Lignocellulose as a form of biomass is inedible. It represents a renewable feedstock for the synthesis of chemicals and materials. Its utilization has become an area of growing interest. Of lignocellulose components, lignin is comparatively under-explored and under-utilized, despite its abundance. This Focus Review recognizes this missed opportunity and presents a concise overview on some of the most recent progress involving the generation and application of functional materials derived from lignin. Between the two commonly encountered forms of lignin, technical lignin is a by-product of the paper production industry and is highly processed under harsh conditions. As such, it has generally been used for filler and resin materials. By comparison, native lignin is rich in chemical functionalities and holds great promise for downstream chemical synthesis. In recognition of these potentials, “lignin-first” strategies have emerged to directly convert native lignin to building blocks rich in functional groups, such as alcohols and carbonyls, while maintaining the integrity of the aromatic structures in lignin. The lignin-first strategy complements the already well explored field of technical lignin utilization. These chemoselective, lignin-first methods promise routes to native lignin valorization into high-value building blocks while keeping cellulose and hemicellulose intact and, therefore, are particularly appealing. This Focus Review first recognizes the importance of the traditional strategies for technical lignin utilization and highlights some of the newest developments. It then puts an emphasis on these lignin-first approaches for improved native lignin utilizations.

1.
A.
Jaswal
,
P. P.
Singh
, and
T.
Mondal
, “
Furfural—A versatile, biomass-derived platform chemical for the production of renewable chemicals
,”
Green Chem.
24
(
2
),
510
551
(
2022
).
2.
S.
Song
,
J.
Zhang
,
G.
Gözaydın
, and
N.
Yan
, “
Production of terephthalic acid from corn stover lignin
,”
Angew. Chem.
131
(
15
),
4988
4991
(
2019
).
3.
S.
Bertella
and
J. S.
Luterbacher
, “
Lignin functionalization for the production of novel materials
,”
Trends Chem.
2
(
5
),
440
453
(
2020
).
4.
A.
Gupta
and
J. P.
Verma
, “
Sustainable bio-ethanol production from agro-residues: A review
,”
Renewable Sustainable Energy Rev.
41
,
550
567
(
2015
).
5.
M. M.
Abeer
,
M. C. I.
Mohd Amin
, and
C.
Martin
, “
A review of bacterial cellulose-based drug delivery systems: Their biochemistry, current approaches and future prospects
,”
J. Pharm. Pharmacol.
66
(
8
),
1047
1061
(
2014
).
6.
W.
Schutyser
,
T.
Renders
,
S.
Van Den Bosch
,
S. F.
Koelewijn
,
G. T.
Beckham
, and
B. F.
Sels
, “
Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading
,”
Chem. Soc. Rev.
47
(
3
),
852
908
(
2018
).
7.
Z.
Sun
,
B.
Fridrich
,
A.
De Santi
,
S.
Elangovan
, and
K.
Barta
, “
Bright side of lignin depolymerization: Toward new platform chemicals
,”
Chem. Rev.
118
(
2
),
614
678
(
2018
).
8.
X.
Wu
,
N.
Luo
,
S.
Xie
,
H.
Zhang
,
Q.
Zhang
,
F.
Wang
, and
Y.
Wang
, “
Photocatalytic transformations of lignocellulosic biomass into chemicals
,”
Chem. Soc. Rev.
49
(
17
),
6198
6223
(
2020
).
9.
Q.
Wang
,
L. P.
Xiao
,
Y. H.
Lv
,
W. Z.
Yin
,
C. J.
Hou
, and
R. C.
Sun
, “
Metal-organic-framework-derived copper catalysts for the hydrogenolysis of lignin into monomeric phenols
,”
ACS Catal.
12
(
19
),
11899
11909
(
2022
).
10.
Z.
Liu
,
H.
Li
,
X.
Gao
,
X.
Guo
,
S.
Wang
,
Y.
Fang
, and
G.
Song
, “
Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose
,”
Nat. Commun.
13
(
1
),
4716
(
2022
).
11.
H.
Wang
,
G. J.
Giardino
,
R.
Chen
,
C.
Yang
,
J.
Niu
, and
D.
Wang
, “
Photocatalytic depolymerization of native lignin toward chemically recyclable polymer networks
,”
ACS Cent. Sci.
9
(
1
),
48
55
(
2023
).
12.
X.
Wu
,
X.
Fan
,
S.
Xie
,
J.
Lin
,
J.
Cheng
,
Q.
Zhang
,
L.
Chen
, and
Y.
Wang
, “
Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions
,”
Nat. Catal.
1
(
10
),
772
780
(
2018
).
13.
H.
Luo
,
E. P.
Weeda
,
M.
Alherech
,
C. W.
Anson
,
S. D.
Karlen
,
Y.
Cui
,
C. E.
Foster
, and
S. S.
Stahl
, “
Oxidative catalytic fractionation of lignocellulosic biomass under non-alkaline conditions
,”
J. Am. Chem. Soc.
143
(
37
),
15462
15470
(
2021
).
14.
E.
Subbotina
,
T.
Rukkijakan
,
M. D.
Marquez-Medina
,
X.
Yu
,
M.
Johnsson
, and
J. S. M.
Samec
, “
Oxidative cleavage of C–C bonds in lignin
,”
Nat. Chem.
13
(
11
),
1118
1125
(
2021
).
15.
A. E.
Kazzaz
and
P.
Fatehi
, “
Technical lignin and its potential modification routes: A mini-review
,”
Ind. Crops Prod.
154
,
112732
(
2020
).
16.
D. R.
Letourneau
and
D. A.
Volmer
, “
Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: A review
,”
Mass Spectrom. Rev.
42
(
1
),
144
188
(
2023
).
17.
Y.
Lu
,
Y. C.
Lu
,
H. Q.
Hu
,
F. J.
Xie
,
X. Y.
Wei
, and
X.
Fan
, “
Structural characterization of lignin and its degradation products with spectroscopic methods
,”
J. Spectrosc.
2017
,
8951658
.
18.
Y.
Zhang
and
M.
Naebe
, “
Lignin: A review on structure, properties, and applications as a light-colored UV absorber
,”
ACS Sustain Chem. Eng.
9
(
4
),
1427
1442
(
2021
).
19.
P.
Li
,
J.
Ren
,
Z.
Jiang
,
L.
Huang
,
C.
Wu
, and
W.
Wu
, “
Review on the preparation of fuels and chemicals based on lignin
,”
RSC Adv.
12
(
17
),
10289
10305
(
2022
).
20.
F. H.
Isikgor
and
C. R.
Becer
, “
Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers
,”
Polym. Chem.
6
(
25
),
4497
4559
(
2015
).
21.
S.
Kim
,
S. C.
Chmely
,
M. R.
Nimlos
,
Y. J.
Bomble
,
T. D.
Foust
,
R. S.
Paton
, and
G. T.
Beckham
, “
Computational study of bond dissociation enthalpies for a large range of native and modified lignins
,”
J. Phys. Chem. Lett.
2
(
22
),
2846
2852
(
2011
).
22.
R. J.
Li
,
J.
Gutierrez
,
Y. L.
Chung
,
C. W.
Frank
,
S. L.
Billington
, and
E. S.
Sattely
, “
A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives
,”
Green Chem.
20
(
7
),
1459
1466
(
2018
).
23.
M. A.
Jedrzejczyk
,
J.
Engelhardt
,
M. R.
Djokic
,
V.
Bliznuk
,
K. M.
Van Geem
,
A.
Verberckmoes
,
J.
De Clercq
, and
K. V.
Bernaerts
, “
Development of lignin-based mesoporous carbons for the adsorption of humic acid
,”
ACS Omega
6
(
23
),
15222
15235
(
2021
).
24.
C.
Henry
and
M.
Nejad
, “
Lignin-based low-density rigid polyurethane/polyisocyanurate foams
,”
Ind. Eng. Chem. Res.
62
(
18
),
6865
6873
(
2023
).
25.
H.
Sadeghifar
,
R.
Venditti
,
J.
Jur
,
R. E.
Gorga
, and
J. J.
Pawlak
, “
Cellulose-lignin biodegradable and flexible UV protection film
,”
ACS Sustainable Chem. Eng.
5
(
1
),
625
631
(
2017
).
26.
L. A.
Zevallos Torres
,
A.
Lorenci Woiciechowski
,
V. O.
de Andrade Tanobe
,
S. G.
Karp
,
L. C.
Guimarães Lorenci
,
C.
Faulds
, and
C. R.
Soccol
, “
Lignin as a potential source of high-added value compounds: A review
,”
J. Clean. Prod.
263
,
121499
(
2020
).
27.
T.
Li
and
S.
Takkellapati
, “
The current and emerging sources of technical lignins and their applications
,”
Biofuels, Bioprod. Biorefin.
12
(
5
),
756
787
(
2018
).
28.
X.
Wu
,
S.
Xie
,
C.
Liu
,
C.
Zhou
,
J.
Lin
,
J.
Kang
,
Q.
Zhang
,
Z.
Wang
, and
Y.
Wang
, “
Ligand-Controlled Photocatalysis of CdS Quantum Dots for lignin valorization under visible light
,”
ACS Catal.
9
(
9
),
8443
8451
(
2019
).
29.
A.
Tolbert
,
H.
Akinosho
,
R.
Khunsupat
,
A. K.
Naskar
, and
A. J.
Ragauskas
, “
Characterization and analysis of the molecular weight of lignin for biorefining studies
,”
Biofuels, Bioprod. Biorefin.
8
(
6
),
836
856
(
2014
).
30.
W.
Liu
,
R.
Zhou
,
H. L. S.
Goh
,
S.
Huang
, and
X.
Lu
, “
From waste to functional additive: Toughening epoxy resin with lignin
,”
ACS Appl. Mater. Interfaces
6
(
8
),
5810
5817
(
2014
).
31.
Y.
Zheng
,
T.
Liu
,
H.
He
,
Z.
Lv
,
J.
Xu
,
D.
Ding
,
L.
Dai
,
Z.
Huang
, and
C.
Si
, “
Lignin-based epoxy composite vitrimers with light-controlled remoldability
,”
Adv. Compos. Hybrid Mater.
6
(
1
),
53
(
2023
).
32.
S.
Sutradhar
,
W.
Gao
, and
P.
Fatehi
, “
A green cement plasticizer from softwood kraft lignin
,”
Ind. Eng. Chem. Res.
62
(
3
),
1676
1687
(
2023
).
33.
P.
Posoknistakul
,
C.
Tangkrakul
,
P.
Chaosuanphae
,
S.
Deepentham
,
W.
Techasawong
,
N.
Phonphirunrot
,
S.
Bairak
,
C.
Sakdaronnarong
, and
N.
Laosiripojana
, “
Fabrication and characterization of lignin particles and their ultraviolet protection ability in PVA composite film
,”
ACS Omega
5
(
33
),
20976
20982
(
2020
).
34.
P.
Quan
,
A.
Kiziltas
,
A.
Gondaliya
,
M.
Siahkamari
,
M.
Nejad
, and
X.
Xie
, “
Kraft lignin with improved homogeneity recovered directly from black liquor and its application in flexible polyurethane foams
,”
ACS Omega
7
(
19
),
16705
16715
(
2022
).
35.
S. H.
Hong
and
S. H.
Hwang
, “
Construction, physical properties and foaming behavior of high-content lignin reinforced low-density polyethylene biocomposites
,”
Polymers
14
(
13
),
2688
(
2022
).
36.
M.
Jang
,
H. Y.
Shin
,
D.
Jang
,
S. M.
Jo
,
S.
Kim
, and
S. S.
Kim
, “
All-lignin-based thermoset foams via azide-alkyne cycloaddition and their fire resistance after oxidation
,”
ACS Appl. Polym. Mater.
4
(
4
),
2712
2723
(
2022
).
37.
L.
Sellaoui
,
A.
Gómez-Avilés
,
F.
Dhaouadi
,
J.
Bedia
,
A.
Bonilla-Petriciolet
,
S.
Rtimi
, and
C.
Belver
, “
Adsorption of emerging pollutants on lignin-based activated carbon: Analysis of adsorption mechanism via characterization, kinetics and equilibrium studies
,”
Chem. Eng. J.
452
,
139399
(
2023
).
38.
Z.
Zapata-Benabithe
,
C. D.
Castro
, and
G.
Quintana
, “
Kraft lignin as a raw material of activated carbon for supercapacitor electrodes
,”
J. Mater. Sci.: Mater. Electron.
33
(
9
),
7031
7047
(
2022
).
39.
A.
Vishtal
and
A.
Kraslawski
, “
Challenges in industrial applications of technical lignins
BioRes.
6
(
3
),
3547
3568
(
2011
).
40.
R. M.
O'Dea
,
P. A.
Pranda
,
Y.
Luo
,
A.
Amitrano
,
E. O.
Ebikade
,
E. R.
Gottlieb
,
O.
Ajao
,
M.
Benali
,
D. G.
Vlachos
,
M.
Ierapetritou
, and
T. H.
Epps
, “
Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction
,”
Sci. Adv.
8
(
3
),
eabj7523
(
2022
).
41.
M. L.
Stone
,
M. S.
Webber
,
W. P.
Mounfield
,
D. C.
Bell
,
E.
Christensen
,
A. R. C.
Morais
,
Y.
Li
,
E. M.
Anderson
,
J. S.
Heyne
,
G. T.
Beckham
, and
Y.
Román-Leshkov
, “
Continuous hydrodeoxygenation of lignin to jet-range aromatic hydrocarbons
,”
Joule
6
(
10
),
2324
2337
(
2022
).
42.
T.
Renders
,
G.
Van den Bossche
,
T.
Vangeel
,
K.
Van Aelst
, and
B.
Sels
, “
Reductive catalytic fractionation: State of the art of the lignin-first biorefinery
,”
Curr. Opin. Biotechnol.
56
,
193
201
(
2019
).
43.
M.
Jindal
,
P.
Uniyal
, and
B.
Thallada
, “
Reductive catalytic fractionation as a novel pretreatment/lignin-first approach for lignocellulosic biomass valorization: A review
,”
Bioresour. Technol.
385
,
129396
(
2023
).
44.
A.
Kumar
,
M.
Jindal
,
S.
Rawat
,
J.
Kumar
,
P.
Sripadi
,
B.
Yang
, and
B.
Thallada
, “
Upgradation of sugarcane bagasse lignin: Fractionation to cyclic alcohols production
,”
Catal. Today
408
,
182
193
(
2023
).
45.
X.
Liu
,
H.
Li
,
L. P.
Xiao
,
R. C.
Sun
, and
G.
Song
, “
Chemodivergent hydrogenolysis of eucalyptus lignin with Ni@ZIF-8 catalyst
,”
Green Chem.
21
(
6
),
1498
1504
(
2019
).
46.
E. M.
Anderson
,
R.
Katahira
,
M.
Reed
,
M. G.
Resch
,
E. M.
Karp
,
G. T.
Beckham
, and
Y.
Román-Leshkov
, “
Reductive catalytic fractionation of corn stover lignin
,”
ACS Sustainable Chem. Eng.
4
(
12
),
6940
6950
(
2016
).
47.
S.
Qiu
,
M.
Wang
,
Y.
Fang
, and
T.
Tan
, “
Reductive catalytic fractionation of lignocellulose: When should the catalyst meet depolymerized lignin fragments?
,”
Sustainable Energy Fuels
4
(
11
),
5588
5594
(
2020
).
48.
A.
Adler
,
I.
Kumaniaev
,
A.
Karacic
,
K. R.
Baddigam
,
R. J.
Hanes
,
E.
Subbotina
,
A. W.
Bartling
,
A. J.
Huertas-Alonso
,
A.
Moreno
,
H.
Håkansson
,
A. P.
Mathew
,
G. T.
Beckham
, and
J. S. M.
Samec
, “
Lignin-first biorefining of Nordic poplar to produce cellulose fibers could displace cotton production on agricultural lands
,”
Joule
6
(
8
),
1845
1858
(
2022
).
49.
E.
Cooreman
,
T.
Nicolaï
,
W.
Arts
,
K. V.
Aelst
,
T.
Vangeel
,
S. V.
Van den Bosch
,
J. V.
Aelst
,
B.
Lagrain
,
K.
Thiele
,
J.
Thevelein
, and
B. F.
Sels
, “
The future biorefinery: The impact of upscaling the reductive catalytic fractionation of lignocellulose biomass on the quality of the lignin oil, carbohydrate products, and pulp
,”
ACS Sustainable Chem. Eng.
11
(
14
),
5440
5450
(
2023
).
50.
E.
Paone
,
A.
Beneduci
,
G. A.
Corrente
,
A.
Malara
, and
F.
Mauriello
, “
Hydrogenolysis of aromatic ethers under lignin-first conditions
,”
Mol. Catal.
497
,
111228
(
2020
).
51.
E. M.
Anderson
,
M. L.
Stone
,
M. J.
Hülsey
,
G. T.
Beckham
, and
Y.
Román-Leshkov
, “
Kinetic studies of lignin solvolysis and reduction by reductive catalytic fractionation decoupled in flow-through reactors
,”
ACS Sustainable Chem. Eng.
6
(
6
),
7951
7959
(
2018
).
52.
Y.
Li
,
S. D.
Karlen
,
B.
Demir
,
H.
Kim
,
J.
Luterbacher
,
J. A.
Dumesic
,
S. S.
Stahl
, and
J.
Ralph
, “
Mechanistic study of diaryl ether bond cleavage during palladium-catalyzed lignin hydrogenolysis
,”
ChemSusChem
13
(
17
),
4487
4494
(
2020
).
53.
T.
Renders
,
S.
Van Den Bosch
,
S. F.
Koelewijn
,
W.
Schutyser
, and
B. F.
Sels
, “
Lignin-first biomass fractionation: The advent of active stabilisation strategies
,”
Energy Environ. Sci.
10
(
7
),
1551
1557
(
2017
).
54.
K. E.
Helmich
,
J. H.
Pereira
,
D. L.
Gall
,
R. A.
Heins
,
R. P.
McAndrew
,
C.
Bingman
,
K.
Deng
,
K. C.
Holland
,
D. R.
Noguera
,
B. A.
Simmons
,
K. L.
Sale
,
J.
Ralph
,
T. J.
Donohue
,
P. D.
Adams
, and
G. N.
Phillips
, “
Structural basis of stereospecificity in the bacterial enzymatic cleavage of β-aryl ether bonds in lignin
,”
J. Biol. Chem.
291
(
10
),
5234
5246
(
2016
).
55.
H.
Dao Thi
,
K.
Van Aelst
,
S.
Van den Bosch
,
R.
Katahira
,
G. T.
Beckham
,
B. F.
Sels
, and
K. M.
Van Geem
, “
Identification and quantification of lignin monomers and oligomers from reductive catalytic fractionation of pine wood with GC × GC – FID/MS
,”
Green Chem.
24
(
1
),
191
206
(
2022
).
56.
J. H.
Jang
,
D. G.
Brandner
,
R. J.
Dreiling
,
A. J.
Ringsby
,
J. R.
Bussard
,
L. M.
Stanley
,
R. M.
Happs
,
A. S.
Kovvali
,
J. I.
Cutler
,
T.
Renders
,
J. R.
Bielenberg
,
Y.
Román-Leshkov
, and
G. T.
Beckham
, “
Multi-pass flow-through reductive catalytic fractionation
,”
Joule
6
(
8
),
1859
1875
(
2022
).
57.
K.
Van Aelst
,
E.
Van Sinay
,
T.
Vangeel
,
Y.
Zhang
,
T.
Renders
,
S.
Van den Bosch
,
J.
Van Aelst
, and
B. F.
Sels
, “
Low molecular weight and highly functional RCF lignin products as a full bisphenol a replacer in bio-based epoxy resins
,”
Chem. Commun.
57
(
46
),
5642
5645
(
2021
).
58.
Y.
Liao
,
S.-F.
Koelewijn
,
G.
Van den Bossche
,
J.
Van Aelst
,
S.
Van den Bosch
,
T.
Renders
,
K.
Navare
,
T.
Nicolaï
,
K.
Van Aelst
,
M.
Maesen
,
H.
Matsushima
,
J. M.
Thevelein
,
K.
Van Acker
,
B.
Lagrain
,
D.
Verboekend
, and
B. F.
Sels
, “
A sustainable wood biorefinery for low-carbon footprint chemicals production
,”
Science
367
(
6484
),
1385
1390
(
2020
).
59.
S. F.
Koelewijn
,
C.
Cooreman
,
T.
Renders
,
C.
Andecochea Saiz
,
S.
Van Den Bosch
,
W.
Schutyser
,
W.
De Leger
,
M.
Smet
,
P.
Van Puyvelde
,
H.
Witters
,
B.
Van Der Bruggen
, and
B. F.
Sels
, “
Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform
,”
Green Chem.
20
(
5
),
1050
1058
(
2018
).
60.
O. E.
Ebikade
,
N.
Samulewicz
,
S.
Xuan
,
J. D.
Sheehan
,
C.
Wu
, and
D. G.
Vlachos
, “
Reductive catalytic fractionation of agricultural residue and energy crop lignin and application of lignin oil in antimicrobials
,”
Green Chem.
22
(
21
),
7435
7447
(
2020
).
61.
Y.
Wu
,
J.
Wen
,
C.
Su
,
C.
Jiang
,
C.
Zhang
,
Y.
Wang
,
Y.
Jiang
,
W.
Ren
,
P.
Qin
, and
D.
Cai
, “
Inhibitions of microbial fermentation by residual reductive lignin oil: Concerns on the bioconversion of reductive catalytic fractionated carbohydrate pulp
,”
Chem. Eng. J.
452
,
139267
(
2023
).
62.
S.
Elangovan
,
A.
Afanasenko
,
J.
Haupenthal
,
Z.
Sun
,
Y.
Liu
,
A. K. H.
Hirsch
, and
K.
Barta
, “
From wood to tetrahydro-2-benzazepines in three waste-free steps: Modular synthesis of biologically active lignin-derived scaffolds
,”
ACS Cent. Sci.
5
(
10
),
1707
1716
(
2019
).
63.
J.
Liu
and
K. V.
Bernaerts
, “
Preparation of lignin-based imine vitrimers and their potential application as repairable, self-cleaning, removable and degradable coatings
,”
J. Mater. Chem. A
12
,
2959
2973
(
2024
).
64.
X.
Du
,
A. W.
Tricker
,
W.
Yang
,
R.
Katahira
,
W.
Liu
,
T. T.
Kwok
,
P.
Gogoi
, and
Y.
Deng
, “
Oxidative catalytic fractionation and depolymerization of lignin in a one-pot single-catalyst system
,”
ACS Sustainable Chem. Eng.
9
(
23
),
7719
7727
(
2021
).
65.
W.
Schutyser
,
J. S.
Kruger
,
A. M.
Robinson
,
R.
Katahira
,
D. G.
Brandner
,
N. S.
Cleveland
,
A.
Mittal
,
D. J.
Peterson
,
R.
Meilan
,
Y.
Román-Leshkov
, and
G. T.
Beckham
, “
Revisiting alkaline aerobic lignin oxidation
,”
Green Chem.
20
(
16
),
3828
3844
(
2018
).
66.
A.
Rahimi
,
A.
Azarpira
,
H.
Kim
,
J.
Ralph
, and
S. S.
Stahl
, “
Chemoselective metal-free aerobic alcohol oxidation in lignin
,”
J. Am. Chem. Soc.
135
(
17
),
6415
6418
(
2013
).
67.
A.
Rahimi
,
A.
Ulbrich
,
J. J.
Coon
, and
S. S.
Stahl
, “
Formic-acid-induced depolymerization of oxidized lignin to aromatics
,”
Nature
515
(
7526
),
249
252
(
2014
).
68.
S. T.
Nguyen
,
P. R. D.
Murray
, and
R. R.
Knowles
, “
Light-driven depolymerization of native lignin enabled by proton-coupled electron transfer
,”
ACS Catal.
10
(
1
),
800
805
(
2020
).
69.
Y.
Liu
,
C.
Li
,
W.
Miao
,
W.
Tang
,
D.
Xue
,
C.
Li
,
B.
Zhang
,
J.
Xiao
,
A.
Wang
,
T.
Zhang
, and
C.
Wang
, “
Mild redox-neutral depolymerization of lignin with a binuclear Rh complex in water
,”
ACS Catal.
9
(
5
),
4441
4447
(
2019
).
70.
G.
Meng
,
W.
Lan
,
L.
Zhang
,
S.
Wang
,
T.
Zhang
,
S.
Zhang
,
M.
Xu
,
Y.
Wang
,
J.
Zhang
,
F.
Yue
,
Y.
Wu
, and
D.
Wang
, “
Synergy of single atoms and Lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives
,”
J. Am. Chem. Soc.
145
(
23
),
12884
12893
(
2023
).
71.
S.
Manzini
,
D. J.
Nelson
, and
S. P.
Nolan
, “
A highly active cationic ruthenium complex for alkene isomerisation: A catalyst for the synthesis of high value molecules
,”
ChemCatChem
5
(
10
),
2848
2851
(
2013
).
72.
J.
Hitce
,
M.
Crutizat
,
C.
Bourdon
,
A.
Vivès
,
X.
Marat
, and
M.
Dalko-Csiba
, “
Flash-metathesis for the coupling of sustainable (poly)hydroxyl β-methylstyrenes from essential oils
,”
Green Chem.
17
(
7
),
3756
3761
(
2015
).
73.
Q.
Zhu
and
D. G.
Nocera
, “
Catalytic C(β)-O bond cleavage of lignin in a one-step reaction enabled by a spin-center shift
,”
ACS Catal.
11
(
22
),
14181
14187
(
2021
).
74.
I.
Bosque
,
G.
Magallanes
,
M.
Rigoulet
,
M. D.
Kärkäs
, and
C. R. J.
Stephenson
, “
Redox catalysis facilitates lignin depolymerization
,”
ACS Cent. Sci.
3
(
6
),
621
628
(
2017
).
You do not currently have access to this content.