Turedi
,
A. Y.
Alsalloum
,
K.
Almasabi
,
K.
Kotsovos
,
I.
Gereige
,
L.-S.
Liao
,
J. M.
Luther
,
K. R.
Graham
,
O. F.
Mohammed
,
S.
De Wolf
, and
O. M.
Bakr
, “
Photoactivated p-doping of organic interlayer enables efficient perovskite/silicon tandem solar cells
,”
ACS Energy Lett.
7
,
1987
1993
(
2022
).
114.
J.
Xia
,
Y.
Zhang
,
C.
Xiao
,
K. G.
Brooks
,
M.
Chen
,
J.
Luo
,
H.
Yang
,
N. I. D.
Klipfel
,
J.
Zou
,
Y.
Shi
,
X.
Yao
,
J.
Chen
,
J. M.
Luther
,
H.
Lin
,
A. M.
Asiri
,
C.
Jia
, and
M. K.
Nazeeruddin
, “
Tailoring electric dipole of hole-transporting material p-dopants for perovskite solar cells
,”
Joule
6
,
1689
1709
(
2022
).
115.
H.
Yang
,
T.
Xu
,
W.
Chen
,
Y.
Wu
,
X.
Guo
,
Y.
Shen
,
C.
Ding
,
X.
Chen
,
H.
Chen
,
J.
Ding
,
X.
Wu
,
G.
Zeng
,
Z.
Zhang
,
Y.
Li
, and
Y.
Li
, “
Iodonium initiators: Paving the air-free oxidation of spiro-OMeTAD for efficient and stable perovskite solar cells
,”
Angew. Chem., Int. Ed.
63
,
e202316183
(
2024
).
116.
J. V.
Crivello
, “
Design of photoacid generating systems
,”
J. Photopolym. Sci. Technol.
22
,
575
582
(
2009
).
117.
J. P.
Fouassier
,
D.
Burr
, and
J. V.
Crivello
, “
Time-resolved laser spectroscopy of the sensitized photolysis of iodonium salts
,”
J. Photochem. Photobiol., A
49
,
317
324
(
1989
).
You do not currently have access to this content.