Bridging the current gap between the precision and efficiency demonstrated by natural systems and synthetic materials requires interfacing and independently controlling multiple stimuli-responsive building blocks in a single platform. The mentioned orthogonal control over material properties (i.e., the ability to selectively activate one stimuli-responsive moiety without affecting another) could pave the way for a multitude of applications, including logic-gated optoelectronics, on-demand drug delivery platforms, and molecular shuttles, for example. In this Review, we highlight the recent successful strategies to achieve orthogonal control over material properties using a combination of stimuli-responsive building blocks and multiple independent stimuli. We begin by surveying the fundamental studies of multi-stimuli-responsive systems, which utilize a variety of stimuli to activate a single stimuli-responsive moiety (e.g., spiropyran, diarylethene, or dihydroazulene derivatives), because these studies lay the foundation for the design of systems containing more than one independently controlled fragment. As a next step, we overview the emerging field focusing on systems which are composed of more than one unique stimuli-responsive unit that can respond to independent stimuli, including distinct excitation wavelengths, or a combination of light, heat, pH, potential, or ionic strength. Recent advances clearly demonstrate how strategic coupling of orthogonally controlled stimuli-responsive units can allow for selective modulation of a range of material properties, such as conductivity, catalytic performance, and biological activity. Thus, the highlighted studies foreshadow the emerging role of materials with orthogonally controlled properties to impact the next generation of photopharmacology, nanotechnology, optoelectronics, and biomimetics.

1.
Q.
Qiu
,
Z.
Sun
,
D.
Joubran
,
X.
Li
,
J.
Wan
,
K.
Schmidt-Rohr
, and
G. G. D.
Han
, “
Optically controlled recovery and recycling of homogeneous organocatalysts enabled by photoswitches
,”
Angew. Chem., Int. Ed.
62
,
e202300723
(
2023
).
2.
G. C.
Thaggard
,
J.
Haimerl
,
R. A.
Fischer
,
K. C.
Park
, and
N. B.
Shustova
, “
Traffic lights for catalysis: Stimuli‐responsive molecular and extended catalytic systems
,”
Angew. Chem., Int. Ed.
62
,
e202302859
(
2023
).
3.
G.
De Bo
,
D. A.
Leigh
,
C. T.
McTernan
, and
S.
Wang
, “
A complementary pair of enantioselective switchable organocatalysts
,”
Chem. Sci.
8
,
7077
7081
(
2017
).
4.
S.
Mura
,
J.
Nicolas
, and
P.
Couvreur
, “
Stimuli-responsive nanocarriers for drug delivery
,”
Nat. Mater.
12
,
991
1003
(
2013
).
5.
M. A.
Rahim
,
N.
Jan
,
S.
Khan
,
H.
Shah
,
A.
Madni
,
A.
Khan
,
A.
Jabar
,
S.
Khan
,
A.
Elhissi
,
Z.
Hussain
,
H. C.
Aziz
,
M.
Sohail
,
M.
Khan
, and
H. E.
Thu
, “
Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting
,”
Cancers
13
,
670
(
2021
).
6.
C.
Xu
,
J.
Zhang
,
W.
Xu
, and
H.
Tian
, “
Multifunctional organic field effect transistors constructed with photochromic molecules
,”
Mater. Chem. Front.
5
,
1060
1075
(
2021
).
7.
C. R.
Martin
,
G. A.
Leith
,
P.
Kittikhunnatham
,
K. C.
Park
,
O. A.
Ejegbavwo
,
A.
Mathur
,
C. R.
Callahan
,
S. L.
Desmond
,
M. R.
Keener
,
F.
Ahmed
,
S.
Pandey
,
M. D.
Smith
,
S. R.
Phillpot
,
A. B.
Greytak
, and
N. B.
Shustova
, “
Heterometallic actinide‐containing photoresponsive metal‐organic frameworks: Dynamic and static tuning of electronic properties
,”
Angew. Chem., Int. Ed.
60
,
8072
8080
(
2021
).
8.
M. E.
Zick
,
S. M.
Pugh
,
J.-H.
Lee
,
A. C.
Forse
, and
P. J.
Milner
, “
Carbon dioxide capture at nucleophilic hydroxide sites in oxidation‐resistant cyclodextrin‐based metal–organic frameworks
,”
Angew. Chem., Int. Ed.
61
,
e202206718
(
2022
).
9.
R. A.
Klein
,
S.
Shulda
,
P. A.
Parilla
,
P.
Le Magueres
,
R. K.
Richardson
,
W.
Morris
,
C. M.
Brown
, and
C. M.
McGuirk
, “
Structural resolution and mechanistic insight into hydrogen adsorption in flexible ZIF-7
,”
Chem. Sci.
12
,
15620
15631
(
2021
).
10.
B.
Pattengale
,
Y.
Huang
,
X.
Yan
,
S.
Yang
,
S.
Younan
,
W.
Hu
,
Z.
Li
,
S.
Lee
,
X.
Pan
,
J.
Gu
, and
J.
Huang
, “
Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution
,”
Nat. Commun.
11
,
4114
(
2020
).
11.
C.
Stähler
,
L.
Grunenberg
,
M. W.
Terban
,
W. R.
Browne
,
D.
Doellerer
,
M.
Kathan
,
M.
Etter
,
B. V.
Lotsch
,
B. L.
Feringa
, and
S.
Krause
, “
Light-driven molecular motors embedded in covalent organic frameworks
,”
Chem. Sci.
13
,
8253
8264
(
2022
).
12.
T. J.
Adams
,
A. R.
Brotherton
,
J. A.
Molai
,
N.
Parmar
,
J. R.
Palmer
,
K. A.
Sandor
, and
M. G.
Walter
, “
Obtaining reversible, high contrast electrochromism, electrofluorochromism, and photochromism in an aqueous hydrogel device using chromogenic thiazolothiazoles
,”
Adv. Funct. Mater.
31
,
2103408
(
2021
).
13.
V.
Quezada-Novoa
,
H. M.
Titi
,
A. A.
Sarjeant
, and
A. J.
Howarth
, “
Building a shp: A rare-earth metal–organic framework and its application in a catalytic photooxidation reaction
,”
Chem. Mater.
33
,
4163
4169
(
2021
).
14.
B. J.
Deibert
and
J.
Li
, “
A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework
,”
Chem. Commun.
50
,
9636
9639
(
2014
).
15.
O.
Yanshyna
,
M. J.
Białek
,
O. V.
Chashchikhin
, and
R.
Klajn
, “
Encapsulation within a coordination cage modulates the reactivity of redox-active dyes
,”
Commun. Chem.
5
,
44
(
2022
).
16.
D. A.
Burns
,
E. M.
Press
,
M. A.
Siegler
,
R. S.
Klausen
, and
V. S.
Thoi
, “
2D oligosilyl metal–organic frameworks as multi‐state switchable materials
,”
Angew. Chem., Int. Ed.
59
,
763
768
(
2020
).
17.
F. E.
Chen
,
T. A.
Pitt
,
D. J.
Okong'o
,
L. G.
Wetherbee
,
J. J.
Fuentes-Rivera
, and
P. J.
Milner
, “
A structure–activity study of aromatic acid modulators for the synthesis of zirconium-based metal–organic frameworks
,”
Chem. Mater.
34
,
3383
3394
(
2022
).
18.
A.
Halder
,
R. A.
Klein
,
S.
Shulda
,
G. A.
McCarver
,
P. A.
Parilla
,
H.
Furukawa
,
C. M.
Brown
, and
C. M.
McGuirk
, “
Multivariate flexible framework with high usable hydrogen capacity in a reduced pressure swing process
,”
J. Am. Chem. Soc.
145
,
8033
8042
(
2023
).
19.
D.
Wang
,
D.
Streater
,
Y.
Peng
, and
J.
Huang
, “
2D covalent organic frameworks with an incorporated manganese complex for light driven carbon dioxide reduction
,”
ChemPhotoChem
5
,
1119
1123
(
2021
).
20.
S.
Krause
,
V.
Bon
,
U.
Stoeck
,
I.
Senkovska
,
D. M.
Többens
,
D.
Wallacher
, and
S.
Kaskel
, “
A stimuli‐responsive zirconium metal–organic framework based on supermolecular design
,”
Angew. Chem., Int. Ed.
56
,
10676
10680
(
2017
).
21.
Z.
Ajoyan
,
G. A.
Mandl
,
P. R.
Donnarumma
,
V.
Quezada-Novoa
,
H. A.
Bicalho
,
H. M.
Titi
,
J. A.
Capobianco
, and
A. J.
Howarth
, “
Modulating photo- and radioluminescence in Tb(III) cluster-based metal–organic frameworks
,”
ACS Mater. Lett.
4
,
1025
1031
(
2022
).
22.
A. N.
Woodward
,
J. M.
Kolesar
,
S. R.
Hall
,
N.-A.
Saleh
,
D. S.
Jones
, and
M. G.
Walter
, “
Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism
,”
J. Am. Chem. Soc.
139
,
8467
8473
(
2017
).
23.
A.
Karmakar
and
J.
Li
, “
Luminescent MOFs (LMOFs): Recent advancement towards a greener WLED technology
,”
Chem. Commun.
58
,
10768
10788
(
2022
).
24.
B.
Liu
and
V. S.
Thoi
, “
Tailored porous framework materials for advancing lithium–sulfur batteries
,”
Chem. Commun.
58
,
4005
4015
(
2022
).
25.
P.
Zhang
,
F.
Zhu
,
F.
Wang
,
J.
Wang
,
R.
Dong
,
X.
Zhuang
,
O. G.
Schmidt
, and
X.
Feng
, “
Stimulus‐responsive micro‐supercapacitors with ultrahigh energy density and reversible electrochromic window
,”
Adv. Mater.
29
,
1604491
(
2017
).
26.
F.
Lancia
,
A.
Ryabchun
,
A.-D.
Nguindjel
,
S.
Kwangmettatam
, and
N.
Katsonis
, “
Mechanical adaptability of artificial muscles from nanoscale molecular action
,”
Nat. Commun.
10
,
4819
(
2019
).
27.
H.
Zhang
,
Q.
Li
,
Y.
Yang
,
X.
Ji
, and
J. L.
Sessler
, “
Unlocking chemically encrypted information using three types of external stimuli
,”
J. Am. Chem. Soc.
143
,
18635
18642
(
2021
).
28.
S.
Guragain
,
B. P.
Bastakoti
,
V.
Malgras
,
K.
Nakashima
, and
Y.
Yamauchi
, “
Multi‐stimuli‐responsive polymeric materials
,”
Chem. Eur. J.
21
,
13164
13174
(
2015
).
29.
V. C.
Caruso
,
J. T.
Mohl
,
C.
Glynn
,
J.
Lee
,
S. M.
Willett
,
A.
Zaman
,
A. F.
Ebihara
,
R.
Estrada
,
W. A.
Freiwald
,
S. T.
Tokdar
, and
J. M.
Groh
, “
Single neurons may encode simultaneous stimuli by switching between activity patterns
,”
Nat. Commun.
9
,
2715
(
2018
).
30.
C. A.
Simpkins
and
A. M.
Simpkins
,
Neuroscience for Clinicians
(
Springer
,
2013
), pp.
77
91
.
31.
C. A.
Del Negro
,
G. D.
Funk
, and
J. L.
Feldman
, “
Breathing matters
,”
Nat. Rev. Neurosci.
19
,
351
367
(
2018
).
32.
P. G.
Guyenet
, “
Regulation of breathing and autonomic outflows by chemoreceptors
,”
Compr. Physiol.
4
,
1511
1562
(
2014
).
33.
S.
Abdallah
,
R.
Mhanna
,
J.
Cabrera-González
,
R.
Núñez
,
A.
Khitous
,
F.
Morlet-Savary
,
O.
Soppera
,
D.-L.
Versace
, and
J.-P.
Malval
, “
Reversible optical data storage via two-photon micropatterning of o-carboranes-embedded switchable materials
,”
Chem. Mater.
35
,
6979
6989
(
2023
).
34.
J.
Shin
,
W.
Jo
,
J. H.
Hwang
,
J.
Han
,
W.
Lee
,
S.
Park
,
Y. S.
Kim
,
H.-T.
Kim
, and
D.-G.
Kim
, “
Regional control of multistimuli-responsive structural color-switching surfaces by a micropatterned DNA-hydrogel assembly
,”
Nano Lett.
22
,
5069
5076
(
2022
).
35.
Y.
Purusothaman
,
N. R.
Alluri
,
A.
Chandrasekhar
,
V.
Venkateswaran
, and
S.-J.
Kim
, “
Piezophototronic gated optofluidic logic computations empowering intrinsic reconfigurable switches
,”
Nat. Commun.
10
,
4381
(
2019
).
36.
M. M.
Lerch
,
M. J.
Hansen
,
W. A.
Velema
,
W.
Szymanski
, and
B. L.
Feringa
, “
Orthogonal photoswitching in a multifunctional molecular system
,”
Nat. Commun.
7
,
12054
(
2016
).
37.
T.-G.
Zhan
,
M.-Y.
Yun
,
J.-L.
Lin
,
X.-Y.
Yu
, and
K.-D.
Zhang
, “
Dual absorption spectral changes by light-triggered shuttling in bistable [2]rotaxanes with non-destructive readout
,”
Chem. Commun.
52
,
14085
14088
(
2016
).
38.
P. K.
Kundu
,
G. L.
Olsen
,
V.
Kiss
, and
R.
Klajn
, “
Nanoporous frameworks exhibiting multiple stimuli responsiveness
,”
Nat. Commun.
5
,
3588
(
2014
).
39.
M. W.
Haydell
,
M.
Centola
,
V.
Adam
,
J.
Valero
, and
M.
Famulok
, “
Temporal and reversible control of a DNAzyme by orthogonal photoswitching
,”
J. Am. Chem. Soc.
140
,
16868
16872
(
2018
).
40.
M.
Herder
,
M.
Utecht
,
N.
Manicke
,
L.
Grubert
,
M.
Pätzel
,
P.
Saalfrank
, and
S.
Hecht
, “
Switching with orthogonal stimuli: Electrochemical ring-closure and photochemical ring-opening of bis(thiazolyl)maleimides
,”
Chem. Sci.
4
,
1028
1040
(
2013
).
41.
F.
Meng
,
Y.-M.
Hervault
,
Q.
Shao
,
B.
Hu
,
L.
Norel
,
S.
Rigaut
, and
X.
Chen
, “
Orthogonally modulated molecular transport junctions for resettable electronic logic gates
,”
Nat. Commun.
5
,
3023
(
2014
).
42.
B.
Li
,
J.-Y.
Wang
,
H.-M.
Wen
,
L.-X.
Shi
, and
Z.-N.
Chen
, “
Redox-modulated stepwise photochromism in a ruthenium complex with dual dithienylethene-acetylides
,”
J. Am. Chem. Soc.
134
,
16059
16067
(
2012
).
43.
Y.-M.
Hervault
,
C. M.
Ndiaye
,
L.
Norel
,
C.
Lagrost
, and
S.
Rigaut
, “
Controlling the stepwise closing of identical DTE photochromic units with electrochemical and optical stimuli
,”
Org. Lett.
14
,
4454
4457
(
2012
).
44.
Y.
Zhang
,
S.
Chen
,
M.
Pang
, and
W.
Zhang
, “
Synthesis and micellization of a multi-stimuli responsive block copolymer based on spiropyran
,”
Polym. Chem.
7
,
6880
6884
(
2016
).
45.
S.
Santiago
,
P.
Giménez-Gómez
,
X.
Muñoz-Berbel
,
J.
Hernando
, and
G.
Guirado
, “
Solid multiresponsive materials based on nitrospiropyran-doped ionogels
,”
ACS Appl. Mater. Interfaces
13
,
26461
26471
(
2021
).
46.
Q.
Qi
,
J.
Qian
,
S.
Ma
,
B.
Xu
,
S. X.-A.
Zhang
, and
W.
Tian
, “
Reversible multistimuli‐response fluorescent switch based on tetraphenylethene–spiropyran molecules
,”
Chem. Eur. J.
21
,
1149
1155
(
2015
).
47.
S. K.
Kreft
,
M. Å.
Petersen
,
M. B.
Nielsen
,
S.
Reich
, and
A.
Setaro
, “
Isomerization of orthogonal molecular switches encapsulated within micelles solubilizing carbon nanotubes
,”
J. Phys. Chem. C
119
,
15731
15734
(
2015
).
48.
A.
Setaro
,
S. K.
Kreft
,
M. Å.
Petersen
,
M. B.
Nielsen
, and
S.
Reich
, “
Optical properties of carbon nanotubes coated with orthogonal dipole switches
,”
Phys. Status Solidi B
251
,
2356
2359
(
2014
).
49.
M.
Irie
,
T.
Fukaminato
,
K.
Matsuda
, and
S.
Kobatake
, “
Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators
,”
Chem. Rev.
114
,
12174
12277
(
2014
).
50.
X.
Chai
,
Y.-X.
Fu
,
T. D.
James
,
J.
Zhang
,
X.-P.
He
, and
H.
Tian
, “
Photochromism and molecular logic gate operation of a water-compatible bis-glycosyl diarylethene
,”
Chem. Commun.
53
,
9494
9497
(
2017
).
51.
Y.-Y.
Tang
,
Y.-L.
Zeng
, and
R.-G.
Xiong
, “
Contactless manipulation of write–read–erase data storage in diarylethene ferroelectric crystals
,”
J. Am. Chem. Soc.
144
,
8633
8640
(
2022
).
52.
J.
Boixel
,
V.
Guerchais
,
H. L.
Bozec
,
D.
Jacquemin
,
A.
Amar
,
A.
Boucekkine
,
A.
Colombo
,
C.
Dragonetti
,
D.
Marinotto
,
D.
Roberto
,
S.
Righetto
, and
R. D.
Angelis
, “
Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes
,”
J. Am. Chem. Soc.
136
,
5367
5375
(
2014
).
53.
Y.
Cai
,
Y.
Gao
,
Q.
Luo
,
M.
Li
,
J.
Zhang
,
H.
Tian
, and
W.
Zhu
, “
Ferrocene‐grafted photochromic triads based on a sterically hindered ethene bridge: Redox‐switchable fluorescence and gated photochromism
,”
Adv. Opt. Mater.
4
,
1410
1416
(
2016
).
54.
A.
Mulas
,
X.
He
,
Y.-M.
Hervault
,
L.
Norel
,
S.
Rigaut
, and
C.
Lagrost
, “
Dual‐responsive molecular switches based on dithienylethene–RuII organometallics in self‐assembled monolayers operating at low voltage
,”
Chem. Eur. J.
23
,
10205
10214
(
2017
).
55.
Y.
Liu
,
C.
Lagrost
,
K.
Costuas
,
N.
Tchouar
,
H. L.
Bozec
, and
S.
Rigaut
, “
A multifunctional organometallic switch with carbon-rich ruthenium and diarylethene units
,”
Chem. Commun.
2008
,
6117
6119
.
56.
M.
Irie
, “
Diarylethenes for memories and switches
,”
Chem. Rev.
100
,
1685
1716
(
2000
).
57.
R.
Klajn
, “
Spiropyran-based dynamic materials
,”
Chem. Soc. Rev.
43
,
148
184
(
2013
).
58.
C. R.
Martin
,
K. C.
Park
,
G. A.
Leith
,
J.
Yu
,
A.
Mathur
,
G. R.
Wilson
,
G. B.
Gange
,
E. L.
Barth
,
R. T.
Ly
,
O. M.
Manley
,
K. L.
Forrester
,
S. G.
Karakalos
,
M. D.
Smith
,
T. M.
Makris
,
A. K.
Vannucci
,
D. V.
Peryshkov
, and
N. B.
Shustova
, “
Stimuli-modulated metal oxidation states in photochromic MOFs
,”
J. Am. Chem. Soc.
144
,
4457
4468
(
2022
).
59.
C. R.
Martin
,
K. C.
Park
,
R. E.
Corkill
,
P.
Kittikhunnatham
,
G. A.
Leith
,
A.
Mathur
,
S. L.
Abiodun
,
A. B.
Greytak
, and
N. B.
Shustova
, “
Photoresponsive frameworks: Energy transfer in the spotlight
,”
Faraday Discuss.
231
,
266
280
(
2021
).
60.
L.
Wimberger
,
S. K. K.
Prasad
,
M. D.
Peeks
,
J.
Andréasson
,
T. W.
Schmidt
, and
J. E.
Beves
, “
Large, tunable, and reversible pH changes by merocyanine photoacids
,”
J. Am. Chem. Soc.
143
,
20758
20768
(
2021
).
61.
M.
Reifarth
,
M.
Bekir
,
A. M.
Bapolisi
,
E.
Titov
,
F.
Nußhardt
,
J.
Nowaczyk
,
D.
Grigoriev
,
A.
Sharma
,
P.
Saalfrank
,
S.
Santer
,
M.
Hartlieb
, and
A.
Böker
, “
A dual pH‐ and light‐responsive spiropyran‐based surfactant: Investigations on its switching behavior and remote control over emulsion stability
,”
Angew. Chem., Int. Ed.
61
,
e202114687
(
2022
).
62.
M.
Schnurbus
,
M.
Kabat
,
E.
Jarek
,
M.
Krzan
,
P.
Warszynski
, and
B.
Braunschweig
, “
Spiropyran sulfonates for photo- and pH-responsive air–water interfaces and aqueous foam
,”
Langmuir
36
,
6871
6879
(
2020
).
63.
N.
Kobayashi
,
S.
Sato
,
K.
Takazawa
,
K.
Ikeda
, and
R.
Hirohashi
, “
A new polymer electrolyte for reversible photoresponsive ionic conduction
,”
Electrochim. Acta
40
,
2309
2311
(
1995
).
64.
A.
Radu
,
S.
Scarmagnani
,
R.
Byrne
,
C.
Slater
,
K. T.
Lau
, and
D.
Diamond
, “
Photonic modulation of surface properties: A novel concept in chemical sensing
,”
J. Phys. D
40
,
7238
(
2007
).
65.
J. D.
Steen
,
D. R.
Duijnstee
,
A. S.
Sardjan
,
J.
Martinelli
,
L.
Kortekaas
,
D.
Jacquemin
, and
W. R.
Browne
, “
Electrochemical ring-opening and -closing of a spiropyran
,”
J. Phys. Chem. A
125
,
3355
3361
(
2021
).
66.
G. R.
Wilson
,
K. C.
Park
,
G. C.
Thaggard
,
C. R.
Martin
,
A. R.
Hill
,
J.
Haimerl
,
J.
Lim
,
B. K. P.
Maldeni Kankanamalage
,
B. J.
Yarbrough
,
K. L.
Forrester
,
R. A.
Fischer
,
P. J.
Pellechia
,
M. D.
Smith
,
S.
Garashchuk
, and
N. B.
Shustova
, “
Cooperative and orthogonal switching in the solid state enabled by metal‐organic framework confinement leading to a thermo‐photochromic platform
,”
Angew. Chem., Int. Ed.
62
,
e202308715
(
2023
).
67.
Y.
Shiraishi
,
M.
Itoh
, and
T.
Hirai
, “
Thermal isomerization of spiropyran to merocyanine in aqueous media and its application to colorimetric temperature indication
,”
Phys. Chem. Chem. Phys.
12
,
13737
13745
(
2010
).
68.
A.
Abdollahi
,
H.
Roghani-Mamaqani
,
B.
Razavi
, and
M.
Salami-Kalajahi
, “
The light-controlling of temperature-responsivity in stimuli-responsive polymers
,”
Polym. Chem.
10
,
5686
5720
(
2019
).
69.
N.
Shao
,
Y.
Zhang
,
S.
Cheung
,
R.
Yang
,
W.
Chan
,
T.
Mo
,
K.
Li
, and
F.
Liu
, “
Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative
,”
Anal. Chem.
77
,
7294
7303
(
2005
).
70.
I.
Yildiz
,
S.
Impellizzeri
,
E.
Deniz
,
B.
McCaughan
,
J. F.
Callan
, and
F. M.
Raymo
, “
Supramolecular strategies to construct biocompatible and photoswitchable fluorescent assemblies
,”
J. Am. Chem. Soc.
133
,
871
879
(
2011
).
71.
A. G.
Tebo
,
B.
Moeyaert
,
M.
Thauvin
,
I.
Carlon-Andres
,
D.
Böken
,
M.
Volovitch
,
S.
Padilla-Parra
,
P.
Dedecker
,
S.
Vriz
, and
A.
Gautier
, “
Orthogonal fluorescent chemogenetic reporters for multicolor imaging
,”
Nat. Chem. Biol.
17
,
30
38
(
2021
).
72.
H.
Li
and
J. C.
Vaughan
, “
Switchable fluorophores for single-molecule localization microscopy
,”
Chem. Rev.
118
,
9412
9454
(
2018
).
73.
H.
Qian
,
S.
Pramanik
, and
I.
Aprahamian
, “
Photochromic hydrazone switches with extremely long thermal half-lives
,”
J. Am. Chem. Soc.
139
,
9140
9143
(
2017
).
74.
G. A.
Leith
and
N. B.
Shustova
, “
Keeping COFs in the loop
,”
Nat. Chem.
14
,
485
486
(
2022
).
75.
L.
Sun
,
X.
Wang
,
Y.
Wang
, and
Q.
Zhang
, “
Roles of carbon nanotubes in novel energy storage devices
,”
Carbon
122
,
462
474
(
2017
).
76.
E.
Muchuweni
,
E. T.
Mombeshora
,
B. S.
Martincigh
, and
V. O.
Nyamori
, “
Recent applications of carbon nanotubes in organic solar cells
,”
Front. Chem.
9
,
733552
(
2022
).
77.
S.
Yamazoe
,
Q.
Liu
,
L. E.
McQuade
,
A.
Deiters
, and
J. K.
Chen
, “
Sequential gene silencing using wavelength‐selective caged morpholino oligonucleotides
,”
Angew. Chem., Int. Ed.
53
,
10114
10118
(
2014
).
78.
L.
García‐Fernández
,
C.
Herbivo
,
V. S. M.
Arranz
,
D.
Warther
,
L.
Donato
,
A.
Specht
, and
A.
del Campo
, “
Dual photosensitive polymers with wavelength‐selective photoresponse
,”
Adv. Mater.
26
,
5012
5017
(
2014
).
79.
M. A.
Azagarsamy
and
K. S.
Anseth
, “
Wavelength‐controlled photocleavage for the orthogonal and sequential release of multiple proteins
,”
Angew. Chem., Int. Ed.
52
,
13803
13807
(
2013
).
80.
W. A.
Velema
,
J. P.
van der Berg
,
W.
Szymanski
,
A. J. M.
Driessen
, and
B. L.
Feringa
, “
Orthogonal control of antibacterial activity with light
,”
ACS Chem. Biol.
9
,
1969
1974
(
2014
).
81.
D.
Wang
,
F.
Schellenberger
,
J. T.
Pham
,
H.-J.
Butt
, and
S.
Wu
, “
Orthogonal photo-switching of supramolecular patterned surfaces
,”
Chem. Commun.
54
,
3403
3406
(
2018
).
82.
F.
Zhao
,
L.
Grubert
,
S.
Hecht
, and
D.
Bléger
, “
Orthogonal switching in four-state azobenzene mixed-dimers
,”
Chem. Commun.
53
,
3323
3326
(
2017
).
83.
F.
Tian
,
D.
Jiao
,
F.
Biedermann
, and
O. A.
Scherman
, “
Orthogonal switching of a single supramolecular complex
,”
Nat. Commun.
3
,
1207
(
2012
).
84.
B. S.
Birenheide
,
F.
Krämer
,
L.
Bayer
,
P.
Mehlmann
,
F.
Dielmann
, and
F.
Breher
, “
Multistimuli‐responsive [3]dioxaphosphaferrocenophanes with orthogonal switches
,”
Chem. Eur. J.
27
,
15067
15074
(
2021
).
85.
N.
Zhang
,
W.-Y.
Lo
,
A.
Jose
,
Z.
Cai
,
L.
Li
, and
L.
Yu
, “
A single‐molecular AND gate operated with two orthogonal switching mechanisms
,”
Adv. Mater.
29
,
1701248
(
2017
).
86.
G.
Gröger
,
W.
Meyer-Zaika
,
C.
Böttcher
,
F.
Gröhn
,
C.
Ruthard
, and
C.
Schmuck
, “
Switchable supramolecular polymers from the self-assembly of a small monomer with two orthogonal binding interactions
,”
J. Am. Chem. Soc.
133
,
8961
8971
(
2011
).
87.
K. A.
Green
,
M. P.
Cifuentes
,
T. C.
Corkery
,
M.
Samoc
, and
M. G.
Humphrey
, “
Switching the cubic nonlinear optical properties of an electro‐, halo‐, and photochromic ruthenium alkynyl complex across six states
,”
Angew. Chem., Int. Ed.
48
,
7867
7870
(
2009
).
88.
E.
Fuentes
,
M.
Gerth
,
J. A.
Berrocal
,
C.
Matera
,
P.
Gorostiza
,
I. K.
Voets
,
S.
Pujals
, and
L.
Albertazzi
, “
An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water
,”
J. Am. Chem. Soc.
142
,
10069
10078
(
2020
).
89.
P.
Lavrador
,
M. R.
Esteves
,
V. M.
Gaspar
, and
J. F.
Mano
, “
Stimuli‐responsive nanocomposite hydrogels for biomedical applications
,”
Adv. Funct. Mater.
31
,
2005941
(
2021
).
90.
M. A.
Priestman
,
L.
Sun
, and
D. S.
Lawrence
, “
Dual wavelength photoactivation of cAMP- and cGMP-dependent protein kinase signaling pathways
,”
ACS Chem. Biol.
6
,
377
384
(
2011
).
91.
A.
Guinart
,
M.
Korpidou
,
D.
Doellerer
,
G.
Pacella
,
M. C. A.
Stuart
,
I. A.
Dinu
,
G.
Portale
,
C.
Palivan
, and
B. L.
Feringa
, “
Synthetic molecular motor activates drug delivery from polymersomes
,”
Proc. Natl. Acad. Sci.
120
,
e2301279120
(
2023
).
92.
D.
Zhang
,
Y.
Zhang
,
W.
Gong
,
J.
Li
,
S.
Liu
,
Y.
Ma
, and
Q.
Zhao
, “
Manipulating photoisomerization rate of triphenylethylene derivative through metal coordination for irradiation time‐dependent information encryption
,”
Adv. Opt. Mater.
11
,
2300386
(
2023
).
93.
V.
Adam
,
H.
Mizuno
,
A.
Grichine
,
J.-I.
Hotta
,
Y.
Yamagata
,
B.
Moeyaert
,
G. U.
Nienhaus
,
A.
Miyawaki
,
D.
Bourgeois
, and
J.
Hofkens
, “
Data storage based on photochromic and photoconvertible fluorescent proteins
,”
J. Biotechnol.
149
,
289
298
(
2010
).
94.
M.
Wirkner
,
J. M.
Alonso
,
V.
Maus
,
M.
Salierno
,
T. T.
Lee
,
A. J.
García
, and
A.
del Campo
, “
Triggered cell release from materials using bioadhesive photocleavable linkers
,”
Adv. Mater.
23
,
3907
3910
(
2011
).
95.
A.
Blanc
and
C. G.
Bochet
, “
Wavelength-controlled orthogonal photolysis of protecting groups
,”
J. Org. Chem.
67
,
5567
5577
(
2002
).
96.
V. S.
Miguel
,
C. G.
Bochet
, and
A.
del Campo
, “
Wavelength-selective caged surfaces: How many functional levels are possible?
J. Am. Chem. Soc.
133
,
5380
5388
(
2011
).
97.
A.
Patchornik
,
B.
Amit
, and
R. B.
Woodward
, “
Photosensitive protecting groups
,”
J. Am. Chem. Soc.
92
,
6333
6335
(
1970
).
98.
J. A.
Barltrop
,
P. J.
Plant
, and
P.
Schofield
, “
Photosensitive protective groups
,”
Chem. Commun. (London)
1966
,
822
823
.
99.
P.
Klán
,
T.
Šolomek
,
C. G.
Bochet
,
A.
Blanc
,
R.
Givens
,
M.
Rubina
,
V.
Popik
,
A.
Kostikov
, and
J.
Wirz
, “
Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy
,”
Chem. Rev.
113
,
119
191
(
2013
).
100.
A. K.
Singh
,
A. V.
Nair
,
S. S.
Shah
,
S.
Ray
, and
N. D. P.
Singh
, “
ESIPT-, AIE-, and AIE + ESIPT-based light-activated drug delivery systems and bioactive donors for targeted disease treatment
,”
J. Med. Chem.
66
,
3732
3745
(
2023
).
101.
K.
Suyama
and
M.
Shirai
, “
Photobase generators: Recent progress and application trend in polymer systems
,”
Prog. Polym. Sci.
34
,
194
209
(
2009
).
102.
T.
Courtney
and
A.
Deiters
, “
Recent advances in the optical control of protein function through genetic code expansion
,”
Curr. Opin. Chem. Biol.
46
,
99
107
(
2018
).
103.
A.
Bardhan
and
A.
Deiters
, “
Development of photolabile protecting groups and their application to the optochemical control of cell signaling
,”
Curr. Opin. Struct. Biol.
57
,
164
175
(
2019
).
104.
J.
Shi
,
H.
Wang
,
Y.
Wang
,
Y.
Peng
,
X.
Huang
,
Y.
Zhang
,
H.
Geng
,
Y.
Wang
,
X.
Li
,
C.
Liu
, and
C.
Liu
, “
Mitochondrion-targeting and in situ photocontrolled protein delivery via photocages
,”
J. Photochem. Photobiol. B
238
,
112624
(
2023
).
105.
W. A.
Velema
,
W.
Szymanski
, and
B. L.
Feringa
, “
Photopharmacology: Beyond proof of principle
,”
J. Am. Chem. Soc.
136
,
2178
2191
(
2014
).
106.
D.
Falconnet
,
G.
Csucs
,
H. M.
Grandin
, and
M.
Textor
, “
Surface engineering approaches to micropattern surfaces for cell-based assays
,”
Biomaterials
27
,
3044
3063
(
2006
).
107.
K.
Nie
,
Z.
Wang
,
H.
Zhou
,
R.
Tang
,
X.
Shen
, and
Q.
Sun
, “
Improved dielectricity of anisotropic wood slices and bioinspired micropatterned film electrodes for highly sensitive flexible electronic sensors
,”
J. Mater. Chem. C
8
,
16113
16120
(
2020
).
108.
W.-X.
Li
,
Y.-F.
Yin
,
H.-Y.
Duan
,
L.-J.
Liu
,
L.-C.
Kong
,
T.-G.
Zhan
, and
K.-D.
Zhang
, “
An orthogonal photoresponsive tristable [3]rotaxane with non-destructive readout
,”
Org. Chem. Front.
8
,
1482
1489
(
2021
).
109.
F. M.
Raymo
and
M.
Tomasulo
, “
Electron and energy transfer modulation with photochromic switches
,”
Chem. Soc. Rev.
34
,
327
336
(
2005
).
110.
S.
Schoder
and
C. A.
Schalley
, “
Orthogonal switching of self-sorting processes in a stimuli-responsive library of cucurbit[8]uril complexes
,”
Chem. Commun.
53
,
9546
9549
(
2017
).
111.
B.
Kaur
,
R.
Raza
,
M. J.
Stashick
, and
N. R.
Branda
, “
Using light to control the inhibition of Karstedt's catalyst
,”
Org. Chem. Front.
6
,
1253
1256
(
2019
).
112.
J.
Ludwig
,
J.
Helberg
,
H.
Zipse
, and
R.
Herges
, “
Azo-dimethylaminopyridine-functionalized Ni(II)-porphyrin as a photoswitchable nucleophilic catalyst
,”
Beilstein J. Org. Chem.
16
,
2119
2126
(
2020
).
113.
S.
Park
,
S.
Byun
,
H.
Ryu
,
H.
Hahm
,
J.
Lee
, and
S.
Hong
, “
Reversibly photoswitchable catalysts for olefin metathesis reactions
,”
ACS Catal.
11
,
13860
13865
(
2021
).
114.
G. M.
Morales
,
P.
Jiang
,
S.
Yuan
,
Y.
Lee
,
A.
Sanchez
,
W.
You
, and
L.
Yu
, “
Inversion of the rectifying effect in diblock molecular diodes by protonation
,”
J. Am. Chem. Soc.
127
,
10456
10457
(
2005
).
115.
I.
Díez-Pérez
,
J.
Hihath
,
Y.
Lee
,
L.
Yu
,
L.
Adamska
,
M. A.
Kozhushner
,
I. I.
Oleynik
, and
N.
Tao
, “
Rectification and stability of a single molecular diode with controlled orientation
,”
Nat. Chem.
1
,
635
641
(
2009
).
116.
C.
Guo
,
K.
Wang
,
E.
Zerah-Harush
,
J.
Hamill
,
B.
Wang
,
Y.
Dubi
, and
B.
Xu
, “
Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation
,”
Nat. Chem.
8
,
484
490
(
2016
).
117.
K.
Imato
,
A.
Ishii
,
N.
Kaneda
,
T.
Hidaka
,
A.
Sasaki
,
I.
Imae
, and
Y.
Ooyama
, “
Thermally stable photomechanical molecular hinge: Sterically hindered stiff-stilbene photoswitch mechanically isomerizes
,”
JACS Au
9
,
2458
2466
(
2023
).
118.
R. W.
Barber
and
M. J.
Robb
, “
A modular approach to mechanically gated photoswitching with color-tunable molecular force probes
,”
Chem. Sci.
12
,
11703
11709
(
2021
).
119.
M. J. W.
Ludden
,
M.
Péter
,
D. N.
Reinhoudt
, and
J.
Huskens
, “
Attachment of streptavidin to β‐cyclodextrin molecular printboards via orthogonal host–guest and protein–ligand interactions
,”
Small
2
,
1192
1202
(
2006
).
120.
C. W.
Lim
,
O.
Crespo-Biel
,
M. C. A.
Stuart
,
D. N.
Reinhoudt
,
J.
Huskens
, and
B. J.
Ravoo
, “
Intravesicular and intervesicular interaction by orthogonal multivalent host–guest and metal–ligand complexation
,”
Proc. Natl. Acad. Sci.
104
,
6986
6991
(
2007
).
You do not currently have access to this content.