Plasmonic photocatalysis uses the light-induced resonant oscillation of free electrons in a metal nanoparticle to concentrate optical energy for driving chemical reactions. By altering the joint electronic structure of the catalyst and reactants, plasmonic catalysis enables reaction pathways with improved selectivity, activity, and catalyst stability. However, designing an optimal catalyst still requires a fundamental understanding of the underlying plasmonic mechanisms at the spatial scales of single particles, at the temporal scales of electron transfer, and in conditions analogous to those under which real reactions will operate. Thus, in this review, we provide an overview of several of the available and developing nanoscale and ultrafast experimental approaches, emphasizing those that can be performed in situ. Specifically, we discuss high spatial resolution optical, tip-based, and electron microscopy techniques; high temporal resolution optical and x-ray techniques; and emerging ultrafast optical, x-ray, tip-based, and electron microscopy techniques that simultaneously achieve high spatial and temporal resolution. Ab initio and classical continuum theoretical models play an essential role in guiding and interpreting experimental exploration, and thus, these are also reviewed and several notable theoretical insights are discussed.

1.
E. A.
Wrigley
, “
Energy and the English industrial revolution
,”
Philos. Trans. R. Soc., A
371
,
20110568
(
2013
).
2.
IEA
,
Tracking Clean Energy Progress 2017
(
IEA
,
2017
).
3.
C. M.
Matthews
,
C.
Eaton
, and
B.
Faucon
, “
Behind the energy crisis: Fossil fuel investment drops, and renewables aren't ready
,” https://www.wsj.com/articles/energy-crisis-fossil-fuel-investment-renewables-gas-oil-prices-coal-wind-solar-hydro-power-grid-11634497531 (
2021
).
4.
Basic Energy Sciences Roundtable
, “
Report of the basic energy sciences roundtable on liquid solar fuels
,”
Technical Report, OSTI No. 1615599
(
DOESC Office of Basic Energy Sciences
,
2019
).
5.
U.S. Department of Transportation Press Release
,
Biden-Harris Administration Releases First-Ever Blueprint to Decarbonize America's Transportation Sector
(
U.S. Department of Transportation Press Release
,
2023
).
6.
European Parliament
, “
Fit for 55: Zero CO2 emissions for new cars and vans in 2035
” (
2023
).
7.
European Environment Agency
,
Decarbonising Heating and Cooling—A Climate Imperative
(
European Environment Agency
,
2023
).
8.
J.
Rissman
,
C.
Bataille
,
E.
Masanet
,
N.
Aden
,
W. R.
Morrow
,
N.
Zhou
,
N.
Elliott
,
R.
Dell
,
N.
Heeren
,
B.
Huckestein
,
J.
Cresko
,
S. A.
Miller
,
J.
Roy
,
P.
Fennell
,
B.
Cremmins
,
T.
Koch Blank
,
D.
Hone
,
E. D.
Williams
,
S.
de la Rue du Can
,
B.
Sisson
,
M.
Williams
,
J.
Katzenberger
,
D.
Burtraw
,
G.
Sethi
,
H.
Ping
,
D.
Danielson
,
H.
Lu
,
T.
Lorber
,
J.
Dinkel
, and
J.
Helseth
, “
Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070
,”
Appl. Energy
266
,
114848
(
2020
).
9.
Y.
Bicer
,
I.
Dincer
,
G.
Vezina
, and
F.
Raso
, “
Impact assessment and environmental evaluation of various ammonia production processes
,”
Environ. Manage.
59
,
842
855
(
2017
).
10.
A. G.
Olabi
and
M. A.
Abdelkareem
, “
Renewable energy and climate change
,”
Renewable Sustainable Energy Rev.
158
,
112111
(
2022
).
11.
Y.
Li
,
D.
Hui
,
Y.
Sun
,
Y.
Wang
,
Z.
Wu
,
C.
Wang
, and
J.
Zhao
, “
Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators
,”
Nat. Commun.
12
,
123
(
2021
).
12.
E.
Cortés
,
L. V.
Besteiro
,
A.
Alabastri
,
A.
Baldi
,
G.
Tagliabue
,
A.
Demetriadou
, and
P.
Narang
, “
Challenges in plasmonic catalysis
,”
ACS Nano
14
,
16202
16219
(
2020
).
13.
H.
Sayre
,
H. H.
Ripberger
,
E.
Odella
,
A.
Zieleniewska
,
D. A.
Heredia
,
G.
Rumbles
,
G. D.
Scholes
,
T. A.
Moore
,
A. L.
Moore
, and
R. R.
Knowles
, “
PCET-based ligand limits charge recombination with an Ir(III) photoredox catalyst
,”
J. Am. Chem. Soc.
143
,
13034
13043
(
2021
).
14.
A. M.
Lifschitz
,
R. M.
Young
,
J.
Mendez-Arroyo
,
C. L.
Stern
,
C. M.
McGuirk
,
M. R.
Wasielewski
, and
C. A.
Mirkin
, “
An allosteric photoredox catalyst inspired by photosynthetic machinery
,”
Nat. Commun.
6
,
6541
(
2015
).
15.
E.-R.
Newmeyer
,
J. D.
North
, and
D. F.
Swearer
, “
Hot carrier photochemistry on metal nanoparticles
,”
J. Appl. Phys.
132
,
230901
(
2022
).
16.
J.
Kou
,
C.
Lu
,
J.
Wang
,
Y.
Chen
,
Z.
Xu
, and
R. S.
Varma
, “
Selectivity enhancement in heterogeneous photocatalytic transformations
,”
Chem. Rev.
117
,
1445
1514
(
2017
).
17.
L.
Zhou
,
J. M. P.
Martirez
,
J.
Finzel
,
C.
Zhang
,
D. F.
Swearer
,
S.
Tian
,
H.
Robatjazi
,
M.
Lou
,
L.
Dong
,
L.
Henderson
,
P.
Christopher
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
, “
Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts
,”
Nat. Energy
5
,
61
70
(
2020
).
18.
K.
Wang
,
K.
Yoshiiri
,
L.
Rosa
,
Z.
Wei
,
S.
Juodkazis
,
B.
Ohtani
, and
E.
Kowalska
, “
TiO2/Au/TiO2 plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible-light irradiation
,”
Catal. Today
397–399
,
257
264
(
2022
).
19.
W.-S.
Wang
,
H.
Du
,
R.-X.
Wang
,
T.
Wen
, and
A.-W.
Xu
, “
Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light
,”
Nanoscale
5
,
3315
3321
(
2013
).
20.
L.
Zhou
,
D. F.
Swearer
,
C.
Zhang
,
H.
Robatjazi
,
H.
Zhao
,
L.
Henderson
,
L.
Dong
,
P.
Christopher
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
, “
Quantifying hot carrier and thermal contributions in plasmonic photocatalysis
,”
Science
362
,
69
72
(
2018
).
21.
M.
Bonn
,
S.
Funk
,
C.
Hess
,
D. N.
Denzler
,
C.
Stampfl
,
M.
Scheffler
,
M.
Wolf
, and
G.
Ertl
, “
Phonon-versus electron-mediated desorption and oxidation of CO on Ru(0001)
,”
Science
285
,
1042
1045
(
1999
).
22.
G. A.
Tritsaris
,
D.
Vinichenko
,
G.
Kolesov
,
C. M.
Friend
, and
E.
Kaxiras
, “
Dynamics of the photogenerated hole at the rutile TiO2(110)/water interface: A nonadiabatic simulation study
,”
J. Phys. Chem. C
118
,
27393
27401
(
2014
).
23.
K.
Maeda
and
K.
Domen
, “
Photocatalytic water splitting: Recent progress and future challenges
,”
J. Phys. Chem. Lett.
1
,
2655
2661
(
2010
).
24.
S.
Cho
and
W.
Choi
, “
Solid-phase photocatalytic degradation of PVC–TiO2 polymer composites
,”
J. Photochem. Photobiol., A
143
,
221
228
(
2001
).
25.
S.
Zhang
,
Y.
Zhao
,
R.
Shi
,
G. I. N.
Waterhouse
, and
T.
Zhang
, “
Photocatalytic ammonia synthesis: Recent progress and future
,”
EnergyChem
1
,
100013
(
2019
).
26.
Q.
Han
,
H.
Jiao
,
L.
Xiong
, and
J.
Tang
, “
Progress and challenges in photocatalytic ammonia synthesis
,”
Mater. Adv.
2
,
564
581
(
2021
).
27.
X.
Xiong
,
C.
Mao
,
Z.
Yang
,
Q.
Zhang
,
G. I. N.
Waterhouse
,
L.
Gu
, and
T.
Zhang
, “
Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia
,”
Adv. Energy Mater.
10
,
2002928
(
2020
).
28.
H.
Wang
,
H.
Rong
,
D.
Wang
,
X.
Li
,
E.
Zhang
,
X.
Wan
,
B.
Bai
,
M.
Xu
,
J.
Liu
,
J.
Liu
,
W.
Chen
, and
J.
Zhang
, “
Highly selective photoreduction of CO with suppressing H evolution by plasmonic Au/CdSe-Cu O hierarchical nanostructures under visible light
,”
Small
16
,
e2000426
(
2020
).
29.
T.
Oshikiri
,
K.
Ueno
, and
H.
Misawa
, “
Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation
,”
Angew. Chem.
126
,
9960
9963
(
2014
).
30.
S.
Mubeen
,
J.
Lee
,
N.
Singh
,
S.
Krämer
,
G. D.
Stucky
, and
M.
Moskovits
, “
An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
,”
Nat. Nanotechnol.
8
,
247
251
(
2013
).
31.
B.
Seemala
,
A. J.
Therrien
,
M.
Lou
,
K.
Li
,
J. P.
Finzel
,
J.
Qi
,
P.
Nordlander
, and
P.
Christopher
, “
Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: Hot electrons or near fields?
,”
ACS Energy Lett.
4
,
1803
1809
(
2019
).
32.
T. G. U.
Ghobadi
,
A.
Ghobadi
,
E.
Ozbay
, and
F.
Karadas
, “
Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting
,”
ChemPhotoChem
2
,
161
182
(
2018
).
33.
E.
Cortés
,
F. J.
Wendisch
,
L.
Sortino
,
A.
Mancini
,
S.
Ezendam
,
S.
Saris
,
L.
de S Menezes
,
A.
Tittl
,
H.
Ren
, and
S. A.
Maier
, “
Optical metasurfaces for energy conversion
,”
Chem. Rev.
122
,
15082
15176
(
2022
).
34.
M. L.
Brongersma
,
N. J.
Halas
, and
P.
Nordlander
, “
Plasmon-induced hot carrier science and technology
,”
Nat. Nanotechnol.
10
,
25
34
(
2015
).
35.
G. V.
Hartland
, “
Optical studies of dynamics in noble metal nanostructures
,”
Chem. Rev.
111
,
3858
3887
(
2011
).
36.
D.
Rioux
and
M.
Meunier
, “
Seeded growth synthesis of composition and size-controlled gold–silver alloy nanoparticles
,”
J. Phys. Chem. C
119
,
13160
13168
(
2015
).
37.
S. M.
Rehn
and
E.
Ringe
, “
Controllably hollow AgAu nanoparticles via nonaqueous, reduction agent-assisted galvanic replacement
,”
Part. Part. Syst. Charact.
35
,
1700381
(
2018
).
38.
Q. N.
Nguyen
,
C.
Wang
,
Y.
Shang
,
A.
Janssen
, and
Y.
Xia
, “
Colloidal synthesis of metal nanocrystals: From asymmetrical growth to symmetry breaking
,”
Chem. Rev.
123
(
7
),
3693
3760
(
2022
).
39.
A. L.
González
,
C.
Noguez
,
J.
Beránek
, and
A. S.
Barnard
, “
Size, shape, stability, and color of plasmonic silver nanoparticles
,”
J. Phys. Chem. C
118
,
9128
9136
(
2014
).
40.
Z.
Liu
,
W.
Hou
,
P.
Pavaskar
,
M.
Aykol
, and
S. B.
Cronin
, “
Plasmon resonant enhancement of photocatalytic water splitting under visible illumination
,”
Nano Lett.
11
,
1111
1116
(
2011
).
41.
A.
Tanaka
,
K.
Teramura
,
S.
Hosokawa
,
H.
Kominami
, and
T.
Tanaka
, “
Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO photocatalyst with metal co-catalysts
,”
Chem. Sci.
8
,
2574
2580
(
2017
).
42.
L.
Mascaretti
,
A.
Dutta
,
Š.
Kment
,
V. M.
Shalaev
,
A.
Boltasseva
,
R.
Zbořil
, and
A.
Naldoni
, “
Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage
,”
Adv. Mater.
31
,
1805513
(
2019
).
43.
D.
Mittal
,
M.
Ahlawat
, and
V.
Govind Rao
, “
Recent progress and challenges in plasmon-mediated reduction of CO2 to chemicals and fuels
,”
Adv. Mater. Interfaces
9
,
2102383
(
2022
).
44.
H.
Zhang
,
T.
Wang
,
J.
Wang
,
H.
Liu
,
T. D.
Dao
,
M.
Li
,
G.
Liu
,
X.
Meng
,
K.
Chang
,
L.
Shi
,
T.
Nagao
, and
J.
Ye
, “
Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers
,”
Adv. Mater.
28
,
3703
3710
(
2016
).
45.
H.
Robatjazi
,
H.
Zhao
,
D. F.
Swearer
,
N. J.
Hogan
,
L.
Zhou
,
A.
Alabastri
,
M. J.
McClain
,
P.
Nordlander
, and
N. J.
Halas
, “
Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles
,”
Nat. Commun.
8
,
27
(
2017
).
46.
W.
Hou
,
W. H.
Hung
,
P.
Pavaskar
,
A.
Goeppert
,
M.
Aykol
, and
S. B.
Cronin
, “
Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions
,”
ACS Catal.
1
,
929
936
(
2011
).
47.
I.
Thomann
,
B. A.
Pinaud
,
Z.
Chen
,
B. M.
Clemens
,
T. F.
Jaramillo
, and
M. L.
Brongersma
, “
Plasmon enhanced solar-to-fuel energy conversion
,”
Nano Lett.
11
,
3440
3446
(
2011
).
48.
B.
Puértolas
,
M.
Comesaña-Hermo
,
L. V.
Besteiro
,
M.
Vázquez-González
, and
M. A.
Correa-Duarte
, “
Challenges and opportunities for renewable ammonia production via plasmon-assisted photocatalysis
,”
Adv. Energy Mater.
12
,
2103909
(
2022
).
49.
X.
Li
,
X.
Zhang
,
H. O.
Everitt
, and
J.
Liu
, “
Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production
,”
Nano Lett.
19
,
1706
1711
(
2019
).
50.
A.
Marimuthu
,
J.
Zhang
, and
S.
Linic
, “
Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state
,”
Science
339
,
1590
1593
(
2013
).
51.
Inamuddin
,
M. I.
Ahamed
,
A. M.
Asiri
, and
E.
Lichtfouse
,
Nanophotocatalysis and Environmental Applications: Energy Conversion and Chemical Transformations
(
Springer
,
2019
).
52.
C.
Wang
and
D.
Astruc
, “
Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion
,”
Chem. Soc. Rev.
43
,
7188
7216
(
2014
).
53.
S.
Swaminathan
,
V. G.
Rao
,
J. K.
Bera
, and
M.
Chandra
, “
The pivotal role of hot carriers in plasmonic catalysis of C-N bond forming reaction of amines
,”
Angew. Chem., Int. Ed. Engl.
60
,
12532
12538
(
2021
).
54.
While the use of “in situ” varies throughout the literature, here it indicates methods where the catalyst is exposed to conditions analogous to the intended reaction conditions. These conditions can include the chemical environment, thermodynamic properties, and/or externally applied stimuli. There is no further term to distinguish whether the catalyst is under partial or full reaction conditions, and so the extent of in situ conditions varies broadly. We use in operando to refer to in situ characterization with simultaneous measurements of reaction products.694 
55.
J.
Hagen
,
Industrial Catalysis: A Practical Approach
(
John Wiley & Sons
,
2015
).
56.
L.
Liu
and
A.
Corma
, “
Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles
,”
Chem. Rev.
118
,
4981
5079
(
2018
).
57.
R. J.
White
,
R.
Luque
,
V. L.
Budarin
,
J. H.
Clark
, and
D. J.
Macquarrie
, “
Supported metal nanoparticles on porous materials. Methods and applications
,”
Chem. Soc. Rev.
38
,
481
494
(
2009
).
58.
J. K.
Nørskov
,
F.
Studt
,
F.
Abild-Pedersen
, and
T.
Bligaard
,
Fundamental Concepts in Heterogeneous Catalysis
(
John Wiley & Sons
,
New Jersey
,
2014
).
59.
L.
Zhou
,
M.
Lou
,
J. L.
Bao
,
C.
Zhang
,
J. G.
Liu
,
J. M. P.
Martirez
,
S.
Tian
,
L.
Yuan
,
D. F.
Swearer
,
H.
Robatjazi
et al, “
Hot carrier multiplication in plasmonic photocatalysis
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2022109118
(
2021
).
60.
M.
Lou
,
J. L.
Bao
,
L.
Zhou
,
G. N.
Naidu
,
H.
Robatjazi
,
A. I.
Bayles
,
H. O.
Everitt
,
P.
Nordlander
,
E. A.
Carter
, and
N. J.
Halas
, “
Direct H2S decomposition by plasmonic photocatalysis: Efficient remediation plus sustainable hydrogen production
,”
ACS Energy Lett.
7
,
3666
3674
(
2022
).
61.
N. A. K.
Aramouni
,
J. G.
Touma
,
B. A.
Tarboush
,
J.
Zeaiter
, and
M. N.
Ahmad
, “
Catalyst design for dry reforming of methane: Analysis review
,”
Renewable Sustainable Energy Rev.
82
,
2570
2585
(
2018
).
62.
J.
Humphreys
,
R.
Lan
, and
S.
Tao
, “
Development and recent progress on ammonia synthesis catalysts for Haber–Bosch process
,”
Adv. Energy Sustainability Res.
2
,
2000043
(
2021
).
63.
L.
Mascaretti
and
A.
Naldoni
, “
Hot electron and thermal effects in plasmonic photocatalysis
,”
J. Appl. Phys.
128
,
041101
(
2020
).
64.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer Science & Business Media
,
New York
,
2007
).
65.
J. B.
Khurgin
, “
How to deal with the loss in plasmonics and metamaterials
,”
Nat. Nanotechnol.
10
,
2
6
(
2015
).
66.
G. V.
Hartland
,
L. V.
Besteiro
,
P.
Johns
, and
A. O.
Govorov
, “
What's so hot about electrons in metal nanoparticles?
,”
ACS Energy Lett.
2
,
1641
1653
(
2017
).
67.
M. W.
Knight
,
H.
Sobhani
,
P.
Nordlander
, and
N. J.
Halas
, “
Photodetection with active optical antennas
,”
Science
332
,
702
704
(
2011
).
68.
S.
Mubeen
,
G.
Hernandez-Sosa
,
D.
Moses
,
J.
Lee
, and
M.
Moskovits
, “
Plasmonic photosensitization of a wide band gap semiconductor: Converting plasmons to charge carriers
,”
Nano Lett.
11
,
5548
5552
(
2011
).
69.
M.
Bernardi
,
J.
Mustafa
,
J. B.
Neaton
, and
S. G.
Louie
, “
Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals
,”
Nat. Commun.
6
,
7044
(
2015
).
70.
K.
Wu
,
J.
Chen
,
J. R.
McBride
, and
T.
Lian
, “
Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition
,”
Science
349
,
632
635
(
2015
).
71.
B.
Foerster
,
V. A.
Spata
,
E. A.
Carter
,
C.
Sönnichsen
, and
S.
Link
, “
Plasmon damping depends on the chemical nature of the nanoparticle interface
,”
Sci. Adv.
5
,
eaav0704
(
2019
).
72.
B.
Foerster
,
A.
Joplin
,
K.
Kaefer
,
S.
Celiksoy
,
S.
Link
, and
C.
Sönnichsen
, “
Chemical interface damping depends on electrons reaching the surface
,”
ACS Nano
11
,
2886
2893
(
2017
).
73.
C.
Boerigter
,
U.
Aslam
, and
S.
Linic
, “
Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials
,”
ACS Nano
10
,
6108
6115
(
2016
).
74.
S. K.
Cushing
,
J.
Li
,
J.
Bright
,
B. T.
Yost
,
P.
Zheng
,
A. D.
Bristow
, and
N.
Wu
, “
Controlling plasmon-induced resonance energy transfer and hot electron injection processes in metal@TiO2 core–shell nanoparticles
,”
J. Phys. Chem. C
119
,
16239
16244
(
2015
).
75.
T.
Tatsuma
,
H.
Nishi
, and
T.
Ishida
, “
Plasmon-induced charge separation: Chemistry and wide applications
,”
Chem. Sci.
8
,
3325
3337
(
2017
).
76.
Y.
Negrín-Montecelo
,
X.-T.
Kong
,
L. V.
Besteiro
,
E.
Carbó-Argibay
,
Z. M.
Wang
,
M.
Pérez-Lorenzo
,
A. O.
Govorov
,
M.
Comesaña-Hermo
, and
M. A.
Correa-Duarte
, “
Synergistic combination of charge carriers and energy-transfer processes in plasmonic photocatalysis
,”
ACS Appl. Mater. Interfaces
14
,
35734
35744
(
2022
).
77.
A.
Sousa-Castillo
,
M.
Comesaña-Hermo
,
B.
Rodríguez-González
,
M.
Pérez-Lorenzo
,
Z.
Wang
,
X.-T.
Kong
,
A. O.
Govorov
, and
M. A.
Correa-Duarte
, “
Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in Au–TiO2 nanoarchitectures
,”
J. Phys. Chem. C
120
,
11690
11699
(
2016
).
78.
S. S. E.
Collins
,
E. K.
Searles
,
L. J.
Tauzin
,
M.
Lou
,
L.
Bursi
,
Y.
Liu
,
J.
Song
,
C.
Flatebo
,
R.
Baiyasi
,
Y.-Y.
Cai
,
B.
Foerster
,
T.
Lian
,
P.
Nordlander
,
S.
Link
, and
C. F.
Landes
, “
Plasmon energy transfer in hybrid nanoantennas
,”
ACS Nano
15
,
9522
9530
(
2021
).
79.
X.
Zhang
,
X.
Li
,
M. E.
Reish
,
D.
Zhang
,
N. Q.
Su
,
Y.
Gutiérrez
,
F.
Moreno
,
W.
Yang
,
H. O.
Everitt
, and
J.
Liu
, “
Plasmon-enhanced catalysis: Distinguishing thermal and nonthermal effects
,”
Nano Lett.
18
,
1714
1723
(
2018
).
80.
G.
Baffou
,
I.
Bordacchini
,
A.
Baldi
, and
R.
Quidant
, “
Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics
,”
Light
9
,
108
(
2020
).
81.
A. V.
Uskov
,
I. E.
Protsenko
,
R. S.
Ikhsanov
,
V. E.
Babicheva
,
S. V.
Zhukovsky
,
A. V.
Lavrinenko
,
E. P.
O'Reilly
, and
H.
Xu
, “
Internal photoemission from plasmonic nanoparticles: Comparison between surface and volume photoelectric effects
,”
Nanoscale
6
,
4716
4727
(
2014
).
82.
R.
Jiang
,
B.
Li
,
C.
Fang
, and
J.
Wang
, “
Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications
,”
Adv. Mater.
26
,
5274
5309
(
2014
).
83.
X.
Jiang
,
J.
Huang
,
Z.
Bi
,
W.
Ni
,
G.
Gurzadyan
,
Y.
Zhu
, and
Z.
Zhang
, “
Plasmonic active ‘hot spots’-confined photocatalytic CO2 reduction with high selectivity for CH4 production
,”
Adv. Mater.
34
,
2109330
(
2022
).
84.
D. F.
Swearer
,
H.
Zhao
,
L.
Zhou
,
C.
Zhang
,
H.
Robatjazi
,
J. M. P.
Martirez
,
C. M.
Krauter
,
S.
Yazdi
,
M. J.
McClain
,
E.
Ringe
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
, “
Heterometallic antenna-reactor complexes for photocatalysis
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
8916
8920
(
2016
).
85.
U.
Aslam
,
V. G.
Rao
,
S.
Chavez
, and
S.
Linic
, “
Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures
,”
Nat. Catal.
1
,
656
665
(
2018
).
86.
P. V.
Kumar
,
T. P.
Rossi
,
D.
Marti-Dafcik
,
D.
Reichmuth
,
M.
Kuisma
,
P.
Erhart
,
M. J.
Puska
, and
D. J.
Norris
, “
Plasmon-induced direct hot-carrier transfer at metal–acceptor interfaces
,”
ACS Nano
13
,
3188
3195
(
2019
).
87.
F. A.
Shuklin
,
I. V.
Smetanin
,
I. E.
Protsenko
,
J. B.
Khurgin
,
N. V.
Nikonorov
, and
A. V.
Uskov
, “
Hot electron photoemission in metal–semiconductor structures aided by resonance tunneling
,”
Appl. Phys. Lett.
118
,
181104
(
2021
).
88.
G.
Kumari
,
R.
Kamarudheen
,
E.
Zoethout
, and
A.
Baldi
, “
Photocatalytic surface restructuring in individual silver nanoparticles
,”
ACS Catal.
11
,
3478
3486
(
2021
).
89.
C.
Engelbrekt
,
K. T.
Crampton
,
D. A.
Fishman
,
M.
Law
, and
V. A.
Apkarian
, “
Efficient plasmon-mediated energy funneling to the surface of Au@ Pt core–shell nanocrystals
,”
ACS Nano
14
,
5061
5074
(
2020
).
90.
S.
Tan
,
A.
Argondizzo
,
J.
Ren
,
L.
Liu
,
J.
Zhao
, and
H.
Petek
, “
Plasmonic coupling at a metal/semiconductor interface
,”
Nat. Photonics
11
,
806
812
(
2017
).
91.
X.
Zhang
,
H.
Liu
,
Y.
Wang
,
S.
Yang
,
Q.
Chen
,
Z.
Zhao
,
Y.
Yang
,
Q.
Kuang
, and
Z.
Xie
, “
Hot-electron-induced CO2 hydrogenation on Au@AuRu/g-C3N4 plasmonic bimetal–semiconductor heterostructure
,”
Chem. Eng. J.
443
,
136482
(
2022
).
92.
Z.
Zhang
,
X.
Jiang
,
B.
Liu
,
L.
Guo
,
N.
Lu
,
L.
Wang
,
J.
Huang
,
K.
Liu
, and
B.
Dong
, “
IR-Driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation
,”
Adv. Mater.
30
,
1705221
(
2018
).
93.
L.
Yuan
,
J.
Zhou
,
M.
Zhang
,
X.
Wen
,
J. M. P.
Martirez
,
H.
Robatjazi
,
L.
Zhou
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
, “
Plasmonic photocatalysis with chemically and spatially specific antenna–dual reactor complexes
,”
ACS Nano
16
,
17365
17375
(
2022
).
94.
S.
Kim
,
S.
Lee
, and
S.
Yoon
, “
Effect of nanoparticle size on plasmon-driven reaction efficiency
,”
ACS Appl. Mater. Interfaces
14
,
4163
4169
(
2022
).
95.
K.
Qian
,
B. C.
Sweeny
,
A. C.
Johnston-Peck
,
W.
Niu
,
J. O.
Graham
,
J. S.
DuChene
,
J.
Qiu
,
Y.-C.
Wang
,
M. H.
Engelhard
,
D.
Su
,
E. A.
Stach
, and
W. D.
Wei
, “
Surface plasmon-driven water reduction: Gold nanoparticle size matters
,”
J. Am. Chem. Soc.
136
,
9842
9845
(
2014
).
96.
D.
Devasia
,
A. J.
Wilson
,
J.
Heo
,
V.
Mohan
, and
P. K.
Jain
, “
A rich catalog of C-C bonded species formed in CO2 reduction on a plasmonic photocatalyst
,”
Nat Commun
12
,
2612
(
2021
).
97.
M.
Jin
,
G.
He
,
H.
Zhang
,
J.
Zeng
,
Z.
Xie
, and
Y.
Xia
, “
Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent
,”
Angew. Chem., Int. Ed. Engl.
50
,
10560
10564
(
2011
).
98.
X.
Ye
,
C.
Zheng
,
J.
Chen
,
Y.
Gao
, and
C. B.
Murray
, “
Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods
,”
Nano Lett.
13
,
765
771
(
2013
).
99.
N. G.
Bastús
,
F.
Merkoçi
,
J.
Piella
, and
V.
Puntes
, “
Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties
,”
Chem. Mater.
26
,
2836
2846
(
2014
).
100.
B.
Hammer
and
J. K.
Nørskov
, “
Electronic factors determining the reactivity of metal surfaces
,”
Surf. Sci.
343
,
211
220
(
1995
).
101.
E. R.
Hopper
,
C.
Boukouvala
,
J.
Asselin
,
J. S.
Biggins
, and
E.
Ringe
, “
Opportunities and challenges for alternative nanoplasmonic metals: Magnesium and beyond
,”
J. Phys. Chem. C
126
,
10630
10643
(
2022
).
102.
C. R.
Jacobson
,
D.
Solti
,
D.
Renard
,
L.
Yuan
,
M.
Lou
, and
N. J.
Halas
, “
Shining light on aluminum nanoparticle synthesis
,”
Acc. Chem. Res.
53
,
2020
2030
(
2020
).
103.
E.
Ringe
, “
Shapes, plasmonic properties, and reactivity of magnesium nanoparticles
,”
J. Phys. Chem. C
124
,
15665
15679
(
2020
).
104.
T. T.
Trinh
,
R.
Sato
,
M.
Sakamoto
,
Y.
Fujiyoshi
,
M.
Haruta
,
H.
Kurata
, and
T.
Teranishi
, “
Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction
,”
Nanoscale
7
,
12435
12444
(
2015
).
105.
L.
Zhou
,
C.
Zhang
,
M. J.
McClain
,
A.
Manjavacas
,
C. M.
Krauter
,
S.
Tian
,
F.
Berg
,
H. O.
Everitt
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
, “
Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation
,”
Nano Lett.
16
,
1478
1484
(
2016
).
106.
V.
Lomonosov
,
T. M. R.
Wayman
,
E. R.
Hopper
,
Y. P.
Ivanov
,
G.
Divitini
, and
E.
Ringe
, “
Plasmonic magnesium nanoparticles decorated with palladium catalyze thermal and light-driven hydrogenation of acetylene
,”
Nanoscale
15
,
7420
7429
(
2023
).
107.
S.
Linic
,
P.
Christopher
, and
D. B.
Ingram
, “
Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
,”
Nat. Mater.
10
,
911
921
(
2011
).
108.
P.-C.
Chen
,
G.
Liu
,
Y.
Zhou
,
K. A.
Brown
,
N.
Chernyak
,
J. L.
Hedrick
,
S.
He
,
Z.
Xie
,
Q.-Y.
Lin
,
V. P.
Dravid
,
S. A.
O'Neill-Slawecki
, and
C. A.
Mirkin
, “
Tip-directed synthesis of multimetallic nanoparticles
,”
J. Am. Chem. Soc.
137
,
9167
9173
(
2015
).
109.
K.
Sytwu
,
M.
Vadai
, and
J. A.
Dionne
, “
Bimetallic nanostructures: Combining plasmonic and catalytic metals for photocatalysis
,”
Adv. Phys.
4
,
1619480
(
2019
).
110.
M.
Valenti
,
A.
Venugopal
,
D.
Tordera
,
M. P.
Jonsson
,
G.
Biskos
,
A.
Schmidt-Ott
, and
W. A.
Smith
, “
Hot carrier generation and extraction of plasmonic alloy nanoparticles
,”
ACS Photonics
4
,
1146
1152
(
2017
).
111.
K.
Sytwu
,
M.
Vadai
,
F.
Hayee
,
D. K.
Angell
,
A.
Dai
,
J.
Dixon
, and
J. A.
Dionne
, “
Driving energetically unfavorable dehydrogenation dynamics with plasmonics
,”
Science
371
,
280
283
(
2021
).
112.
M.
Vadai
,
D. K.
Angell
,
F.
Hayee
,
K.
Sytwu
, and
J. A.
Dionne
, “
In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles
,”
Nat. Commun.
9
,
4658
(
2018
).
113.
P.
Peljo
,
J. A.
Manzanares
, and
H. H.
Girault
, “
Contact potentials, Fermi level equilibration, and surface charging
,”
Langmuir
32
,
5765
5775
(
2016
).
114.
S.
Lee
,
H.
Hwang
,
W.
Lee
,
D.
Schebarchov
,
Y.
Wy
,
J.
Grand
,
B.
Auguié
,
D. H.
Wi
,
E.
Cortés
, and
S. W.
Han
, “
Core–shell bimetallic nanoparticle trimers for efficient light-to-chemical energy conversion
,”
ACS Energy Lett.
5
,
3881
3890
(
2020
).
115.
K.
Loza
,
M.
Heggen
, and
M.
Epple
, “
Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals
,”
Adv. Funct. Mater.
30
,
1909260
(
2020
).
116.
C.
Gao
,
Y.
Hu
,
M.
Wang
,
M.
Chi
, and
Y.
Yin
, “
Fully alloyed Ag/Au nanospheres: Combining the plasmonic property of Ag with the stability of Au
,”
J. Am. Chem. Soc.
136
,
7474
7479
(
2014
).
117.
M.
Hu
,
J.
Chen
,
Z.-Y.
Li
,
L.
Au
,
G. V.
Hartland
,
X.
Li
,
M.
Marquez
, and
Y.
Xia
, “
Gold nanostructures: Engineering their plasmonic properties for biomedical applications
,”
Chem. Soc. Rev.
35
,
1084
1094
(
2006
).
118.
J. M.
Rahm
,
C.
Tiburski
,
T. P.
Rossi
,
F. A. A.
Nugroho
,
S.
Nilsson
,
C.
Langhammer
, and
P.
Erhart
, “
A library of late transition metal alloy dielectric functions for nanophotonic applications
,”
Adv. Funct. Mater.
30
,
2002122
(
2020
).
119.
S.
Linic
,
S.
Chavez
, and
R.
Elias
, “
Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures
,”
Nat. Mater.
20
,
916
924
(
2021
).
120.
L.
Collado
,
A.
Reynal
,
F.
Fresno
,
M.
Barawi
,
C.
Escudero
,
V.
Perez-Dieste
,
J. M.
Coronado
,
D. P.
Serrano
,
J. R.
Durrant
, and
V. A.
de la Peña O'Shea
, “
Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO photoreduction
,”
Nat. Commun.
9
,
4986
(
2018
).
121.
L.
van Turnhout
,
Y.
Hattori
,
J.
Meng
,
K.
Zheng
, and
J.
, “
Direct observation of a plasmon-induced hot electron flow in a multimetallic nanostructure
,”
Nano Lett.
20
,
8220
8228
(
2020
).
122.
J.
Liu
,
J.
Feng
,
J.
Gui
,
T.
Chen
,
M.
Xu
,
H.
Wang
,
H.
Dong
,
H.
Chen
,
X.
Li
,
L.
Wang
,
Z.
Chen
,
Z.
Yang
,
J.
Liu
,
W.
Hao
,
Y.
Yao
,
L.
Gu
,
Y.
Weng
,
Y.
Huang
,
X.
Duan
,
J.
Zhang
, and
Y.
Li
, “
Metal@semiconductor core-shell nanocrystals with atomically organized interfaces for efficient hot electron-mediated photocatalysis
,”
Nano Energy
48
,
44
52
(
2018
).
123.
Z.
Zhang
,
Y.
Huang
,
K.
Liu
,
L.
Guo
,
Q.
Yuan
, and
B.
Dong
, “
Multichannel-improved charge-carrier dynamics in well-designed hetero-nanostructural plasmonic photocatalysts toward highly efficient solar-to-fuels conversion
,”
Adv. Mater.
27
,
5906
5914
(
2015
).
124.
P.
Christopher
,
H.
Xin
,
A.
Marimuthu
, and
S.
Linic
, “
Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures
,”
Nat. Mater.
11
,
1044
1050
(
2012
).
125.
A.
Wang
,
S.
Wu
,
J.
Dong
,
R.
Wang
,
J.
Wang
,
J.
Zhang
,
S.
Zhong
, and
S.
Bai
, “
Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation
,”
Chem. Eng. J.
404
,
127145
(
2021
).
126.
K.
Wang
,
J.
Lu
,
Y.
Lu
,
C. H.
Lau
,
Y.
Zheng
, and
X.
Fan
, “
Unravelling the CC coupling in CO2 photocatalytic reduction with H2O on Au/TiO2-x: Combination of plasmonic excitation and oxygen vacancy
,”
Appl. Catal., B
292
,
120147
(
2021
).
127.
P.
Reñones
,
L.
Collado
,
A.
Iglesias-Juez
,
F. E.
Oropeza
,
F.
Fresno
, and
V. A.
de la Peña O'Shea
, “
Silver–gold bimetal-loaded TiO2 photocatalysts for CO2 reduction
,”
Ind. Eng. Chem. Res.
59
,
9440
9450
(
2020
).
128.
Q.
Chen
,
X.
Chen
,
M.
Fang
,
J.
Chen
,
Y.
Li
,
Z.
Xie
,
Q.
Kuang
, and
L.
Zheng
, “
Photo-induced Au–Pd alloying at TiO2 101 facets enables robust CO2 photocatalytic reduction into hydrocarbon fuels
,”
J. Mater. Chem. A
7
,
1334
1340
(
2019
).
129.
L.
Qin
,
G.
Wang
, and
Y.
Tan
, “
Plasmonic pt nanoparticles-TiO hierarchical nano-architecture as a visible light photocatalyst for water splitting
,”
Sci. Rep.
8
,
16198
(
2018
).
130.
Y.
Negrín-Montecelo
,
M.
Comesaña-Hermo
,
L. K.
Khorashad
,
A.
Sousa-Castillo
,
Z.
Wang
,
M.
Pérez-Lorenzo
,
T.
Liedl
,
A. O.
Govorov
, and
M. A.
Correa-Duarte
, “
Photophysical effects behind the efficiency of hot electron injection in plasmon-assisted catalysis: The joint role of morphology and composition
,”
ACS Energy Lett.
5
,
395
402
(
2020
).
131.
M.
Zhao
,
H.
Xu
,
S.
Ouyang
,
H.
Tong
,
H.
Chen
,
Y.
Li
,
L.
Song
, and
J.
Ye
, “
Fabricating a Au@TiO2 plasmonic system to elucidate alkali-induced enhancement of photocatalytic H2 evolution: Surface potential shift or methanol oxidation acceleration?
,”
ACS Catal.
8
,
4266
4277
(
2018
).
132.
S. J. P.
Varapragasam
,
S.
Mia
,
C.
Wieting
,
C.
Balasanthiran
,
M. Y.
Hossan
,
A.
Baride
,
R. M.
Rioux
, and
J. D.
Hoefelmeyer
, “
Ag–TiO2 hybrid nanocrystal photocatalyst: Hydrogen evolution under UV irradiation but not under visible-light irradiation
,”
ACS Appl. Energy Mater.
2
,
8274
8282
(
2019
).
133.
M.
Zhu
,
Y.
Wang
,
Y.-H.
Deng
,
X.
Peng
,
X.
Wang
,
H.
Yuan
,
Z.-J.
Yang
,
Y.
Wang
, and
H.
Wang
, “
Strategic modulation of energy transfer in Au-TiO-Pt nanodumbbells: Plasmon-enhanced hydrogen evolution reaction
,”
Nanoscale
12
,
7035
7044
(
2020
).
134.
J.-L.
Yang
,
Y.-L.
He
,
H.
Ren
,
H.-L.
Zhong
,
J.-S.
Lin
,
W.-M.
Yang
,
M.-D.
Li
,
Z.-L.
Yang
,
H.
Zhang
,
Z.-Q.
Tian
, and
J.-F.
Li
, “
Boosting photocatalytic hydrogen evolution reaction using dual plasmonic antennas
,”
ACS Catal.
11
,
5047
5053
(
2021
).
135.
H.
Ren
,
J.-L.
Yang
,
W.-M.
Yang
,
H.-L.
Zhong
,
J.-S.
Lin
,
P. M.
Radjenovic
,
L.
Sun
,
H.
Zhang
,
J.
Xu
,
Z.-Q.
Tian
, and
J.-F.
Li
, “
Core–shell–satellite plasmonic photocatalyst for broad-spectrum photocatalytic water splitting
,”
ACS Mater. Lett.
3
,
69
76
(
2021
).
136.
S.-I.
Naya
,
T.
Kume
,
R.
Akashi
,
M.
Fujishima
, and
H.
Tada
, “
Red-light-driven water splitting by Au(core)-CdS(shell) half-cut nanoegg with heteroepitaxial junction
,”
J. Am. Chem. Soc.
140
,
1251
1254
(
2018
).
137.
L.
Ma
,
K.
Chen
,
F.
Nan
,
J.-H.
Wang
,
D.-J.
Yang
,
L.
Zhou
, and
Q.-Q.
Wang
, “
Improved hydrogen production of Au-Pt-CdS hetero-nanostructures by efficient plasmon-induced multipathway electron transfer
,”
Adv. Funct. Mater.
26
,
6076
6083
(
2016
).
138.
S.
Javaid
,
X.
Li
,
F.
Wang
,
W.
Chen
,
Y.
Pang
,
S.
Wang
,
G.
Jia
, and
F.
Jones
, “
Synthesis of magnetically separable Fe3O4–Au–CdS kinked heterotrimers incorporating plasmonic and semiconducting functionalities
,”
J. Mater. Chem. C
7
,
14517
14524
(
2019
).
139.
F.
Pang
,
R.
Zhang
,
D.
Lan
, and
J.
Ge
, “
Synthesis of magnetite-semiconductor-metal trimer nanoparticles through functional modular assembly: A magnetically separable photocatalyst with photothermic enhancement for water reduction
,”
ACS Appl. Mater. Interfaces
10
,
4929
4936
(
2018
).
140.
L.
Guo
,
C.
Zhong
,
J.
Cao
,
Y.
Hao
,
M.
Lei
,
K.
Bi
,
Q.
Sun
, and
Z. L.
Wang
, “
Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures
,”
Nano Energy
62
,
513
520
(
2019
).
141.
S.
Ezendam
,
M.
Herran
,
L.
Nan
,
C.
Gruber
,
Y.
Kang
,
F.
Gröbmeyer
,
R.
Lin
,
J.
Gargiulo
,
A.
Sousa-Castillo
, and
E.
Cortés
, “
Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction
,”
ACS Energy Lett.
7
,
778
815
(
2022
).
142.
S.
Li
,
J.
Zhao
,
G.
Liu
,
L.
Xu
,
Y.
Tian
,
A.
Jiao
, and
M.
Chen
, “
Graphene oxide-grafted plasmonic Au@Ag nanoalloys with improved synergistic effects for promoting hot carrier-driven photocatalysis under visible light irradiation
,”
Nanotechnology
32
,
125401
(
2021
).
143.
B.
Tudu
,
N.
Nalajala
,
K. P.
Reddy
,
P.
Saikia
, and
C. S.
Gopinath
, “
Electronic integration and thin film aspects of Au–Pd/rGO/TiO2 for improved solar hydrogen generation
,”
ACS Appl. Mater. Interfaces
11
,
32869
32878
(
2019
).
144.
Z.
Lou
,
M.
Fujitsuka
, and
T.
Majima
, “
Two-dimensional Au-nanoprism/reduced graphene oxide/Pt-nanoframe as plasmonic photocatalysts with multiplasmon modes boosting hot electron transfer for hydrogen generation
,”
J. Phys. Chem. Lett.
8
,
844
849
(
2017
).
145.
T.
Kashyap
,
S.
Biswasi
,
A. R.
Pal
, and
B.
Choudhury
, “
Unraveling the catalytic and plasmonic roles of g-C3N4 supported Ag and Au nanoparticles under selective photoexcitation
,”
ACS Sustainable Chem. Eng.
7
,
19295
19302
(
2019
).
146.
N.
Xiao
,
Y.
Li
,
S.
Li
,
X.
Li
,
Y.
Gao
,
L.
Ge
, and
G.
Lu
, “
In-situ synthesis of PdAg/g-C3N4 composite photocatalyst for highly efficient photocatalytic H2 generation under visible light irradiation
,”
Int. J. Hydrogen Energy
44
,
19929
19941
(
2019
).
147.
Q.
Zhang
,
S.
Yang
,
S.-N.
Yin
, and
H.
Xue
, “
Over two-orders of magnitude enhancement of the photocatalytic hydrogen evolution activity of carbon nitride via mediator-free decoration with gold-organic microspheres
,”
Chem. Commun.
53
,
11814
11817
(
2017
).
148.
C.
Han
,
Y.
Gao
,
S.
Liu
,
L.
Ge
,
N.
Xiao
,
D.
Dai
,
B.
Xu
, and
C.
Chen
, “
Facile synthesis of AuPd/g-C3N4 nanocomposite: An effective strategy to enhance photocatalytic hydrogen evolution activity
,”
Int. J. Hydrogen Energy
42
,
22765
22775
(
2017
).
149.
Z.
Xu
,
M. G.
Kibria
,
B.
AlOtaibi
,
P. N.
Duchesne
,
L. V.
Besteiro
,
Y.
Gao
,
Q.
Zhang
,
Z.
Mi
,
P.
Zhang
,
A. O.
Govorov
,
L.
Mai
,
M.
Chaker
, and
D.
Ma
, “
Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect?
,”
Appl. Catal., B
221
,
77
85
(
2018
).
150.
A.
Naldoni
,
F.
Riboni
,
U.
Guler
,
A.
Boltasseva
,
V. M.
Shalaev
, and
A. V.
Kildishev
, “
Solar-powered plasmon-enhanced heterogeneous catalysis
,”
Nanophotonics
5
,
112
133
(
2016
).
151.
J.
Becerra
,
D.-T.
Nguyen
,
V.-N.
Gopalakrishnan
, and
T.-O.
Do
, “
Plasmonic Au nanoparticles incorporated in the zeolitic imidazolate framework (ZIF-67) for the efficient sunlight-driven photoreduction of CO2
,”
ACS Appl. Energy Mater.
3
,
7659
7665
(
2020
).
152.
L.
Chen
,
Y.
Peng
,
H.
Wang
,
Z.
Gu
, and
C.
Duan
, “
Synthesis of Au@ZIF-8 single- or multi-core-shell structures for photocatalysis
,”
Chem. Commun.
50
,
8651
8654
(
2014
).
153.
S.
De Marchi
,
L.
Vázquez-Iglesias
,
G.
Bodelón
,
I.
Pérez-Juste
,
L. Á.
Fernández
,
J.
Pérez-Juste
, and
I.
Pastoriza-Santos
, “
Programmable modular assembly of functional proteins on Raman-encoded zeolitic imidazolate framework-8 (ZIF-8) nanoparticles as SERS tags
,”
Chem. Mater.
32
,
5739
5749
(
2020
).
154.
C. S. L.
Koh
,
H. Y. F.
Sim
,
S. X.
Leong
,
S. K.
Boong
,
C.
Chong
, and
X. Y.
Ling
, “
Plasmonic nanoparticle-metal–organic framework (NP–MOF) nanohybrid platforms for emerging plasmonic applications
,”
ACS Mater. Lett.
3
,
557
573
(
2021
).
155.
J.-D.
Xiao
,
L.
Han
,
J.
Luo
,
S.-H.
Yu
, and
H.-L.
Jiang
, “
Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis
,”
Angew. Chem., Int. Ed. Engl.
57
,
1103
1107
(
2018
).
156.
M.
Wen
,
K.
Mori
,
Y.
Kuwahara
, and
H.
Yamashita
, “
Plasmonic Au@Pd nanoparticles supported on a basic metal–organic framework: Synergic boosting of H2 production from formic acid
,”
ACS Energy Lett.
2
,
1
7
(
2017
).
157.
Y.
Wang
,
Y.
Zhang
,
Z.
Jiang
,
G.
Jiang
,
Z.
Zhao
,
Q.
Wu
,
Y.
Liu
,
Q.
Xu
,
A.
Duan
, and
C.
Xu
, “
Controlled fabrication and enhanced visible-light photocatalytic hydrogen production of Au@CdS/MIL-101 heterostructure
,”
Appl. Catal., B
185
,
307
314
(
2016
).
158.
L.
Liu
,
C.
He
,
S. P.
Morgan
,
R.
Correia
, and
S.
Korposh
, “
A fiber-optic localized surface plasmon resonance (LSPR) sensor anchored with metal organic framework (HKUST-1) film for acetone sensing
,”
Proc. SPIE
11199
,
111990Z
(
2019
).
159.
W.
Cheng
,
H.
Su
,
F.
Tang
,
W.
Che
,
Y.
Huang
,
X.
Zheng
,
T.
Yao
,
J.
Liu
,
F.
Hu
,
Y.
Jiang
,
Q.
Liu
, and
S.
Wei
, “
Synergetic enhancement of plasmonic hot-electron injection in Au cluster-nanoparticle/C3N4 for photocatalytic hydrogen evolution
,”
J. Mater. Chem. A
5
,
19649
19655
(
2017
).
160.
A.
Naldoni
,
U.
Guler
,
Z.
Wang
,
M.
Marelli
,
F.
Malara
,
X.
Meng
,
L. V.
Besteiro
,
A. O.
Govorov
,
A. V.
Kildishev
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride
,”
Adv. Opt. Mater.
5
,
1601031
(
2017
).
161.
K.
Rasool
,
R. P.
Pandey
,
P. A.
Rasheed
,
S.
Buczek
,
Y.
Gogotsi
, and
K. A.
Mahmoud
, “
Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes)
,”
Mater. Today
30
,
80
102
(
2019
).
162.
J.
Shen
,
Z.
Wu
,
C.
Li
,
C.
Zhang
,
A.
Genest
,
G.
Rupprechter
, and
L.
He
, “
Emerging applications of mxene materials in CO2 photocatalysis
,”
FlatChem
28
,
100252
(
2021
).
163.
Y.
Gogotsi
and
B.
Anasori
, “
The rise of mxenes
,”
ACS Nano
13
,
8491
8494
(
2019
).
164.
X.
Wu
,
J.
Wang
,
Z.
Wang
,
F.
Sun
,
Y.
Liu
,
K.
Wu
,
X.
Meng
, and
J.
Qiu
, “
Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection
,”
Angew. Chem., Int. Ed.
60
,
9416
9420
(
2021
).
165.
H.
Lin
,
X.
Wang
,
L.
Yu
,
Y.
Chen
, and
J.
Shi
, “
Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion
,”
Nano Lett.
17
,
384
391
(
2017
).
166.
X.
Wan
,
J.
Liu
, and
J.
Zhang
, “
Construction of plasmonic metal@semiconductor core–shell photocatalysts: From epitaxial to nonepitaxial strategies
,”
Small Struct.
3
,
2200045
(
2022
).
167.
H.
Shi
,
J. A.
Lercher
, and
X.-Y.
Yu
, “
Sailing into uncharted waters: Recent advances in the in situ monitoring of catalytic processes in aqueous environments
,”
Catal. Sci. Technol.
5
,
3035
3060
(
2015
).
168.
J.
Lu
,
J.
Bravosuarez
,
A.
Takahashi
,
M.
Haruta
, and
S.
Oyama
, “
In situ UV-vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen
,”
J. Catal.
232
,
85
95
(
2005
).
169.
Y.
Yuan
,
L.
Zhou
,
H.
Robatjazi
,
J. L.
Bao
,
J.
Zhou
,
A.
Bayles
,
L.
Yuan
,
M.
Lou
,
M.
Lou
,
S.
Khatiwada
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
, “
Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination
,”
Science
378
,
889
893
(
2022
).
170.
P.
Christopher
,
H.
Xin
, and
S.
Linic
, “
Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures
,”
Nat. Chem.
3
,
467
472
(
2011
).
171.
P. H. C.
Camargo
and
E.
Cortés
,
Plasmonic Catalysis: From Fundamentals to Applications
(
John Wiley & Sons
,
2021
).
172.
R. G.
Hobbs
,
W. P.
Putnam
,
A.
Fallahi
,
Y.
Yang
,
F. X.
Kärtner
, and
K. K.
Berggren
, “
Mapping photoemission and hot-electron emission from plasmonic nanoantennas
,”
Nano Lett.
17
,
6069
6076
(
2017
).
173.
E.
Cortés
,
W.
Xie
,
J.
Cambiasso
,
A. S.
Jermyn
,
R.
Sundararaman
,
P.
Narang
,
S.
Schlücker
, and
S. A.
Maier
, “
Plasmonic hot electron transport drives nano-localized chemistry
,”
Nat. Commun.
8
,
14880
(
2017
).
174.
A.
Al-Zubeidi
,
L. A.
McCarthy
,
A.
Rafiei-Miandashti
,
T. S.
Heiderscheit
, and
S.
Link
, “
Single-particle scattering spectroscopy: Fundamentals and applications
,”
Nanophotonics
10
,
1621
1655
(
2021
).
175.
S.
Celiksoy
,
W.
Ye
,
K.
Wandner
,
K.
Kaefer
, and
C.
Sönnichsen
, “
Intensity-based single particle plasmon sensing
,”
Nano Lett.
21
,
2053
2058
(
2021
).
176.
V.
Thambi
,
A.
Kar
,
P.
Ghosh
, and
S.
Khatua
, “
Light-controlled in situ bidirectional tuning and monitoring of gold nanorod plasmon via oxidative etching with FeCl3
,”
J. Phys. Chem. C
122
,
24885
24890
(
2018
).
177.
S. A.
Lee
,
B.
Ostovar
,
C. F.
Landes
, and
S.
Link
, “
Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods
,”
J. Chem. Phys.
156
,
064702
(
2022
).
178.
G.
Kumari
,
X.
Zhang
,
D.
Devasia
,
J.
Heo
, and
P. K.
Jain
, “
Watching visible light-driven CO reduction on a plasmonic nanoparticle catalyst
,”
ACS Nano
12
,
8330
8340
(
2018
).
179.
B.
Akbali
,
M.
Yagmurcukardes
,
F. M.
Peeters
,
H.-Y.
Lin
,
T.-Y.
Lin
,
W.-H.
Chen
,
S.
Maher
,
T.-Y.
Chen
, and
C.-H.
Huang
, “
Determining the molecular orientation on the metal nanoparticle surface through surface-enhanced Raman spectroscopy and density functional theory simulations
,”
J. Phys. Chem. C
125
,
16289
16295
(
2021
).
180.
C. L.
Warkentin
,
Z.
Yu
,
A.
Sarkar
, and
R. R.
Frontiera
, “
Decoding chemical and physical processes driving plasmonic photocatalysis using surface-enhanced Raman spectroscopies
,”
Acc. Chem. Res.
54
,
2457
2466
(
2021
).
181.
N.
Zou
,
G.
Chen
,
X.
Mao
,
H.
Shen
,
E.
Choudhary
,
X.
Zhou
, and
P.
Chen
, “
Imaging catalytic hotspots on single plasmonic nanostructures via correlated super-resolution and electron microscopy
,”
ACS Nano
12
,
5570
5579
(
2018
).
182.
E. A.
Wertz
,
B. P.
Isaacoff
, and
J. S.
Biteen
, “
Wavelength-dependent super-resolution images of dye molecules coupled to plasmonic nanotriangles
,”
ACS Photonics
3
,
1733
1740
(
2016
).
183.
K.
Bian
,
C.
Gerber
,
A. J.
Heinrich
,
D. J.
Müller
,
S.
Scheuring
, and
Y.
Jiang
, “
Scanning probe microscopy
,”
Nat. Rev. Methods Primers
1
,
36
(
2021
).
184.
E.
Kazuma
,
M.
Lee
,
J.
Jung
,
M.
Trenary
, and
Y.
Kim
, “
Single-molecule study of a plasmon-induced reaction for a strongly chemisorbed molecule
,”
Angew. Chem., Int. Ed Engl.
59
,
7960
7966
(
2020
).
185.
E.
Kazuma
,
N.
Sakai
, and
T.
Tatsuma
, “
Nanoimaging of localized plasmon-induced charge separation
,”
Chem. Commun.
47
,
5777
5779
(
2011
).
186.
I.
Tanabe
and
T.
Tatsuma
, “
Plasmonic manipulation of color and morphology of single silver nanospheres
,”
Nano Lett.
12
,
5418
5421
(
2012
).
187.
E.
Kazuma
and
T.
Tatsuma
, “
In situ nanoimaging of photoinduced charge separation at the plasmonic Au nanoparticle-TiO2 interface
,”
Adv. Mater. Interfaces
1
,
1400066
(
2014
).
188.
E.
Kazuma
and
Y.
Kim
, “
Scanning probe microscopy for real-space observations of local chemical reactions induced by a localized surface plasmon
,”
Phys. Chem. Chem. Phys.
21
,
19720
19731
(
2019
).
189.
S.
Wang
,
Y.
Gao
,
S.
Miao
,
T.
Liu
,
L.
Mu
,
R.
Li
,
F.
Fan
, and
C.
Li
, “
Positioning the water oxidation reaction sites in plasmonic photocatalysts
,”
J. Am. Chem. Soc.
139
,
11771
11778
(
2017
).
190.
Y.
Gao
,
W.
Nie
,
Q.
Zhu
,
X.
Wang
,
S.
Wang
,
F.
Fan
, and
C.
Li
, “
The polarization effect in surface-plasmon-induced photocatalysis on Au/TiO nanoparticles
,”
Angew. Chem., Int. Ed. Engl.
59
,
18218
18223
(
2020
).
191.
S.-H.
Lee
,
S. W.
Lee
,
T.
Oh
,
S. H.
Petrosko
,
C. A.
Mirkin
, and
J.-W.
Jang
, “
Direct observation of plasmon-induced interfacial charge separation in metal/semiconductor hybrid nanostructures by measuring surface potentials
,”
Nano Lett.
18
,
109
116
(
2018
).
192.
J.-Z.
Wang
,
Z.-Q.
Guo
,
J.-P.
Zhou
, and
Y.-X.
Lei
, “
Plasmon-enhanced photocatalytic activity of NaMgTiO loaded with noble metals directly observed with scanning kelvin probe microscopy
,”
Nanotechnology
29
,
305709
(
2018
).
193.
J.
Zhu
,
F.
Fan
,
R.
Chen
,
H.
An
,
Z.
Feng
, and
C.
Li
, “
Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst
,”
Angew. Chem., Int. Ed. Engl.
54
,
9111
9114
(
2015
).
194.
C. L.
Bentley
,
M.
Kang
, and
P. R.
Unwin
, “
Nanoscale structure dynamics within electrocatalytic materials
,”
J. Am. Chem. Soc.
139
,
16813
16821
(
2017
).
195.
S.
Dery
and
E.
Gross
, “
Ir nanospectroscopy in catalysis research
,” in
Ambient Pressure Spectroscopy in Complex Chemical Environments, ACS Symposium Series
(
American Chemical Society
,
Washington, DC
,
2021
), Chap. 7, pp.
147
173
.
196.
U.
Arieli
,
M.
Mrejen
, and
H.
Suchowski
, “
Broadband coherent hyperspectral near-field imaging of plasmonic nanostructures
,”
Opt. Express
27
,
9815
9820
(
2019
).
197.
J.
Karst
,
F.
Sterl
,
H.
Linnenbank
,
T.
Weiss
,
M.
Hentschel
, and
H.
Giessen
, “
Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale
,”
Sci. Adv.
6
,
eaaz0566
(
2020
).
198.
Z.
Li
,
P. Z.
El-Khoury
, and
D.
Kurouski
, “
Tip-enhanced Raman imaging of photocatalytic reactions on thermally-reshaped gold and gold-palladium microplates
,”
Chem. Commun.
57
,
891
894
(
2021
).
199.
C.
Barroo
,
Z.-J.
Wang
,
R.
Schlögl
, and
M.-G.
Willinger
, “
Imaging the dynamics of catalysed surface reactions by in situ scanning electron microscopy
,”
Nat. Catal.
3
,
30
39
(
2019
).
200.
Y.
Wu
,
G.
Li
, and
J. P.
Camden
, “
Probing nanoparticle plasmons with electron energy loss spectroscopy
,”
Chem. Rev.
118
,
2994
3031
(
2018
).
201.
C.
Cherqui
,
N.
Thakkar
,
G.
Li
,
J. P.
Camden
, and
D. J.
Masiello
, “
Characterizing localized surface plasmons using electron energy-loss spectroscopy
,”
Annu. Rev. Phys. Chem.
67
,
331
357
(
2016
).
202.
F.-P.
Schmidt
,
H.
Ditlbacher
,
U.
Hohenester
,
A.
Hohenau
,
F.
Hofer
, and
J. R.
Krenn
, “
Dark plasmonic breathing modes in silver nanodisks
,”
Nano Lett.
12
,
5780
5783
(
2012
).
203.
F. P.
Schmidt
,
H.
Ditlbacher
,
F.
Hofer
,
J. R.
Krenn
, and
U.
Hohenester
, “
Morphing a plasmonic nanodisk into a nanotriangle
,”
Nano Lett.
14
,
4810
4815
(
2014
).
204.
J.
Nelayah
,
M.
Kociak
,
O.
Stéphan
,
F. J.
García de Abajo
,
M.
Tencé
,
L.
Henrard
,
D.
Taverna
,
I.
Pastoriza-Santos
,
L. M.
Liz-Marzán
, and
C.
Colliex
, “
Mapping surface plasmons on a single metallic nanoparticle
,”
Nat. Phys.
3
,
348
353
(
2007
).
205.
A.
Campos
,
N.
Troc
,
E.
Cottancin
,
M.
Pellarin
,
H.-C.
Weissker
,
J.
Lermé
,
M.
Kociak
, and
M.
Hillenkamp
, “
Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments
,”
Nat. Phys.
15
,
275
280
(
2019
).
206.
J. A.
Scholl
,
A. L.
Koh
, and
J. A.
Dionne
, “
Quantum plasmon resonances of individual metallic nanoparticles
,”
Nature
483
,
421
427
(
2012
).
207.
A.
Campos
,
A.
Arbouet
,
J.
Martin
,
D.
Gérard
,
J.
Proust
,
J.
Plain
, and
M.
Kociak
, “
Plasmonic breathing and edge modes in aluminum nanotriangles
,”
ACS Photonics
4
,
1257
1263
(
2017
).
208.
K. P.
Koirala
,
J.
Ge
,
R.
Kalyanaraman
, and
G.
Duscher
, “
Direct detection of highly localized metal-metal interface plasmons from bimetallic nanoparticles
,”
Plasmonics
16
,
957
964
(
2021
).
209.
Y.
Wu
,
G.
Li
,
C.
Cherqui
,
N. W.
Bigelow
,
N.
Thakkar
,
D. J.
Masiello
,
J. P.
Camden
, and
P. D.
Rack
, “
Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au–Ag alloy nanoparticles: Unraveling size, composition, and substrate effects
,”
ACS Photonics
3
,
130
138
(
2016
).
210.
V.
Flauraud
,
G. D.
Bernasconi
,
J.
Butet
,
D. T. L.
Alexander
,
O. J. F.
Martin
, and
J.
Brugger
, “
Mode coupling in plasmonic heterodimers probed with electron energy loss spectroscopy
,”
ACS Nano
11
,
3485
3495
(
2017
).
211.
E.
Ringe
,
C. J.
DeSantis
,
S. M.
Collins
,
M.
Duchamp
,
R. E.
Dunin-Borkowski
,
S. E.
Skrabalak
, and
P. A.
Midgley
, “
Resonances of nanoparticles with poor plasmonic metal tips
,”
Sci. Rep.
5
,
17431
(
2015
).
212.
S.
Griffin
,
N. P.
Montoni
,
G.
Li
,
P. J.
Straney
,
J. E.
Millstone
,
D. J.
Masiello
, and
J. P.
Camden
, “
Imaging energy transfer in Pt-decorated Au nanoprisms via electron energy-loss spectroscopy
,”
J. Phys. Chem. Lett.
7
,
3825
3832
(
2016
).
213.
G.
Li
,
C.
Cherqui
,
N. W.
Bigelow
,
G.
Duscher
,
P. J.
Straney
,
J. E.
Millstone
,
D. J.
Masiello
, and
J. P.
Camden
, “
Spatially mapping energy transfer from single plasmonic particles to semiconductor substrates via STEM/EELS
,”
Nano Lett.
15
,
3465
3471
(
2015
).
214.
L.
Han
,
Q.
Meng
,
D.
Wang
,
Y.
Zhu
,
J.
Wang
,
X.
Du
,
E. A.
Stach
, and
H. L.
Xin
, “
Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale
,”
Nat. Commun.
7
,
13335
(
2016
).
215.
R.
Aso
,
H.
Hojo
,
Y.
Takahashi
,
T.
Akashi
,
Y.
Midoh
,
F.
Ichihashi
,
H.
Nakajima
,
T.
Tamaoka
,
K.
Yubuta
,
H.
Nakanishi
,
H.
Einaga
,
T.
Tanigaki
,
H.
Shinada
, and
Y.
Murakami
, “
Direct identification of the charge state in a single platinum nanoparticle on titanium oxide
,”
Science
378
,
202
206
(
2022
).
216.
C.
Ophus
, “
Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond
,”
Microsc. Microanal.
25
,
563
582
(
2019
).
217.
H.-Y.
Chao
,
K.
Venkatraman
,
S.
Moniri
,
Y.
Jiang
,
X.
Tang
,
S.
Dai
,
W.
Gao
,
J.
Miao
, and
M.
Chi
, “
In situ and emerging transmission electron microscopy for catalysis research
,”
Chem. Rev.
123
,
8347
8394
(
2023
).
218.
C.
Addiego
,
W.
Gao
,
H.
Huyan
, and
X.
Pan
, “
Probing charge density in materials with atomic resolution in real space
,”
Nat. Rev. Phys.
5
,
117
132
(
2023
).
219.
O. L.
Krivanek
,
T. C.
Lovejoy
,
N.
Dellby
,
T.
Aoki
,
R. W.
Carpenter
,
P.
Rez
,
E.
Soignard
,
J.
Zhu
,
P. E.
Batson
,
M. J.
Lagos
,
R. F.
Egerton
, and
P. A.
Crozier
, “
Vibrational spectroscopy in the electron microscope
,”
Nature
514
,
209
212
(
2014
).
220.
M. J.
Lagos
,
A.
Trügler
,
U.
Hohenester
, and
P. E.
Batson
, “
Mapping vibrational surface and bulk modes in a single nanocube
,”
Nature
543
,
529
532
(
2017
).
221.
P.
Rez
,
T.
Aoki
,
K.
March
,
D.
Gur
,
O. L.
Krivanek
,
N.
Dellby
,
T. C.
Lovejoy
,
S. G.
Wolf
, and
H.
Cohen
, “
Damage-free vibrational spectroscopy of biological materials in the electron microscope
,”
Nat. Commun.
7
,
10945
(
2016
).
222.
C.
Dwyer
,
T.
Aoki
,
P.
Rez
,
S. L. Y.
Chang
,
T. C.
Lovejoy
, and
O. L.
Krivanek
, “
Electron-beam mapping of vibrational modes with nanometer spatial resolution
,”
Phys. Rev. Lett.
117
,
256101
(
2016
).
223.
F. S.
Hage
,
R. J.
Nicholls
,
J. R.
Yates
,
D. G.
McCulloch
,
T. C.
Lovejoy
,
N.
Dellby
,
O. L.
Krivanek
,
K.
Refson
, and
Q. M.
Ramasse
, “
Nanoscale momentum-resolved vibrational spectroscopy
,”
Sci. Adv.
4
,
eaar7495
(
2018
).
224.
F. S.
Hage
,
D. M.
Kepaptsoglou
,
Q. M.
Ramasse
, and
L. J.
Allen
, “
Phonon spectroscopy at atomic resolution
,”
Phys. Rev. Lett.
122
,
016103
(
2019
).
225.
T.
Miyata
,
M.
Fukuyama
,
A.
Hibara
,
E.
Okunishi
,
M.
Mukai
, and
T.
Mizoguchi
, “
Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy-electron energy loss spectroscopy
,”
Microscopy
63
,
377
382
(
2014
).
226.
E. R.
Hoglund
,
D.-L.
Bao
,
A.
O'Hara
,
T. W.
Pfeifer
,
M. S. B.
Hoque
,
S.
Makarem
,
J. M.
Howe
,
S. T.
Pantelides
,
P. E.
Hopkins
, and
J. A.
Hachtel
, “
Direct visualization of localized vibrations at complex grain boundaries
,”
Adv. Mater.
35
,
e2208920
(
2023
).
227.
J. A.
Hachtel
,
J.
Huang
,
I.
Popovs
,
S.
Jansone-Popova
,
J. K.
Keum
,
J.
Jakowski
,
T. C.
Lovejoy
,
N.
Dellby
,
O. L.
Krivanek
, and
J. C.
Idrobo
, “
Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope
,”
Science
363
,
525
528
(
2019
).
228.
R.
Senga
,
Y.-C.
Lin
,
S.
Morishita
,
R.
Kato
,
T.
Yamada
,
M.
Hasegawa
, and
K.
Suenaga
, “
Imaging of isotope diffusion using atomic-scale vibrational spectroscopy
,”
Nature
603
,
68
72
(
2022
).
229.
D.
Kordahl
and
C.
Dwyer
, “
Enhanced vibrational electron energy-loss spectroscopy of adsorbate molecules
,”
Phys. Rev. B
99
,
104110
(
2019
).
230.
L. H. G.
Tizei
,
V.
Mkhitaryan
,
H.
Lourenço-Martins
,
L.
Scarabelli
,
K.
Watanabe
,
T.
Taniguchi
,
M.
Tencé
,
J.-D.
Blazit
,
X.
Li
,
A.
Gloter
,
A.
Zobelli
,
F.-P.
Schmidt
,
L. M.
Liz-Marzán
,
F. J.
García de Abajo
,
O.
Stéphan
, and
M.
Kociak
, “
Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy
,”
Nano Lett.
20
,
2973
2979
(
2020
).
231.
G.
Beane
,
T.
Devkota
,
B. S.
Brown
, and
G. V.
Hartland
, “
Ultrafast measurements of the dynamics of single nanostructures: A review
,”
Rep. Prog. Phys.
82
,
016401
(
2019
).
232.
N.
Gross
,
C. T.
Kuhs
,
B.
Ostovar
,
W.-Y.
Chiang
,
K. S.
Wilson
,
T. S.
Volek
,
Z. M.
Faitz
,
C. C.
Carlin
,
J. A.
Dionne
,
M. T.
Zanni
,
M.
Gruebele
,
S. T.
Roberts
,
S.
Link
, and
C. F.
Landes
, “
Progress and prospects in optical ultrafast microscopy in the visible spectral region: Transient absorption and two-dimensional microscopy
,”
J. Phys. Chem. C
127
,
14557
14586
(
2023
).
233.
J. S.
Pelli Cresi
,
M. C.
Spadaro
,
S.
D'Addato
,
S.
Valeri
,
S.
Benedetti
,
A. D.
Bona
,
D.
Catone
,
L. D.
Mario
,
P.
O'Keeffe
,
A.
Paladini
,
G.
Bertoni
, and
P.
Luches
, “
Highly efficient plasmon-mediated electron injection into cerium oxide from embedded silver nanoparticles
,”
Nanoscale
11
,
10282
10291
(
2019
).
234.
O. L.
Muskens
,
N.
Del Fatti
, and
F.
Vallée
, “
Femtosecond response of a single metal nanoparticle
,”
Nano Lett.
6
,
552
556
(
2006
).
235.
K.
Yu
,
J. E.
Sader
,
P.
Zijlstra
,
M.
Hong
,
Q.-H.
Xu
, and
M.
Orrit
, “
Probing silver deposition on single gold nanorods by their acoustic vibrations
,”
Nano Lett.
14
,
915
922
(
2014
).
236.
S.
Mourdikoudis
,
R. M.
Pallares
, and
N. T. K.
Thanh
, “
Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties
,”
Nanoscale
10
,
12871
12934
(
2018
).
237.
C.-L.
Dong
and
L.
Vayssieres
, “
In situ/operando x-ray spectroscopies for advanced investigation of energy materials
,”
Chemistry
24
,
18356
18373
(
2018
).
238.
C. S.
Schnohr
and
M. C.
Ridgway
,
X-Ray Absorption Spectroscopy of Semiconductors
(
Springer
,
Heidelberg
,
2014
).
239.
J.
Kawai
, “
Absorption techniques in x-ray spectrometry
,” in
Encyclopedia of Analytical Chemistry
(
John Wiley & Sons, Ltd
,
2006
).
240.
B. D.
Cullity
and
S. R.
Stock
,
Elements of X-Ray Diffraction
(
Prentice Hall
,
2001
).
241.
H.
Khan
,
A. S.
Yerramilli
,
A.
D'Oliveira
,
T. L.
Alford
,
D. C.
Boffito
, and
G. S.
Patience
, “
Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD
,”
Can. J. Chem. Eng.
98
,
1255
1266
(
2020
).
242.
C.
Giannini
,
M.
Ladisa
,
D.
Altamura
,
D.
Siliqi
,
T.
Sibillano
, and
L.
De Caro
, “
X-ray diffraction: A powerful technique for the multiple-length-scale structural analysis of nanomaterials
,”
Crystals
6
,
87
(
2016
).
243.
T.
Li
,
A. J.
Senesi
, and
B.
Lee
, “
Small angle x-ray scattering for nanoparticle research
,”
Chem. Rev.
116
,
11128
11180
(
2016
).
244.
H.
Schnablegger
and
Y.
Singh
, The SAXS Guide, 5th ed. (Anton Paar GmbH, Graz, Austria, 2023).
245.
S. A.
Lee
and
S.
Link
, “
Chemical interface damping of surface plasmon resonances
,”
Acc. Chem. Res.
54
,
1950
1960
(
2021
).
246.
N. L.
Gruenke
,
M. F.
Cardinal
,
M. O.
McAnally
,
R. R.
Frontiera
,
G. C.
Schatz
, and
R. P.
Van Duyne
, “
Ultrafast and nonlinear surface-enhanced Raman spectroscopy
,”
Chem. Soc. Rev.
45
,
2263
2290
(
2016
).
247.
S.-C.
Huang
,
X.
Wang
,
Q.-Q.
Zhao
,
J.-F.
Zhu
,
C.-W.
Li
,
Y.-H.
He
,
S.
Hu
,
M. M.
Sartin
,
S.
Yan
, and
B.
Ren
, “
Probing nanoscale spatial distribution of plasmonically excited hot carriers
,”
Nat. Commun.
11
,
4211
(
2020
).
248.
L.
Su
,
H.
Yuan
,
G.
Lu
,
S.
Rocha
,
M.
Orrit
,
J.
Hofkens
, and
H.
Uji-i
, “
Super-resolution localization and defocused fluorescence microscopy on resonantly coupled single-molecule, single-nanorod hybrids
,”
ACS Nano
10
,
2455
2466
(
2016
).
249.
A. J.
Wilson
,
D.
Devasia
, and
P. K.
Jain
, “
Nanoscale optical imaging in chemistry
,”
Chem. Soc. Rev.
49
,
6087
6112
(
2020
).
250.
X.
Wang
,
Y.
Cui
, and
J.
Irudayaraj
, “
Single-cell quantification of cytosine modifications by hyperspectral dark-field imaging
,”
ACS Nano
9
,
11924
11932
(
2015
).
251.
A.
Weigel
,
A.
Sebesta
, and
P.
Kukura
, “
Dark field microspectroscopy with single molecule fluorescence sensitivity
,”
ACS Photonics
1
,
848
856
(
2014
).
252.
S.-C.
Yang
,
H.
Kobori
,
C.-L.
He
,
M.-H.
Lin
,
H.-Y.
Chen
,
C.
Li
,
M.
Kanehara
,
T.
Teranishi
, and
S.
Gwo
, “
Plasmon hybridization in individual gold nanocrystal dimers: Direct observation of bright and dark modes
,”
Nano Lett.
10
,
632
637
(
2010
).
253.
W.
Zhang
,
L.
Huang
,
C.
Santschi
, and
O. J. F.
Martin
, “
Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas
,”
Nano Lett.
10
,
1006
1011
(
2010
).
254.
D. J.
Hill
,
C. W.
Pinion
,
J.
Christesen
, and
J. F.
Cahoon
, “
Waveguide scattering microscopy for dark-field imaging and spectroscopy of photonic nanostructures
,”
ACS Photonics
1
,
725
731
(
2014
).
255.
T. S.
Heiderscheit
,
M. J.
Gallagher
,
R.
Baiyasi
,
S. S. E.
Collins
,
S. A.
Hosseini Jebeli
,
L.
Scarabelli
,
A.
Al-Zubeidi
,
C.
Flatebo
,
W.-S.
Chang
,
C. F.
Landes
, and
S.
Link
, “
Nanoelectrode-emitter spectral overlap amplifies surface enhanced electrogenerated chemiluminescence
,”
J. Chem. Phys.
151
,
144712
(
2019
).
256.
A.
Kumar
,
E.
Villarreal
,
X.
Zhang
, and
E.
Ringe
, “
Micro-extinction spectroscopy (MExS): A versatile optical characterization technique
,”
Adv. Struct. Chem. Imaging
4
,
8
(
2018
).
257.
T.-Y.
Tseng
,
P.-J.
Lai
, and
K.-B.
Sung
, “
High-throughput detection of immobilized plasmonic nanoparticles by a hyperspectral imaging system based on Fourier transform spectrometry
,”
Opt. Express
19
,
1291
1300
(
2011
).
258.
D.
Zopf
,
J.
Jatschka
,
A.
Dathe
,
N.
Jahr
,
W.
Fritzsche
, and
O.
Stranik
, “
Hyperspectral imaging of plasmon resonances in metallic nanoparticles
,”
Biosens. Bioelectron.
81
,
287
293
(
2016
).
259.
C. M.
Sweeney
,
C. L.
Nehl
,
W.
Hasan
,
T.
Liang
,
A. L.
Eckermann
,
T. J.
Meade
, and
T. W.
Odom
, “
Three-channel spectrometer for wide-field imaging of anisotropic plasmonic nanoparticles
,”
J. Phys. Chem. C
115
,
15933
15937
(
2011
).
260.
K.
Lindfors
,
T.
Kalkbrenner
,
P.
Stoller
, and
V.
Sandoghdar
, “
Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy
,”
Phys. Rev. Lett.
93
,
037401
(
2004
).
261.
K.
Holanová
,
M.
Vala
, and
M.
Piliarik
, “
[INVITED] optical imaging and localization of prospective scattering labels smaller than a single protein
,”
Opt. Laser Technol.
109
,
323
327
(
2019
).
262.
L.
Rodríguez-Lorenzo
,
J. M.
Romo-Herrera
,
J.
Pérez-Juste
,
R. A.
Alvarez-Puebla
, and
L. M.
Liz-Marzán
, “
Reshaping and LSPR tuning of Au nanostars in the presence of CTAB
,”
J. Mater. Chem.
21
,
11544
11549
(
2011
).
263.
A.
Al-Zubeidi
,
F.
Stein
,
C.
Flatebo
,
C.
Rehbock
,
S. A.
Hosseini Jebeli
,
C. F.
Landes
,
S.
Barcikowski
, and
S.
Link
, “
Single-particle hyperspectral imaging reveals kinetics of silver ion leaching from alloy nanoparticles
,”
ACS Nano
15
,
8363
8375
(
2021
).
264.
J.
Zhao
,
S. C.
Nguyen
,
R.
Ye
,
B.
Ye
,
H.
Weller
,
G. A.
Somorjai
,
A.
Paul Alivisatos
, and
F.
Dean Toste
, “
A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis
,”
ACS Central Sci.
3
,
482
488
(
2017
).
265.
Z.
Mao
,
R.
Espinoza
,
A.
Garcia
,
A.
Enwright
,
H.
Vang
, and
S. C.
Nguyen
, “
Tuning redox potential of gold nanoparticle photocatalysts by light
,”
ACS Nano
14
,
7038
7045
(
2020
).
266.
N. Y.
Molina
,
T.
Pungsrisai
,
Z. J.
O'Dell
,
B.
Paranzino
, and
K. A.
Willets
, “
The hidden role of the supporting electrode for creating heterogeneity in single entity electrochemistry
,”
ChemElectroChem
9
,
e202200245
(
2022
).
267.
R.
Jin
,
Y. C.
Cao
,
E.
Hao
,
G. S.
Métraux
,
G. C.
Schatz
, and
C. A.
Mirkin
, “
Controlling anisotropic nanoparticle growth through plasmon excitation
,”
Nature
425
,
487
490
(
2003
).
268.
Z.
Mao
,
H.
Vang
,
A.
Garcia
,
A.
Tohti
,
B. J.
Stokes
, and
S. C.
Nguyen
, “
Carrier Diffusion—The main contribution to size-dependent photocatalytic activity of colloidal gold nanoparticles
,”
ACS Catal.
9
,
4211
4217
(
2019
).
269.
D.
Andrén
,
L.
Shao
,
N.
Odebo Länk
,
S. S.
Aćimović
,
P.
Johansson
, and
M.
Käll
, “
Probing photothermal effects on optically trapped gold nanorods by simultaneous plasmon spectroscopy and Brownian dynamics analysis
,”
ACS Nano
11
,
10053
10061
(
2017
).
270.
M.
Chirea
,
S. S. E.
Collins
,
X.
Wei
, and
P.
Mulvaney
, “
Spectroelectrochemistry of silver deposition on single gold nanocrystals
,”
J. Phys. Chem. Lett.
5
,
4331
4335
(
2014
).
271.
L. O.
Herrmann
and
J. J.
Baumberg
, “
Watching single nanoparticles grow in real time through supercontinuum spectroscopy
,”
Small
9
,
3743
3747
(
2013
).