Continuously advancing technologies is crucial to tackling modern challenges such as efficient energy transfer, directing catalytic behavior, and better understanding of microscopic phenomena. At the heart of many of these problems is nanoscale chemistry. In previous decades, the scientific community has made significant progress in nanoscale structures and technologies, especially relating to their interactions with light. Plasmonic nanostructures have been extensively studied over the past decades because of their fascinating properties and vast technological applications. They can confine light into intense local electromagnetic fields, which has been exploited in the fields of spectroscopy, energy harvesting, optoelectronics, chemical sensing, and biomedicine. Recently, however, plasmonic nanostructures have shown great potential to trigger chemical transformations of proximal molecular species via hot carrier and thermally driven processes. In this review, we discuss the basic concepts governing nanoscale light–matter interactions, the immediate phenomena induced by them, and how we can use nanoscale light–matter interactions to our advantage with surface-enhanced spectroscopy techniques and chemical reactions in confined plasmonic environments.

1.
J.
Weiner
and
F.
Nunes
,
Light-Matter Interaction: Physics and Engineering at the Nanoscale
, 2nd ed. (
Oxford University Press
,
2017
).
2.
S. A.
Maier
,
M. L.
Brongersma
,
P. G.
Kik
,
S.
Meltzer
,
A. A. G.
Requicha
, and
H. A.
Atwater
, “
Plasmonics-A route to nanoscale optical devices
,”
Adv. Mater.
13
(
19
),
1501
1505
(
2001
).
3.
E.
Cortés
,
A. O.
Govorov
,
H.
Misawa
, and
K. A.
Willets
, “
Special topic on emerging directions in plasmonics
,”
J. Chem. Phys.
153
(
1
),
010401
(
2020
).
4.
J.
Wenger
, “
Concentrating light at the nanoscale: Plasmonics and nano-optics
,” in
Proceedings of European Summer School on the Physics of Light
(
2015
).
5.
H.
Oka
and
Y.
Ohdaira
, “
Simple model of saturable localised surface plasmon
,”
Sci. Rep.
8
(
1
),
2643
(
2018
).
6.
J.
Anker
,
P.
Hall
,
O.
Lyandres
,
N.
Shah
,
J.
Zhao
, and
R.
Van Duyne
, “
Biosensing with plasmonic nanosensors
,”
Nat. Mater.
7
,
442
453
(
2008
).
7.
Z.
Yu
and
R. R.
Frontiera
, “
Intermolecular forces dictate vibrational energy transfer in plasmonic–molecule systems
,”
ACS Nano
16
(
1
),
847
854
(
2022
).
8.
M.
Gutiérrez
,
Z.
Lian
,
B.
Cohen
,
M.
Sakamoto
, and
A.
Douhal
, “
Hot hole transfer at the plasmonic semiconductor/semiconductor interface
,”
Nanoscale
15
(
2
),
657
666
(
2023
).
9.
G. T.
Forcherio
,
B.
Ostovar
,
J.
Boltersdorf
,
Y.-Y.
Cai
,
A. C.
Leff
,
K. N.
Grew
,
C. A.
Lundgren
,
S.
Link
, and
D. R.
Baker
, “
Single-particle insights into plasmonic hot carrier separation augmenting photoelectrochemical ethanol oxidation with photocatalytically synthesized Pd–Au bimetallic nanorods
,”
ACS Nano
16
(
8
),
12377
12389
(
2022
).
10.
S.
Chavez
and
S.
Linic
, “
Optimizing molecular light absorption in the strong coupling regime for solar energy harvesting
,”
Nano Energy
98
,
107244
(
2022
).
11.
D. M.
Solis
,
J. M.
Taboada
,
L.
Landesa
,
J. L.
Rodriguez
, and
F.
Obelleiro
, “
Squeezing Maxwell's equations into the nanoscale
,”
Prog. Electromagn. Res.
154
,
35
50
(
2015
).
12.
R.
Gupta
and
W. A.
Weimer
, “
High enhancement factor gold films for surface enhanced Raman spectroscopy
,”
Chem. Phys. Lett.
374
(
3–4
),
302
306
(
2003
).
13.
R. A.
Maniyara
,
D.
Rodrigo
,
R.
Yu
,
J.
Canet-Ferrer
,
D. S.
Ghosh
,
R.
Yongsunthon
,
D. E.
Baker
,
A.
Rezikyan
,
F. J.
García de Abajo
, and
V.
Pruneri
, “
Tunable plasmons in ultrathin metal films
,”
Nat. Photonics
13
(
5
),
328
333
(
2019
).
14.
P.
Wang
,
A. V.
Krasavin
,
L.
Liu
,
Y.
Jiang
,
Z.
Li
,
X.
Guo
,
L.
Tong
, and
A. V.
Zayats
, “
Molecular plasmonics with metamaterials
,”
Chem. Rev.
122
(
19
),
15031
15081
(
2022
).
15.
Y.
Zhang
,
S.
He
,
W.
Guo
,
Y.
Hu
,
J.
Huang
,
J. R.
Mulcahy
, and
W. D.
Wei
, “
Surface-plasmon-driven hot electron photochemistry
,”
Chem. Rev.
118
(
6
),
2927
2954
(
2018
).
16.
E.-R.
Newmeyer
,
J. D.
North
, and
D. F.
Swearer
, “
Hot carrier photochemistry on metal nanoparticles
,”
J. Appl. Phys.
132
(
23
),
230901
(
2022
).
17.
L.
Jauffred
,
A.
Samadi
,
H.
Klingberg
,
P. M.
Bendix
, and
L. B.
Oddershede
, “
Plasmonic heating of nanostructures
,”
Chem. Rev.
119
(
13
),
8087
8130
(
2019
).
18.
J.
Langer
,
D. J.
de Aberasturi
,
J.
Aizpurua
,
R. A.
Alvarez-Puebla
,
B.
Auguié
,
J. J.
Baumberg
,
G. C.
Bazan
,
S. E. J.
Bell
,
A.
Boisen
,
A. G.
Brolo
,
J.
Choo
,
D.
Cialla-May
,
V.
Deckert
,
L.
Fabris
,
K.
Faulds
,
F. J. G.
de Abajo
,
R.
Goodacre
,
D.
Graham
,
A. J.
Haes
,
C. L.
Haynes
,
C.
Huck
,
T.
Itoh
,
M.
Käll
,
J.
Kneipp
,
N. A.
Kotov
,
H.
Kuang
,
E. C.
Le Ru
,
H. K.
Lee
,
J.-F.
Li
,
X. Y.
Ling
,
S. A.
Maier
,
T.
Mayerhöfer
,
M.
Moskovits
,
K.
Murakoshi
,
J.-M.
Nam
,
S.
Nie
,
Y.
Ozaki
,
I.
Pastoriza-Santos
,
J.
Perez-Juste
,
J.
Popp
,
A.
Pucci
,
S.
Reich
,
B.
Ren
,
G. C.
Schatz
,
T.
Shegai
,
S.
Schlücker
,
L.-L.
Tay
,
K. G.
Thomas
,
Z.-Q.
Tian
,
R. P.
Van Duyne
,
T.
Vo-Dinh
,
Y.
Wang
,
K. A.
Willets
,
C.
Xu
,
H.
Xu
,
Y.
Xu
,
Y. S.
Yamamoto
,
B.
Zhao
, and
L. M.
Liz-Marzán
, “
Present and future of surface-enhanced Raman scattering
,”
ACS Nano
14
(
1
),
28
117
(
2020
).
19.
S.
Mahapatra
,
D.
Liu
,
C.
Siribaddana
,
K.
Wang
,
L.
Li
, and
N.
Jiang
, “
Localized surface plasmon controlled chemistry at and beyond the nanoscale
,”
Chem. Phys. Rev.
4
(
2
),
021301
(
2023
).
20.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
, 2nd ed. (
Cambridge University Press
,
2012
).
21.
M.
Mondal
,
M. A.
Ochoa
,
M.
Sukharev
, and
A.
Nitzan
, “
Coupling, lifetimes, and ‘strong coupling’ maps for single molecules at plasmonic interfaces
,”
J. Chem. Phys.
156
(
15
),
154303
(
2022
).
22.
G. C.
Schatz
and
M. A.
Ratner
,
Quantum Mechanics in Chemistry
(
Dover Publications, NY
,
2012
).
23.
G. V.
Hartland
, “
Optical studies of dynamics in noble metal nanostructures
,”
Chem. Rev.
111
(
6
),
3858
3887
(
2011
).
24.
R.
Gans
, “Über die Form ultramikroskopischer Goldteilchen,”
Ann. Phys.
342
,
881
900
(
1912
).
25.
S.
Link
,
M. B.
Mohamed
, and
M. A.
El-Sayed
, “
Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant
,”
J. Phys. Chem. B
103
(
16
),
3073
3077
(
1999
).
26.
N. T.
Fofang
,
T.-H.
Park
,
O.
Neumann
,
N. A.
Mirin
,
P.
Nordlander
, and
N. J.
Halas
, “
Plexcitonic nanoparticles: Plasmon−exciton coupling in nanoshell−J-aggregate complexes
,”
Nano Lett.
8
(
10
),
3481
3487
(
2008
).
27.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
, “
The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,”
J. Phys. Chem. B
107
(
3
),
668
677
(
2003
).
28.
C.
Noguez
, “
Surface plasmons on metal nanoparticles: The influence of shape and physical environment
,”
J. Phys. Chem. C
111
(
10
),
3806
3819
(
2007
).
29.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Holt, Rinehart & Winston
,
NY
,
1976
).
30.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
Hoboken, NJ
,
2005
).
31.
Y.
Gutiérrez
,
A. S.
Brown
,
F.
Moreno
, and
M.
Losurdo
, “
Plasmonics beyond noble metals: Exploiting phase and compositional changes for manipulating plasmonic performance
,”
J. Appl. Phys.
128
(
8
),
080901
(
2020
).
32.
A. V.
Krasavin
, “
A brief review on optical properties of planar metallic interfaces and films: From classical view to quantum description
,”
J. Phys.: Photonics
3
(
4
),
042006
(
2021
).
33.
H. C.
van de Hulst
,
Light Scattering by Small Particles
(
Dover
,
NY
,
1981
).
34.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley-Interscience
,
New York
,
1983
).
35.
U.
Kreibig
and
M.
Vollmer
,
Optical Properties of Metal Clusters
, 1st ed. (
Springer Berlin
,
Heidelberg
,
1995
).
36.
Y.
Gutiérrez
,
M.
Losurdo
,
F.
González
,
H. O.
Everitt
, and
F.
Moreno
, “
Nanoplasmonic photothermal heating and near-field enhancements: A comparative survey of 19 metals
,”
J. Phys. Chem. C
124
(
13
),
7386
7395
(
2020
).
37.
X.
Li
,
X.
Zhang
,
H. O.
Everitt
, and
J.
Liu
, “
Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production
,”
Nano Lett.
19
(
3
),
1706
1711
(
2019
).
38.
X.
Zhang
,
X.
Li
,
M. E.
Reish
,
D.
Zhang
,
N. Q.
Su
,
Y.
Gutiérrez
,
F.
Moreno
,
W.
Yang
,
H. O.
Everitt
, and
J.
Liu
, “
Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects
,”
Nano Lett.
18
(
3
),
1714
1723
(
2018
).
39.
Y.
Kumamoto
,
A.
Taguchi
,
M.
Honda
,
K.
Watanabe
,
Y.
Saito
, and
S.
Kawata
, “
Indium for deep-ultraviolet surface-enhanced resonance Raman scattering
,”
ACS Photonics
1
(
7
),
598
603
(
2014
).
40.
A.
Taguchi
,
N.
Hayazawa
,
K.
Furusawa
,
H.
Ishitobi
, and
S.
Kawata
, “
Deep-UV tip-enhanced Raman scattering
,”
J. Raman Spectrosc.
40
(
9
),
1324
1330
(
2009
).
41.
P. C.
Wu
,
C. G.
Khoury
,
T.-H.
Kim
,
Y.
Yang
,
M.
Losurdo
,
G. V.
Bianco
,
T.
Vo-Dinh
,
A. S.
Brown
, and
H. O.
Everitt
, “
Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles
,”
J. Am. Chem. Soc.
131
(
34
),
12032
12033
(
2009
).
42.
U.
Guler
,
G. V.
Naik
,
A.
Boltasseva
,
V. M.
Shalaev
, and
A. V.
Kildishev
, “
Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications
,”
Appl. Phys. B
107
(
2
),
285
291
(
2012
).
43.
G.
Naik
,
J.
Kim
, and
A.
Boltasseva
, “
Oxides and nitrides as alternative plasmonic materials in the optical range
,”
Opt. Mater. Express
1
(
6
),
1090
1099
(
2011
).
44.
S.
Ishii
,
S. L.
Shinde
, and
T.
Nagao
, “
Nonmetallic materials for plasmonic hot carrier excitation
,”
Adv. Opt. Mater.
7
(
1
),
1800603
(
2019
).
45.
Y.
Yang
,
J.
Jeon
,
J.-H.
Park
,
M. S.
Jeong
,
B. H.
Lee
,
E.
Hwang
, and
S.
Lee
, “
Plasmonic transition metal carbide electrodes for high-performance InSe photodetectors
,”
ACS Nano
13
(
8
),
8804
8810
(
2019
).
46.
H.
Reddy
,
U.
Guler
,
K.
Chaudhuri
,
A.
Dutta
,
A. V.
Kildishev
,
V. M.
Shalaev
, and
A.
Boltasseva
, “
Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films
,”
ACS Photonics
4
(
5
),
1083
1091
(
2017
).
47.
H.
Yu
,
Y.
Peng
,
Y.
Yang
, and
Z.-Y.
Li
, “
Plasmon-enhanced light–matter interactions and applications
,”
npj Comput. Mater.
5
(
1
),
45
(
2019
).
48.
R.
Liu
,
Z.-K.
Zhou
,
Y.-C.
Yu
,
T.
Zhang
,
H.
Wang
,
G.
Liu
,
Y.
Wei
,
H.
Chen
, and
X.-H.
Wang
, “
Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit
,”
Phys. Rev. Lett.
118
(
23
),
237401
(
2017
).
49.
M.
Hertzog
,
B.
Munkhbat
,
D.
Baranov
,
T.
Shegai
, and
K.
Börjesson
, “
Enhancing vibrational light–matter coupling strength beyond the molecular concentration limit using plasmonic arrays
,”
Nano Lett.
21
(
3
),
1320
1326
(
2021
).
50.
N. S.
Mueller
,
Y.
Okamura
,
B. G. M.
Vieira
,
S.
Juergensen
,
H.
Lange
,
E. B.
Barros
,
F.
Schulz
, and
S.
Reich
, “
Deep strong light–matter coupling in plasmonic nanoparticle crystals
,”
Nature
583
(
7818
),
780
784
(
2020
).
51.
S. I.
Azzam
,
L. J.
Prokopeva
,
Q.
Xia
,
G.
Kovacic
,
W. D.
Henshaw
, and
A. V.
Kildishev
, in
Proceedings of 2020 International Applied Computational Electromagnetics Society Symposium (ACES)
(
IEEE
,
Monterey, CA
,
2020
), pp.
1
2
.
52.
A.
Aigner
,
A.
Tittl
,
J.
Wang
,
T.
Weber
,
Y.
Kivshar
,
S. A.
Maier
, and
H.
Ren
, “
Plasmonic bound states in the continuum to tailor light-matter coupling
,”
Sci. Adv.
8
(
49
),
eadd4816
(
2022
).
53.
H.
Tao
,
T.
Wu
,
M.
Aldeghi
,
T. C.
Wu
,
A.
Aspuru-Guzik
, and
E.
Kumacheva
, “
Nanoparticle synthesis assisted by machine learning
,”
Nat. Rev. Mater.
6
(
8
),
701
716
(
2021
).
54.
R. H.
Ritchie
, “
Plasma losses by fast electrons in thin films
,”
Phys. Rev.
106
(
5
),
874
881
(
1957
).
55.
B.
Pietrobon
,
M.
McEachran
, and
V.
Kitaev
, “
Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods
,”
ACS Nano
3
(
1
),
21
26
(
2009
).
56.
N.
Pazos-Perez
,
L.
Guerrini
, and
R. A.
Alvarez-Puebla
, “
Plasmon tunability of gold nanostars at the tip apexes
,”
ACS Omega
3
(
12
),
17173
17179
(
2018
).
57.
Z.
Gao
,
S.
Shao
,
W.
Gao
,
D.
Tang
,
D.
Tang
,
S.
Zou
,
M. J.
Kim
, and
X.
Xia
, “
Morphology-invariant metallic nanoparticles with tunable plasmonic properties
,”
ACS Nano
15
(
2
),
2428
2438
(
2021
).
58.
T.
Huang
and
X.-H. N.
Xu
, “
Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy
,”
J. Mater. Chem.
20
(
44
),
9867
(
2010
).
59.
T. R.
Jensen
,
M. D.
Malinsky
,
C. L.
Haynes
, and
R. P.
Van Duyne
, “
Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles
,”
J. Phys. Chem. B
104
(
45
),
10549
10556
(
2000
).
60.
X.
Tan
,
J.
Melkersson
,
S.
Wu
,
L.
Wang
, and
J.
Zhang
, “
Noble-metal-free materials for surface-enhanced Raman spectroscopy detection
,”
ChemPhysChem
17
(
17
),
2630
2639
(
2016
).
61.
B.
Hu
,
Q. J.
Wang
, and
Y.
Zhang
, “
Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons
,”
Opt. Lett.
37
(
11
),
1895
(
2012
).
62.
A.
Davoyan
and
N.
Engheta
, “
Electrically controlled one-way photon flow in plasmonic nanostructures
,”
Nat. Commun.
5
(
1
),
5250
(
2014
).
63.
J. Y.
Chin
,
T.
Steinle
,
T.
Wehlus
,
D.
Dregely
,
T.
Weiss
,
V. I.
Belotelov
,
B.
Stritzker
, and
H.
Giessen
, “
Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation
,”
Nat. Commun.
4
(
1
),
1599
(
2013
).
64.
S. A. H.
Gangaraj
,
G. W.
Hanson
,
M. G.
Silveirinha
,
K.
Shastri
,
M.
Antezza
, and
F.
Monticone
, “
Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms
,”
Phys. Rev. B
99
(
24
),
245414
(
2019
).
65.
S.
Buddhiraju
,
Y.
Shi
,
A.
Song
,
C.
Wojcik
,
M.
Minkov
,
I. A. D.
Williamson
,
A.
Dutt
, and
S.
Fan
, “
Absence of unidirectionally propagating surface plasmon-polaritons at nonreciprocal metal-dielectric interfaces
,”
Nat. Commun.
11
(
1
),
674
(
2020
).
66.
F.
Monticone
, “
A truly one-way lane for surface plasmon polaritons
,”
Nat. Photonics
14
(
8
),
461
465
(
2020
).
67.
S. A. H.
Gangaraj
and
F.
Monticone
, “
Do truly unidirectional surface plasmon-polaritons exist?
,”
Optica
6
(
9
),
1158–1165
(
2019
).
68.
X.
Wang
,
W.
Shi
,
G.
She
, and
L.
Mu
, “
Surface-enhanced Raman scattering (SERS) on transition metal and semiconductor nanostructures
,”
Phys. Chem. Chem. Phys.
14
(
17
),
5891
(
2012
).
69.
K.-H.
Cho
,
F. M.
Alcorn
,
J.
Heo
, and
P. K.
Jain
, “
Plasmon resonances and structures of chalcogenide alloy nanocrystals
,”
Chem. Mater.
34
(
11
),
4992
4999
(
2022
).
70.
A.
Muravitskaya
,
A.
Gokarna
,
A.
Movsesyan
,
S.
Kostcheev
,
A.
Rumyantseva
,
C.
Couteau
,
G.
Lerondel
,
A.-L.
Baudrion
,
S.
Gaponenko
, and
P.-M.
Adam
, “
Refractive index mediated plasmon hybridization in an array of aluminium nanoparticles
,”
Nanoscale
12
(
11
),
6394
6402
(
2020
).
71.
L.
Zhou
,
Y.
Tan
,
J.
Wang
,
W.
Xu
,
Y.
Yuan
,
W.
Cai
,
S.
Zhu
, and
J.
Zhu
, “
3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination
,”
Nat. Photonics
10
(
6
),
393
398
(
2016
).
72.
A.
Moscatelli
, “
The aluminium rush
,”
Nat. Nanotechnol.
7
(
12
),
778
778
(
2012
).
73.
H.
Yu
,
P.
Zhang
,
S.
Lu
,
S.
Yang
,
F.
Peng
,
W.-S.
Chang
, and
K.
Liu
, “
Synthesis and multipole plasmon resonances of spherical aluminum nanoparticles
,”
J. Phys. Chem. Lett.
11
(
15
),
5836
5843
(
2020
).
74.
M. W.
Knight
,
N. S.
King
,
L.
Liu
,
H. O.
Everitt
,
P.
Nordlander
, and
N. J.
Halas
, “
Aluminum for plasmonics
,”
ACS Nano
8
(
1
),
834
840
(
2014
).
75.
H. B.
Jeon
,
P. V.
Tsalu
, and
J. W.
Ha
, “
Shape effect on the refractive index sensitivity at localized surface plasmon resonance inflection points of single gold nanocubes with vertices
,”
Sci. Rep.
9
(
1
),
13635
(
2019
).
76.
M.
Liebtrau
,
M.
Sivis
,
A.
Feist
,
H.
Lourenço-Martins
,
N.
Pazos-Pérez
,
R. A.
Alvarez-Puebla
,
F. J. G.
de Abajo
,
A.
Polman
, and
C.
Ropers
, “
Spontaneous and stimulated electron–photon interactions in nanoscale plasmonic near fields
,”
Light: Sci. Appl.
10
(
1
),
82
(
2021
).
77.
J.-F.
Masson
,
J. S.
Biggins
, and
E.
Ringe
, “
Machine learning for nanoplasmonics
,”
Nat. Nanotechnol.
18
(
2
),
111
123
(
2023
).
78.
K. A.
Brown
,
S.
Brittman
,
N.
Maccaferri
,
D.
Jariwala
, and
U.
Celano
, “
Machine learning in nanoscience: Big data at small scales
,”
Nano Lett.
20
(
1
),
2
10
(
2020
).
79.
J.
Hu
,
T.
Liu
,
P.
Choo
,
S.
Wang
,
T.
Reese
,
A. D.
Sample
, and
T. W.
Odom
, “
Single-nanoparticle orientation sensing by deep learning
,”
ACS Cent. Sci.
6
(
12
),
2339
2346
(
2020
).
80.
C.
Cherqui
,
M. R.
Bourgeois
,
D.
Wang
, and
G. C.
Schatz
, “
Plasmonic surface lattice resonances: Theory and computation
,”
Acc. Chem. Res.
52
(
9
),
2548
2558
(
2019
).
81.
C. L.
Warkentin
,
Z.
Yu
,
A.
Sarkar
, and
R. R.
Frontiera
, “
Decoding chemical and physical processes driving plasmonic photocatalysis using surface-enhanced Raman spectroscopies
,”
Acc. Chem. Res.
54
(
10
),
2457
2466
(
2021
).
82.
Z.
Lian
,
M.
Sakamoto
,
H.
Matsunaga
,
J. J. M.
Vequizo
,
A.
Yamakata
,
M.
Haruta
,
H.
Kurata
,
W.
Ota
,
T.
Sato
, and
T.
Teranishi
, “
Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface
,”
Nat. Commun.
9
(
1
),
2314
(
2018
).
83.
C.
Clavero
, “
Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices
,”
Nat. Photonics
8
(
2
),
95
103
(
2014
).
84.
Y.
Nishijima
,
K.
Ueno
,
Y.
Yokota
,
K.
Murakoshi
, and
H.
Misawa
, “
Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO 2 electrode
,”
J. Phys. Chem. Lett.
1
(
13
),
2031
2036
(
2010
).
85.
Y.
Hattori
,
J.
Meng
,
K.
Zheng
,
A. M.
de Andrade
,
J.
Kullgren
,
P.
Broqvist
,
P.
Nordlander
, and
J.
, “
Phonon-assisted hot carrier generation in Plasmonic semiconductor systems
,”
Nano Lett.
21
(
2
),
1083
1089
(
2021
).
86.
Y.
Yu
,
K. D.
Wijesekara
,
X.
Xi
, and
K. A.
Willets
, “
Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces
,”
ACS Nano
13
(
3
),
3629
3637
(
2019
).
87.
T. R.
Hopper
,
A.
Gorodetsky
,
A.
Jeong
,
F.
Krieg
,
M. I.
Bodnarchuk
,
M.
Maimaris
,
M.
Chaplain
,
T. J.
Macdonald
,
X.
Huang
,
R.
Lovrincic
,
M. V.
Kovalenko
, and
A. A.
Bakulin
, “
Hot carrier dynamics in perovskite nanocrystal solids: Role of the cold carriers, nanoconfinement, and the surface
,”
Nano Lett.
20
(
4
),
2271
2278
(
2020
).
88.
S.
Kahmann
and
M. A.
Loi
, “
Hot carrier solar cells and the potential of perovskites for breaking the Shockley–Queisser limit
,”
J. Mater. Chem. C
7
(
9
),
2471
2486
(
2019
).
89.
K. R.
Keller
,
R.
Rojas-Aedo
,
H.
Zhang
,
P.
Schweizer
,
J.
Allerbeck
,
D.
Brida
,
D.
Jariwala
, and
N.
Maccaferri
, “
Ultrafast thermionic electron injection effects on exciton formation dynamics at a van der Waals semiconductor/metal interface
,”
ACS Photonics
9
(
8
),
2683
2690
(
2022
).
90.
S. A.
Lee
,
B.
Ostovar
,
C. F.
Landes
, and
S.
Link
, “
Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods
,”
J. Chem. Phys.
156
(
6
),
064702
(
2022
).
91.
J. L.
Brooks
,
C. L.
Warkentin
,
D. V.
Chulhai
,
J. D.
Goodpaster
, and
R. R.
Frontiera
, “
Plasmon-mediated intramolecular methyl migration with nanoscale spatial control
,”
ACS Nano
14
(
12
),
17194
17202
(
2020
).
92.
M.
Nazemi
,
S. R.
Panikkanvalappil
,
C.-K.
Liao
,
M. A.
Mahmoud
, and
M. A.
El-Sayed
, “
Role of femtosecond pulsed laser-induced atomic redistribution in bimetallic Au–Pd nanorods on optoelectronic and catalytic properties
,”
ACS Nano
15
(
6
),
10241
10252
(
2021
).
93.
H.
Robatjazi
,
H.
Zhao
,
D. F.
Swearer
,
N. J.
Hogan
,
L.
Zhou
,
A.
Alabastri
,
M. J.
McClain
,
P.
Nordlander
, and
N. J.
Halas
, “
Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles
,”
Nat. Commun.
8
(
1
),
27
(
2017
).
94.
E.
Oksenberg
,
I.
Shlesinger
,
A.
Xomalis
,
A.
Baldi
,
J. J.
Baumberg
,
A. F.
Koenderink
, and
E. C.
Garnett
, “
Energy-resolved plasmonic chemistry in individual nanoreactors
,”
Nat. Nanotechnol.
16
(
12
),
1378
1385
(
2021
).
95.
H.
Jia
,
F.
Li
,
T. H.
Chow
,
X.
Liu
,
H.
Zhang
,
Y.
Lu
,
J.
Wang
, and
C.
Zhang
, “
Construction of spatially separated gold nanocrystal/cuprous oxide architecture for plasmon-sriven CO2 reduction
,”
Nano Lett.
22
(
17
),
7268
7274
(
2022
).
96.
Y.
Liu
,
L.
Zhang
,
X.
Liu
,
Y.
Zhang
,
Y.
Yan
, and
Y.
Zhao
, “
In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785 nm irradiation
,”
Spectrochim. Acta, Part A
270
,
120803
(
2022
).
97.
L.-B.
Zhao
,
M.
Zhang
,
Y.-F.
Huang
,
C. T.
Williams
,
D.-Y.
Wu
,
B.
Ren
, and
Z.-Q.
Tian
, “
Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds
,”
J. Phys. Chem. Lett.
5
(
7
),
1259
1266
(
2014
).
98.
M. A.
Young
,
D. A.
Stuart
,
O.
Lyandres
,
M. R.
Glucksberg
, and
R. P.
Van Duyne
, “
Surface-enhanced Raman spectroscopy with a laser pointer light source and miniature spectrometer
,”
Can. J. Chem.
82
(
10
),
1435
1441
(
2004
).
99.
M.
Fleischmann
,
P. J.
Hendra
, and
A. J.
McQuillan
, “
Raman spectra of pyridine adsorbed at a silver electrode
,”
Chem. Phys. Lett.
26
(
2
),
163
166
(
1974
).
100.
D. L.
Jeanmaire
and
R. P.
Van Duyne
, “
Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode
,”
J. Electroanal. Chem. Interfacial Electrochem.
84
,
1
20
(
1977
).
101.
M. G.
Albrecht
and
J. A.
Creighton
, “
Anomalously intense Raman spectra of pyridine at a silver electrode
,”
J. Am. Chem. Soc.
99
(
15
),
5215
5217
(
1977
).
102.
D.
Wang
,
H.
Chew
, and
M.
Kerker
, “
Enhanced Raman scattering at the surface (SERS) of a spherical particle
,”
Appl. Opt.
19
(
14
),
2256
2257
(
1980
).
103.
R. K.
Biroju
,
B. C.
Marepally
,
P.
Malik
,
S.
Dhara
,
S.
Gengan
,
D.
Maity
,
T. N.
Narayanan
, and
P. K.
Giri
, “
Defective graphene/plasmonic nanoparticle hybrids for surface-enhanced Raman scattering sensors
,”
ACS Omega
8
(
4
),
4344
4356
(
2023
).
104.
N.
Maccaferri
,
G.
Barbillon
,
A. N.
Koya
,
G.
Lu
,
G. P.
Acuna
, and
D.
Garoli
, “
Recent advances in plasmonic nanocavities for single-molecule spectroscopy
,”
Nanoscale Adv.
3
(
3
),
633
642
(
2021
).
105.
S. K.
Gahlaut
,
D.
Savargaonkar
,
C.
Sharan
,
S.
Yadav
,
P.
Mishra
, and
J. P.
Singh
, “
SERS platform for dengue diagnosis from clinical samples employing a hand held Raman spectrometer
,”
Anal. Chem.
92
(
3
),
2527
2534
(
2020
).
106.
M. A.
Fikiet
,
S. R.
Khandasammy
,
E.
Mistek
,
Y.
Ahmed
,
L.
Halámková
,
J.
Bueno
, and
I. K.
Lednev
, “
Surface enhanced Raman spectroscopy: A review of recent applications in forensic science
,”
Spectrochim. Acta, Part A
197
,
255
260
(
2018
).
107.
Y.
Yang
,
N.
Creedon
,
A.
O'Riordan
, and
P.
Lovera
, “
Surface enhanced Raman spectroscopy: Applications in agriculture and food safety
,”
Photonics
8
(
12
),
568
(
2021
).
108.
J.
Shin
,
S.
Lee
,
S.
Yoo
,
I.
Jung
,
S.
Lee
,
J.
Kim
,
J.
Son
,
J.-E.
Kim
,
J.-M.
Kim
,
J.-M.
Nam
, and
S.
Park
, “
Enormous enhancement in single-particle surface-enhanced Raman scattering with size-controllable Au double nanorings
,”
Chem. Mater.
34
(
5
),
2197
2205
(
2022
).
109.
L. M.
Almehmadi
,
S. M.
Curley
,
N. A.
Tokranova
,
S. A.
Tenenbaum
, and
I. K.
Lednev
, “
Surface enhanced Raman spectroscopy for single molecule protein detection
,”
Sci. Rep.
9
(
1
),
12356
(
2019
).
110.
J.
Zhao
,
A. O.
Pinchuk
,
J. M.
McMahon
,
S.
Li
,
L. K.
Ausman
,
A. L.
Atkinson
, and
G. C.
Schatz
, “
Methods for describing the electromagnetic properties of silver and gold nanoparticles
,”
Acc. Chem. Res.
41
(
12
),
1710
1720
(
2008
).
111.
G. C.
Schatz
and
R. P.
Van Duyne
, in
Handbook of Vibrational Spectroscopy
, 1st ed., edited by
J. M.
Chalmers
and
P. R.
Griffiths
(
Wiley
,
2001
).
112.
J. A.
Dieringer
,
A. D.
McFarland
,
N. C.
Shah
,
D. A.
Stuart
,
A. V.
Whitney
,
C. R.
Yonzon
,
M. A.
Young
,
X.
Zhang
, and
R. P.
Van Duyne
, “
Introductory Lecture: Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications
,”
Faraday Discuss.
132
,
9
26
(
2006
).
113.
C.
Zong
,
M.
Xu
,
L.-J.
Xu
,
T.
Wei
,
X.
Ma
,
X.-S.
Zheng
,
R.
Hu
, and
B.
Ren
, “
Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges
,”
Chem. Rev.
118
(
10
),
4946
4980
(
2018
).
114.
T.
Itoh
,
M.
Procházka
,
Z.-C.
Dong
,
W.
Ji
,
Y. S.
Yamamoto
,
Y.
Zhang
, and
Y.
Ozaki
, “
Toward a new era of SERS and TERS at the nanometer scale: From fundamentals to innovative applications
,”
Chem. Rev.
123
,
1552
1634
(
2023
).
115.
E. A.
Sprague-Klein
,
R.
Ho-Wu
,
D.
Nguyen
,
S. C.
Coste
,
Y.
Wu
,
J. J.
McMahon
,
T.
Seideman
,
G. C.
Schatz
, and
R. P.
Van Duyne
, “
Modulating the electron affinity of small bipyridyl molecules on single gold nanoparticles for plasmon-driven electron transfer
,”
J. Phys. Chem. C
125
(
40
),
22142
22153
(
2021
).
116.
G. H.
Chan
,
J.
Zhao
,
E. M.
Hicks
,
G. C.
Schatz
, and
R. P.
Van Duyne
, “
Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography
,”
Nano Lett.
7
(
7
),
1947
1952
(
2007
).
117.
J.
Asselin
,
C.
Boukouvala
,
E. R.
Hopper
,
Q. M.
Ramasse
,
J. S.
Biggins
, and
E.
Ringe
, “
Tents, chairs, tacos, kites, and rods: Shapes and plasmonic properties of singly twinned magnesium nanoparticles
,”
ACS Nano
14
(
5
),
5968
5980
(
2020
).
118.
E. C.
Le Ru
,
E.
Blackie
,
M.
Meyer
, and
P. G.
Etchegoin
, “
Surface enhanced Raman scattering enhancement factors: A comprehensive study
,”
J. Phys. Chem. C
111
(
37
),
13794
13803
(
2007
).
119.
K.-K.
Liu
,
S.
Tadepalli
,
L.
Tian
, and
S.
Singamaneni
, “
Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles
,”
Chem. Mater.
27
(
15
),
5261
5270
(
2015
).
120.
N. J.
Halas
,
S.
Lal
,
W.-S.
Chang
,
S.
Link
, and
P.
Nordlander
, “
Plasmons in strongly coupled metallic nanostructures
,”
Chem. Rev.
111
(
6
),
3913
3961
(
2011
).
121.
J.
Son
,
G.-H.
Kim
,
Y.
Lee
,
C.
Lee
,
S.
Cha
, and
J.-M.
Nam
, “
Toward quantitative surface-enhanced Raman scattering with plasmonic nanoparticles: Multiscale view on heterogeneities in particle morphology, surface modification, interface, and analytical protocols
,”
J. Am. Chem. Soc.
144
(
49
),
22337
22351
(
2022
).
122.
J.
Kim
,
S.
Lee
,
J.
Son
,
J.
Kim
,
H.
Hilal
,
M.
Park
,
I.
Jung
,
J.
Nam
, and
S.
Park
, “
Plasmonic cyclic Au nanosphere hexamers
,”
Small
19
(
7
),
2205956
(
2023
).
123.
B.
Negru
,
M. O.
McAnally
,
H. E.
Mayhew
,
T. W.
Ueltschi
,
L.
Peng
,
E. A.
Sprague-Klein
,
G. C.
Schatz
, and
R. P.
Van Duyne
, “
Fabrication of gold nanosphere oligomers for surface-enhanced femtosecond stimulated Raman spectroscopy
,”
J. Phys. Chem. C
121
(
48
),
27004
27008
(
2017
).
124.
R.
Grumich
,
T.
Griggs-Demmin
,
M.
Glover
, and
B.
Negru
, “
Fabrication of stabilized gold nanoparticle oligomers for surface-enhanced spectroscopies
,”
ACS Omega
6
(
47
),
31818
31821
(
2021
).
125.
P.
Moutet
,
N. M.
Sangeetha
,
L.
Ressier
,
N.
Vilar-Vidal
,
M.
Comesaña-Hermo
,
S.
Ravaine
,
R. A. L.
Vallée
,
A. M.
Gabudean
,
S.
Astilean
, and
C.
Farcau
, “
Surface-enhanced spectroscopy on plasmonic oligomers assembled by AFM nanoxerography
,”
Nanoscale
7
(
5
),
2009
2022
(
2015
).
126.
L.
Rodríguez-Lorenzo
,
R. A.
Álvarez-Puebla
,
I.
Pastoriza-Santos
,
S.
Mazzucco
,
O.
Stéphan
,
M.
Kociak
,
L. M.
Liz-Marzán
, and
F. J. G.
De Abajo
, “
Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering
,”
J. Am. Chem. Soc.
131
(
13
),
4616
4618
(
2009
).
127.
W.
Niu
,
Y. A. A.
Chua
,
W.
Zhang
,
H.
Huang
, and
X.
Lu
, “
Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property
,”
J. Am. Chem. Soc.
137
(
33
),
10460
10463
(
2015
).
128.
M.
Chen
,
R.
Solarska
, and
M.
Li
, “
Additional important considerations in surface-enhanced Raman scattering enhancement factor measurements
,”
J. Phys. Chem. C
127
(
5
),
2728
2734
(
2023
).
129.
K. D.
Alexander
,
K.
Skinner
,
S.
Zhang
,
H.
Wei
, and
R.
Lopez
, “
Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate
,”
Nano Lett.
10
(
11
),
4488
4493
(
2010
).
130.
D. J.
Maxwell
,
S. R.
Emory
, and
S.
Nie
, “
Nanostructured thin-film materials with surface-enhanced optical properties
,”
Chem. Mater.
13
(
3
),
1082
1088
(
2001
).
131.
P. K.
Jain
,
W.
Huang
, and
M. A.
El-Sayed
, “
On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation
,”
Nano Lett.
7
(
7
),
2080
2088
(
2007
).
132.
S.
Lee
,
J.
Kim
,
H.
Yang
,
E.
Cortes
,
S.
Kang
, and
S. W.
Han
, “
Particle-in-a-frame nanostructures with interior nanogaps
,”
Angew. Chem., Int. Ed.
58
,
15890
15894
(
2019
).
133.
J.
Kim
,
H.
Hilal
,
M.
Haddadnezhad
,
J.
Lee
,
W.
Park
,
W.
Park
,
J.-W.
Lee
,
I.
Jung
, and
S.
Park
, “
Plasmonic all-frame-faceted octahedral nanoframes with eight engraved Y-shaped hot zones
,”
ACS Nano
16
(
6
),
9214
9221
(
2022
).
134.
S.
Yoo
,
J.
Lee
,
J.
Kim
,
J.-M.
Kim
,
M.
Haddadnezhad
,
S.
Lee
,
S.
Choi
,
D.
Park
,
J.-M.
Nam
, and
S.
Park
, “
Silver double nanorings with circular hot zone
,”
J. Am. Chem. Soc.
142
(
28
),
12341
12348
(
2020
).
135.
X.
Zhang
,
T.
Wang
,
Y.
Li
,
Y.
Fu
, and
L.
Guo
, “
Optimally designed gold nanorattles with strong built-in hotspots and weak polarization dependence
,”
Nanotechnology
28
(
49
),
495201
(
2017
).
136.
Q.
Zhao
,
H.
Hilal
,
J.
Kim
,
W.
Park
,
M.
Haddadnezhad
,
J.
Lee
,
W.
Park
,
J.-W.
Lee
,
S.
Lee
,
I.
Jung
, and
S.
Park
, “
All-hot-spot bulk surface-enhanced Raman scattering (SERS) substrates: Attomolar detection of adsorbates with designer plasmonic nanoparticles
,”
J. Am. Chem. Soc.
144
(
29
),
13285
13293
(
2022
).
137.
B.
Ai
,
Z.
Wang
,
H.
Möhwald
, and
G.
Zhang
, “
Plasmonic nanochemistry based on nanohole array
,”
ACS Nano
11
(
12
),
12094
12102
(
2017
).
138.
Z.
Wang
,
B.
Ai
,
H.
Möhwald
, and
G.
Zhang
, “
Colloidal lithography meets plasmonic nanochemistry
,”
Adv. Opt. Mater.
6
(
18
),
1800402
(
2018
).
139.
G.
Lanzavecchia
,
J.
Kuttruff
,
A.
Doricchi
,
A.
Douaki
,
K. K.
Ramankutty
,
I.
García
,
L.
Lin
,
A. V.
Rodríguez
,
T.
Wågberg
,
R.
Krahne
,
N.
Maccaferri
, and
D.
Garoli
, “
Plasmonic photochemistry as a tool to prepare metallic nanopores with controlled diameter for optimized detection of single entities
,”
Adv. Opt. Mater.
11
(
16
),
2300786
(
2023
).
140.
Y.
Guan
,
Z.
Wang
,
P.
Gu
,
Y.
Wang
,
W.
Zhang
, and
G.
Zhang
, “
An in situ SERS study of plasmonic nanochemistry based on bifunctional ‘hedgehog-like’ arrays
,”
Nanoscale
11
,
9422
9428
(
2019
).
141.
S.
Yu
,
A. J.
Wilson
,
J.
Heo
, and
P. K.
Jain
, “
Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles
,”
Nano Lett.
18
(
4
),
2189
2194
(
2018
).
142.
F.
Wang
,
C.
Li
,
H.
Chen
,
R.
Jiang
,
L.-D.
Sun
,
Q.
Li
,
J.
Wang
,
J. C.
Yu
, and
C.-H.
Yan
, “
Plasmonic harvesting of light energy for Suzuki coupling reactions
,”
J. Am. Chem. Soc.
135
(
15
),
5588
5601
(
2013
).
143.
E. A.
Sprague-Klein
,
B.
Negru
,
L. R.
Madison
,
S. C.
Coste
,
B. K.
Rugg
,
A. M.
Felts
,
M. O.
McAnally
,
M.
Banik
,
V. A.
Apkarian
,
M. R.
Wasielewski
,
M. A.
Ratner
,
T.
Seideman
,
G. C.
Schatz
, and
R. P.
Van Duyne
, “
Photoinduced plasmon-driven chemistry in trans -1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers
,”
J. Am. Chem. Soc.
140
(
33
),
10583
10592
(
2018
).
144.
E. A.
Sprague-Klein
,
M. O.
McAnally
,
D. V.
Zhdanov
,
A. B.
Zrimsek
,
V. A.
Apkarian
,
T.
Seideman
,
G. C.
Schatz
, and
R. P.
Van Duyne
, “
Observation of single molecule plasmon-driven electron transfer in isotopically edited 4,4′-bipyridine gold nanosphere oligomers
,”
J. Am. Chem. Soc.
139
(
42
),
15212
15221
(
2017
).
145.
Y.
Kim
,
J. G.
Smith
, and
P. K.
Jain
, “
Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles
,”
Nat. Chem.
10
(
7
),
763
769
(
2018
).
146.
D.
Devasia
,
A. J.
Wilson
,
J.
Heo
,
V.
Mohan
, and
P. K.
Jain
, “
A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst
,”
Nat. Commun.
12
(
1
),
2612
(
2021
).
147.
W.
Hou
,
W. H.
Hung
,
P.
Pavaskar
,
A.
Goeppert
,
M.
Aykol
, and
S. B.
Cronin
, “
Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions
,”
ACS Catal.
1
(
8
),
929
936
(
2011
).
148.
G.
Kumari
,
X.
Zhang
,
D.
Devasia
,
J.
Heo
, and
P. K.
Jain
, “
Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst
,”
ACS Nano
12
(
8
),
8330
8340
(
2018
).
149.
L. V.
Besteiro
,
P.
Yu
,
Z.
Wang
,
A. W.
Holleitner
,
G. V.
Hartland
,
G. P.
Wiederrecht
, and
A. O.
Govorov
, “
The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter
,”
Nano Today
27
,
120
145
(
2019
).
150.
E.
Cortés
,
L. V.
Besteiro
,
A.
Alabastri
,
A.
Baldi
,
G.
Tagliabue
,
A.
Demetriadou
, and
P.
Narang
, “
Challenges in plasmonic catalysis
,”
ACS Nano
14
(
12
),
16202
16219
(
2020
).
151.
N. L.
Gruenke
,
M. F.
Cardinal
,
M. O.
McAnally
,
R. R.
Frontiera
,
G. C.
Schatz
, and
R. P.
Van Duyne
, “
Ultrafast and nonlinear surface-enhanced Raman spectroscopy
,”
Chem. Soc. Rev.
45
(
8
),
2263
2290
(
2016
).
152.
S.
Kim
,
T.-I.
Jeong
,
J.
Park
,
M. F.
Ciappina
, and
S.
Kim
, “
Recent advances in ultrafast plasmonics: From strong field physics to ultraprecision spectroscopy
,”
Nanophotonics
11
(
11
),
2393
2431
(
2022
).
153.
A. N.
Koya
,
M.
Romanelli
,
J.
Kuttruff
,
N.
Henriksson
,
A.
Stefancu
,
G.
Grinblat
,
A.
De Andres
,
F.
Schnur
,
M.
Vanzan
,
M.
Marsili
,
M.
Rahaman
,
A. V.
Rodríguez
,
T.
Tapani
,
H.
Lin
,
B. D.
Dana
,
J.
Lin
,
G.
Barbillon
,
R. P.
Zaccaria
,
D.
Brida
,
D.
Jariwala
,
L.
Veisz
,
E.
Cortés
,
S.
Corni
,
D.
Garoli
, and
N.
Maccaferri
, “
Advances in ultrafast plasmonics
,”
Appl. Phys. Rev.
10
(
2
),
021318
(
2023
).
154.
N.
Maccaferri
,
S.
Meuret
,
N.
Kornienko
, and
D.
Jariwala
, “
Speeding up nanoscience and nanotechnology with ultrafast plasmonics
,”
Nano Lett.
20
(
8
),
5593
5596
(
2020
).
155.
D.
Peckus
,
A.
Tamulevičienė
,
K.
Mougin
,
A.
Spangenberg
,
L.
Vidal
,
Q.
Bauerlin
,
M.
Keller
,
J.
Henzie
,
L.
Puodžiukynas
,
T.
Tamulevičius
, and
S.
Tamulevičius
, “
Shape influence on the ultrafast plasmonic properties of gold nanoparticles
,”
Opt. Express
30
(
15
),
27730–27745
(
2022
).
156.
M.-N.
Su
,
B.
Ostovar
,
N.
Gross
,
J. E.
Sader
,
W.-S.
Chang
, and
S.
Link
, “
Acoustic vibrations and energy dissipation mechanisms for lithographically fabricated plasmonic nanostructures revealed by single-particle transient extinction spectroscopy
,”
J. Phys. Chem. C
125
(
3
),
1621
1636
(
2021
).
157.
S. S.
Verma
, “
Plasmonics in nanomedicine: A review
,”
Global J. Nanomed.
4
(
5
),
555646
(
2018
).
158.
W.
Huang
,
W.
Qian
,
M. A.
El-Sayed
,
Y.
Ding
, and
Z. L.
Wang
, “
Effect of the lattice crystallinity on the electron−phonon relaxation rates in gold nanoparticles
,”
J. Phys. Chem. C
111
(
29
),
10751
10757
(
2007
).
159.
S.
Link
and
M. A.
El-Sayed
, “
Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals
,”
Int. Rev. Phys. Chem.
19
(
3
),
409
453
(
2000
).
160.
S.
Link
,
C.
Burda
,
M. B.
Mohamed
,
B.
Nikoobakht
, and
M. A.
El-Sayed
, “
Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time
,”
Phys. Rev. B
61
(
9
),
6086
6090
(
2000
).
161.
Y. U.
Staechelin
,
D.
Hoeing
,
F.
Schulz
, and
H.
Lange
, “
Size-dependent electron–phonon coupling in monocrystalline gold nanoparticles
,”
ACS Photonics
8
(
3
),
752
757
(
2021
).
162.
M.
Gao
,
Y.
He
,
Y.
Chen
,
T.-M.
Shih
,
W.
Yang
,
J.
Wang
,
F.
Zhao
,
M.-D.
Li
,
H.
Chen
, and
Z.
Yang
, “
Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays
,”
Nanoscale
11
(
35
),
16428
16436
(
2019
).
163.
M.
Ortolani
,
A.
Mancini
,
A.
Budweg
,
D.
Garoli
,
D.
Brida
, and
F.
De Angelis
, “
Pump-probe spectroscopy study of ultrafast temperature dynamics in nanoporous gold
,”
Phys. Rev. B
99
(
3
),
035435
(
2019
).
164.
A.
Schirato
,
G.
Crotti
,
M. G.
Silva
,
D. C.
Teles-Ferreira
,
C.
Manzoni
,
R. P.
Zaccaria
,
P.
Laporta
,
A. M.
De Paula
,
G.
Cerullo
, and
G.
D. Valle
, “
Ultrafast plasmonics beyond the perturbative regime: Breaking the electronic-optical dynamics correspondence
,”
Nano Lett.
22
(
7
),
2748
2754
(
2022
).
165.
R.
Ho-Wu
,
S. H.
Yau
, and
T.
Goodson
, “
Efficient singlet oxygen generation in metal nanoclusters for two-photon photodynamic therapy applications
,”
J. Phys. Chem. B
121
(
43
),
10073
10080
(
2017
).
166.
R.
Ho-Wu
,
S. H.
Yau
, and
T.
Goodson
, “
Linear and nonlinear optical properties of monolayer-protected gold nanocluster films
,”
ACS Nano
10
(
1
),
562
572
(
2016
).
167.
R.
Ho-Wu
,
P. K.
Sahu
,
N.
Wu
,
T. K.
Chen
,
C.
Yu
,
J.
Xie
, and
T.
Goodson
, “
Understanding the optical properties of Au@Ag bimetallic nanoclusters through time-resolved and nonlinear spectroscopy
,”
J. Phys. Chem. C
122
(
42
),
24368
24379
(
2018
).
168.
M.
Shabaninezhad
,
A.
Abuhagr
,
N. A.
Sakthivel
,
C.
Kumara
,
A.
Dass
,
K.
Kwak
,
K.
Pyo
,
D.
Lee
, and
G.
Ramakrishna
, “
Ultrafast electron dynamics in thiolate-protected plasmonic gold clusters: Size and ligand effect
,”
J. Phys. Chem. C
123
(
21
),
13344
13353
(
2019
).
169.
K.
Yu
,
G.
You
,
L.
Polavarapu
, and
Q.-H.
Xu
, “
Bimetallic Au/Ag core–shell nanorods studied by ultrafast transient absorption spectroscopy under selective excitation
,”
J. Phys. Chem. C
115
(
29
),
14000
14005
(
2011
).
170.
D.
Catone
,
L.
Di Mario
,
F.
Martelli
,
P.
O'Keeffe
,
A.
Paladini
,
J. S. P.
Cresi
,
A. K.
Sivan
,
L.
Tian
,
F.
Toschi
, and
S.
Turchini
, “
Ultrafast optical spectroscopy of semiconducting and plasmonic nanostructures and their hybrids
,”
Nanotechnology
32
(
2
),
025703
(
2020
).
171.
J. S. P.
Cresi
,
E.
Principi
,
E.
Spurio
,
D.
Catone
,
P.
O'Keeffe
,
S.
Turchini
,
S.
Benedetti
,
A.
Vikatakavi
,
S.
D'Addato
,
R.
Mincigrucci
,
L.
Foglia
,
G.
Kurdi
,
I. P.
Nikolov
,
G.
De Ninno
,
C.
Masciovecchio
,
S.
Nannarone
,
J. K.
Kesavan
,
F.
Boscherini
, and
P.
Luches
, “
Ultrafast dynamics of plasmon-mediated charge transfer in Ag@CeO2 studied by free electron laser time-resolved x-ray absorption spectroscopy
,”
Nano Lett.
21
(
4
),
1729
1734
(
2021
).
172.
L.
Amidani
,
A.
Naldoni
,
M.
Malvestuto
,
M.
Marelli
,
P.
Glatzel
,
V.
Dal Santo
, and
F.
Boscherini
, “
Probing long-lived plasmonic-generated charges in TiO2/Au by high-resolution x-ray absorption spectroscopy
,”
Angew. Chem., Int. Ed.
54
(
18
),
5413
5416
(
2015
).
173.
Q.
Zhu
,
S.
Jiang
,
K.
Ye
,
W.
Hu
,
J.
Zhang
,
X.
Niu
,
Y.
Lin
,
S.
Chen
,
L.
Song
,
Q.
Zhang
,
J.
Jiang
, and
Y.
Luo
, “
Hydrogen‐doping‐induced metal‐like ultrahigh free‐carrier concentration in metal‐oxide material for giant and tunable plasmon resonance
,”
Adv. Mater.
32
(
50
),
2004059
(
2020
).
174.
L.
Van Turnhout
,
Y.
Hattori
,
J.
Meng
,
K.
Zheng
, and
J.
, “
Direct observation of a plasmon-induced hot electron flow in a multimetallic nanostructure
,”
Nano Lett.
20
(
11
),
8220
8228
(
2020
).
175.
Y.
Yang
,
D.
Zhao
,
L.
Wang
,
W.
Wang
,
X.
Liu
, and
J.
Qiu
, “
Photon manipulation of two-dimensional plasmons in metal oxide nanosheets for surface-enhanced spectroscopy and ultrafast optical switching
,”
Chem. Mater.
34
(
6
),
2804
2812
(
2022
).
176.
Y.
Hattori
,
S. G.
Álvarez
,
J.
Meng
,
K.
Zheng
, and
J.
, “
Role of the metal oxide electron acceptor on gold–plasmon hot-carrier dynamics and its implication to photocatalysis and photovoltaics
,”
ACS Appl. Nano Mater.
4
(
2
),
2052
2060
(
2021
).
177.
N.
Ghorai
and
H. N.
Ghosh
, “
Ultrafast plasmon dynamics in near-infrared active non-stoichiometric Cu2–xSe nanocrystals and effect of chemical interface damping
,”
J. Phys. Chem. C
125
(
21
),
11468
11477
(
2021
).
178.
W.
Yang
,
Y.
Liu
,
J. R.
McBride
, and
T.
Lian
, “
Ultrafast and long-lived transient heating of surface adsorbates on plasmonic semiconductor nanocrystals
,”
Nano Lett.
21
(
1
),
453
461
(
2021
).
179.
D.
Ruan
,
J.
Xue
,
M.
Fujitsuka
, and
T.
Majima
, “
Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C3N4 for photocatalytic H2 production
,”
Chem. Commun.
55
(
43
),
6014
6017
(
2019
).
180.
G.
Prakash
,
R. K.
Srivastava
,
S. N.
Gupta
, and
A. K.
Sood
, “
Plasmon-induced efficient hot carrier generation in graphene on gold ultrathin film with periodic array of holes: Ultrafast pump-probe spectroscopy
,”
J. Chem. Phys.
151
(
23
),
234712
(
2019
).
181.
T.
Reese
,
A. N.
Reed
,
A. D.
Sample
,
F.
Freire-Fernández
,
R. D.
Schaller
,
A. M.
Urbas
, and
T. W.
Odom
, “
Ultrafast spectroscopy of plasmonic titanium nitride nanoparticle lattices
,”
ACS Photonics
8
(
6
),
1556
1561
(
2021
).
182.
W.
Du
,
J.
Zhao
,
W.
Zhao
,
S.
Zhang
,
H.
Xu
, and
Q.
Xiong
, “
Ultrafast modulation of exciton–plasmon coupling in a monolayer WS2–Ag nanodisk hybrid system
,”
ACS Photonics
6
(
11
),
2832
2840
(
2019
).
183.
E.
Colin‐Ulloa
,
A.
Fitzgerald
,
K.
Montazeri
,
J.
Mann
,
V.
Natu
,
K.
Ngo
,
J.
Uzarski
,
M. W.
Barsoum
, and
L. V.
Titova
, “
Ultrafast spectroscopy of plasmons and free carriers in 2D MXenes
,”
Adv. Mater.
35
(
8
),
2208659
(
2023
).
184.
F. V. A.
Camargo
,
Y.
Ben-Shahar
,
T.
Nagahara
,
Y. E.
Panfil
,
M.
Russo
,
U.
Banin
, and
G.
Cerullo
, “
Visualizing ultrafast electron transfer processes in semiconductor–metal hybrid nanoparticles: Toward excitonic–plasmonic light harvesting
,”
Nano Lett.
21
(
3
),
1461
1468
(
2021
).
185.
X.
Zhang
and
J.
Yang
, “
Ultrafast plasmonic optical switching structures and devices
,”
Front. Phys.
7
,
190
(
2019
).
186.
H.
Shan
,
Y.
Yu
,
X.
Wang
,
Y.
Luo
,
S.
Zu
,
B.
Du
,
T.
Han
,
B.
Li
,
Y.
Li
,
J.
Wu
,
F.
Lin
,
K.
Shi
,
B. K.
Tay
,
Z.
Liu
,
X.
Zhu
, and
Z.
Fang
, “
Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime
,”
Light: Sci. Appl.
8
(
1
),
9
(
2019
).
187.
J.
Yang
and
X.
Zhang
, “
Optical fiber delivered ultrafast plasmonic optical switch
,”
Adv. Sci.
8
(
10
),
2100280
(
2021
).
188.
R. F.
Ribeiro
,
J. A.
Campos-Gonzalez-Angulo
,
N. C.
Giebink
,
W.
Xiong
, and
J.
Yuen-Zhou
, “
Enhanced optical nonlinearities under collective strong light-matter coupling
,”
Phys. Rev. A
103
(
6
),
063111
(
2021
).
189.
P. P. P.
Kumar
,
A.
Rahman
,
T.
Goswami
,
H. N.
Ghosh
, and
P. P.
Neelakandan
, “
Fine‐tuning plasmon‐molecule interactions in gold‐BODIPY nanocomposites: The role of chemical structure and noncovalent interactions
,”
ChemPlusChem
86
(
1
),
87
94
(
2021
).
190.
E. L.
Keller
and
R. R.
Frontiera
, “
Ultrafast nanoscale Raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis
,”
ACS Nano
12
(
6
),
5848
5855
(
2018
).
191.
A.
Campos
,
N.
Troc
,
E.
Cottancin
,
M.
Pellarin
,
H.-C.
Weissker
,
J.
Lermé
,
M.
Kociak
, and
M.
Hillenkamp
, “
Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments
,”
Nat. Phys.
15
(
3
),
275
280
(
2019
).
192.
S.
Pres
,
B.
Huber
,
M.
Hensen
,
D.
Fersch
,
E.
Schatz
,
D.
Friedrich
,
V.
Lisinetskii
,
R.
Pompe
,
B.
Hecht
,
W.
Pfeiffer
, and
T.
Brixner
, “
Detection of a plasmon-polariton quantum wave packet
,”
Nat. Phys.
19
,
656
662
(
2023
).
193.
S. I.
Bogdanov
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Overcoming quantum decoherence with plasmonics
,”
Science
364
(
6440
),
532
533
(
2019
).
194.
T.
Quenzel
,
D.
Timmer
,
M.
Gittinger
,
J.
Zablocki
,
F.
Zheng
,
M.
Schiek
,
A.
Lützen
,
T.
Frauenheim
,
S.
Tretiak
,
M.
Silies
,
J.-H.
Zhong
,
A.
De Sio
, and
C.
Lienau
, “
Plasmon-enhanced exciton delocalization in squaraine-type molecular aggregates
,”
ACS Nano
16
(
3
),
4693
4704
(
2022
).
195.
J.
Kuttruff
,
M.
Romanelli
,
E.
Pedrueza-Villalmanzo
,
J.
Allerbeck
,
J.
Fregoni
,
V.
Saavedra-Becerril
,
J.
Andréasson
,
D.
Brida
,
A.
Dmitriev
,
S.
Corni
, and
N.
Maccaferri
, “
Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas
,”
Nat. Commun.
14
(
1
),
3875
(
2023
).
196.
W.
Zhu
,
R.
Esteban
,
A. G.
Borisov
,
J. J.
Baumberg
,
P.
Nordlander
,
H. J.
Lezec
,
J.
Aizpurua
, and
K. B.
Crozier
, “
Quantum mechanical effects in plasmonic structures with subnanometre gaps
,”
Nat. Commun.
7
(
1
),
11495
(
2016
).
197.
B.
De Nijs
,
F.
Benz
,
S. J.
Barrow
,
D. O.
Sigle
,
R.
Chikkaraddy
,
A.
Palma
,
C.
Carnegie
,
M.
Kamp
,
R.
Sundararaman
,
P.
Narang
,
O. A.
Scherman
, and
J. J.
Baumberg
, “
Plasmonic tunnel junctions for single-molecule redox chemistry
,”
Nat. Commun.
8
(
1
),
994
(
2017
).
198.
L.
Cui
,
Y.
Zhu
,
M.
Abbasi
,
A.
Ahmadivand
,
B.
Gerislioglu
,
P.
Nordlander
, and
D.
Natelson
, “
Electrically driven hot-carrier generation and above-threshold light emission in plasmonic tunnel junctions
,”
Nano Lett.
20
(
8
),
6067
6075
(
2020
).
199.
Y.
Tang
and
H.
Harutyunyan
, “
Optical properties of plasmonic tunneling junctions
,”
J. Chem. Phys.
158
(
6
),
060901
(
2023
).
200.
R.
Esteban
,
A. G.
Borisov
,
P.
Nordlander
, and
J.
Aizpurua
, “
Bridging quantum and classical plasmonics with a quantum-corrected model
,”
Nat. Commun.
3
(
1
),
825
(
2012
).
201.
N. A.
Mortensen
,
S.
Raza
,
M.
Wubs
,
T.
Søndergaard
, and
S. I.
Bozhevolnyi
, “
A generalized non-local optical response theory for plasmonic nanostructures
,”
Nat. Commun.
5
(
1
),
3809
(
2014
).
202.
N.
Kongsuwan
,
A.
Demetriadou
,
R.
Chikkaraddy
,
F.
Benz
,
V. A.
Turek
,
U. F.
Keyser
,
J. J.
Baumberg
, and
O.
Hess
, “
Suppressed quenching and strong-coupling of purcell-enhanced single-molecule emission in plasmonic nanocavities
,”
ACS Photonics
5
(
1
),
186
191
(
2018
).
203.
D.
Xu
,
X.
Xiong
,
L.
Wu
,
X.-F.
Ren
,
C. E.
Png
,
G.-C.
Guo
,
Q.
Gong
, and
Y.-F.
Xiao
, “
Quantum plasmonics: New opportunity in fundamental and applied photonics
,”
Adv. Opt. Photonics
10
(
4
),
703
(
2018
).
204.
Z.-K.
Zhou
,
J.
Liu
,
Y.
Bao
,
L.
Wu
,
C. E.
Png
,
X.-H.
Wang
, and
C.-W.
Qiu
, “
Quantum plasmonics get applied
,”
Prog. Quantum Electron.
65
,
1
20
(
2019
).
205.
E.-M.
Roller
,
L. V.
Besteiro
,
C.
Pupp
,
L. K.
Khorashad
,
A. O.
Govorov
, and
T.
Liedl
, “
Hotspot-mediated non-dissipative and ultrafast plasmon passage
,”
Nat. Phys.
13
(
8
),
761
765
(
2017
).
206.
C.
Zhou
,
X.
Duan
, and
N.
Liu
, “
A plasmonic nanorod that walks on DNA origami
,”
Nat. Commun.
6
(
1
),
8102
(
2015
).
207.
M. S.
Rider
,
R.
Arul
,
J. J.
Baumberg
, and
W. L.
Barnes
, “
Theory of strong coupling between molecules and surface plasmons on a grating
,”
Nanophotonics
11
(
16
),
3695
3708
(
2022
).
208.
J. C.
Becca
,
X.
Chen
, and
L.
Jensen
, “
A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy in solution
,”
J. Chem. Phys.
154
(
22
),
224705
(
2021
).
209.
N.
Kongsuwan
,
X.
Xiong
,
P.
Bai
,
J.-B.
You
,
C. E.
Png
,
L.
Wu
, and
O.
Hess
, “
Quantum plasmonic immunoassay sensing
,”
Nano Lett.
19
(
9
),
5853
5861
(
2019
).
210.
O.
Bitton
,
S. N.
Gupta
, and
G.
Haran
, “
Quantum dot plasmonics: From weak to strong coupling
,”
Nanophotonics
8
(
4
),
559
575
(
2019
).
211.
M. P.
Fischer
,
N.
Maccaferri
,
K.
Gallacher
,
J.
Frigerio
,
G.
Pellegrini
,
D. J.
Paul
,
G.
Isella
,
A.
Leitenstorfer
,
P.
Biagioni
, and
D.
Brida
, “
Field-resolved detection of the temporal response of a single plasmonic antenna in the mid-infrared
,”
Optica
8
(
6
),
898
(
2021
).
212.
M. N.
Gadalla
,
A. S.
Greenspon
,
M.
Tamagnone
,
F.
Capasso
, and
E. L.
Hu
, “
Excitation of strong localized surface plasmon resonances in highly metallic titanium nitride nano-antennas for stable performance at elevated temperatures
,”
ACS Appl. Nano Mater.
2
(
6
),
3444
3452
(
2019
).
213.
C.
Lee
,
B.
Lawrie
,
R.
Pooser
,
K.-G.
Lee
,
C.
Rockstuhl
, and
M.
Tame
, “
Quantum plasmonic sensors
,”
Chem. Rev.
121
(
8
),
4743
4804
(
2021
).
214.
P.
Genevet
,
F.
Capasso
,
F.
Aieta
,
M.
Khorasaninejad
, and
R.
Devlin
, “
Recent advances in planar optics: From plasmonic to dielectric metasurfaces
,”
Optica
4
(
1
),
139
(
2017
).
You do not currently have access to this content.