To date, chemical vapor deposition has been employed to grow large-area polycrystalline (PC) films of hexagonal boron nitride (hBN). However, PC hBN thin films exhibit abundant grain boundaries, small grain sizes, and structural imperfections, which collectively degrade the performance as well as hinder the scalability and potential applications of hBN films. Recently, demonstrated deposition methods for growing large-area single-crystalline (SC) hBN films can break through these bottlenecks and have opened avenues for new opportunities. Large-area SC hBN films outperform their PC counterparts owing to the presence of fewer grain boundaries and a more homogeneous surface morphology. This review article presents a consolidated overview of the growth mechanisms of SC hBN films and role of metal catalysts (substrates) in the growth process. Applications, in which SC hBN outperforms PC hBN as well as the potential applications of SC hBN, are also discussed.

1.
K. Y.
Ma
,
M.
Kim
, and
H. S.
Shin
, “
Large-area hexagonal boron nitride layers by chemical vapor deposition: Growth and applications for substrates, encapsulation, and membranes
,”
Acc. Mater. Res.
3
,
748
760
(
2022
).
2.
Y. J.
Cho
,
A.
Summerfield
,
A.
Davies
,
T. S.
Cheng
,
E. F.
Smith
,
C. J.
Mellor
,
A. N.
Khlobystov
,
C. T.
Foxon
,
L.
Eaves
,
P. H.
Beton
, and
S. V.
Novikov
, “
Corrigendum: Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy
,”
Sci. Rep.
7
,
46799
(
2017
).
3.
M.
Kim
,
K. Y.
Ma
, and
H. S.
Shin
, “
Toward growth of wafer-scale single-crystal hexagonal boron nitride sheets
,”
Nano Express
2
,
031004
(
2021
).
4.
S.
Kumari
,
A.
Chouhan
,
O. P.
Sharma
,
S. A.
Tawfik
,
M. J. S.
Spencer
,
S. K.
Bhargava
,
S.
Walia
,
A.
Ray
, and
O. P.
Khatri
, “
Alkali-assisted hydrothermal exfoliation and surfactant-driven functionalization of h-BN nanosheets for lubrication enhancement
,”
ACS Appl. Nano Mater.
4
,
9143
9154
(
2021
).
5.
X.
Hao
,
Y.
Wu
,
J.
Zhan
,
X.
Xu
, and
M.
Jiang
, “
Hydrothermal growth of boron nitride microcrystals
,”
Cryst. Res. Technol.
40
,
654
657
(
2005
).
6.
X.
Hao
,
S.
Dong
,
W.
Fang
,
J.
Zhan
,
L.
Li
,
X.
Xu
, and
M.
Jiang
, “
A novel hydrothermal route to synthesize boron nitride nanocrystals
,”
Inorg. Chem. Commun.
7
,
592
594
(
2004
).
7.
B.
Zhang
,
Q.
Wu
,
H.
Yu
,
C.
Bulin
,
H.
Sun
,
R.
Li
,
X.
Ge
, and
R.
Xing
, “
High-efficient liquid exfoliation of boron nitride nanosheets using aqueous solution of alkanolamine
,”
Nanoscale Res. Lett.
12
,
596
(
2017
).
8.
C.
Gautam
and
S.
Chelliah
, “
Methods of hexagonal boron nitride exfoliation and its functionalization: Covalent and non-covalent approaches
,”
RSC Adv.
11
,
31284
31327
(
2021
).
9.
O.
Burat
,
D.
Bouchier
,
V.
Stambouli
, and
G.
Gautherin
, “
Characterization and growth mechanisms of boron nitride films synthesized by ion-beam-assisted deposition
,”
J. Appl. Phys.
68
,
2780
2790
(
1990
).
10.
C.
Oshima
and
A.
Nagashima
, “
Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces
,”
J. Phys.: Condens. Matter.
9
,
1
20
(
1997
).
11.
L.
Song
,
L.
Ci
,
H.
Lu
,
P. B.
Sorokin
,
C.
Jin
,
J.
Ni
,
A. G.
Kvashnin
,
D. G.
Kvashnin
,
J.
Lou
,
B. I.
Yakobson
, and
P. M.
Ajayan
, “
Large scale growth and characterization of atomic hexagonal boron nitride layers
,”
Nano Lett.
10
,
3209
3215
(
2010
).
12.
X. Z.
Du
,
M. R.
Uddin
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
, “
Layer number dependent optical properties of multilayer hexagonal BN epilayers
,”
Appl. Phys. Lett.
110
,
092102
(
2017
).
13.
Y.
Hattori
,
T.
Taniguchi
,
K.
Watanabe
, and
K.
Nagashio
, “
Layer-by-layer dielectric breakdown of hexagonal boron nitride
,”
ACS Nano
9
,
916
921
(
2015
).
14.
C.
Kowanda
and
M. O.
Speidel
, “
Solubility of nitrogen in liquid nickel and binary Ni-Xi alloys (Xi = Cr, Mo, W, Mn, Fe, Co) under elevated pressure
,”
Scr. Mater.
48
,
1073
1078
(
2003
).
15.
S.
Fukamachi
,
P.
Solís-Fernández
,
K.
Kawahara
,
D.
Tanaka
,
T.
Otake
,
Y. C.
Lin
,
K.
Suenaga
, and
H.
Ago
, “
Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays
,”
Nat. Electron.
6
,
126
136
(
2023
).
16.
S. M.
Kim
,
A.
Hsu
,
M. H.
Park
,
S. H.
Chae
,
S. J.
Yun
,
J. S.
Lee
,
D. H.
Cho
,
W.
Fang
,
C.
Lee
,
T.
Palacios
,
M.
Dresselhaus
,
K. K.
Kim
,
Y. H.
Lee
, and
J.
Kong
, “
Synthesis of large-area multilayer hexagonal boron nitride for high material performance
,”
Nat. Commun.
6
,
8662
(
2015
).
17.
R. Y.
Tay
,
M. H.
Griep
,
G.
Mallick
,
S. H.
Tsang
,
R. S.
Singh
,
T.
Tumlin
,
E. H. T.
Teo
, and
S. P.
Karna
, “
Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper
,”
Nano Lett.
14
,
839
846
(
2014
).
18.
Y.
Shi
,
C.
Hamsen
,
X.
Jia
,
K. K.
Kim
,
A.
Reina
,
M.
Hofmann
,
A. L.
Hsu
,
K.
Zhang
,
H.
Li
,
Z. Y.
Juang
,
M. S.
Dresselhaus
,
L. J.
Li
, and
J.
Kong
, “
Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition
,”
Nano Lett.
10
,
4134
4139
(
2010
).
19.
K. K.
Kim
,
A.
Hsu
,
X.
Jia
,
S. M.
Kim
,
Y.
Shi
,
M.
Hofmann
,
D.
Nezich
,
J. F.
Rodriguez-nieva
,
M.
Dresselhaus
,
T.
Palacios
, and
J.
Kong
, “
Synthesis of monolayer hexagonal boron nitride on Cu foil using CVD
,”
Nano Lett.
12
,
161
166
(
2012
).
20.
K. K.
Kim
,
A.
Hsu
,
X.
Jia
,
S. M.
Kim
,
Y.
Shi
,
M.
Dresselhaus
,
T.
Palacios
, and
J.
Kong
, “
Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices
ACS Nano
6
(
10
),
8583
8590
(
2012
).
21.
G.
Kim
,
A. R.
Jang
,
H. Y.
Jeong
,
Z.
Lee
,
D. J.
Kang
, and
H. S.
Shin
, “
Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil
,”
Nano Lett.
13
,
1834
1839
(
2013
).
22.
S.
Caneva
,
R. S.
Weatherup
,
B. C.
Bayer
,
R.
Blume
,
A.
Cabrero-Vilatela
,
P.
Braeuninger-Weimer
,
M. B.
Martin
,
R.
Wang
,
C.
Baehtz
,
R.
Schloegl
,
J. C.
Meyer
, and
S.
Hofmann
, “
Controlling catalyst bulk reservoir effects for monolayer hexagonal boron nitride CVD
,”
Nano Lett.
16
,
1250
1261
(
2016
).
23.
K.
Kim
,
J. Y.
Choi
,
T.
Kim
,
S. H.
Cho
, and
H. J.
Chung
, “
A role for graphene in silicon-based semiconductor devices
,”
Nature
479
,
338
344
(
2011
).
24.
H.
Zhou
,
J.
Zhu
,
Z.
Liu
,
Z.
Yan
,
X.
Fan
,
J.
Lin
,
G.
Wang
,
Q.
Yan
,
T.
Yu
,
P. M.
Ajayan
, and
J. M.
Tour
, “
High thermal conductivity of suspended few-layer hexagonal boron nitride sheets
,”
Nano Res.
7
,
1232
1240
(
2014
).
25.
G.
Lu
,
T.
Wu
,
Q.
Yuan
,
H.
Wang
,
H.
Wang
,
F.
Ding
,
X.
Xie
, and
M.
Jiang
, “
Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy
,”
Nat. Commun.
6
,
6160
(
2015
).
26.
A. R.
Jang
,
S.
Hong
,
C.
Hyun
,
S. I.
Yoon
,
G.
Kim
,
H. Y.
Jeong
,
T. J.
Shin
,
S. O.
Park
,
K.
Wong
,
S. K.
Kwak
,
N.
Park
,
K.
Yu
,
E.
Choi
,
A.
Mishchenko
,
F.
Withers
,
K. S.
Novoselov
,
H.
Lim
, and
H. S.
Shin
, “
Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire
,”
Nano Lett.
16
,
3360
3366
(
2016
).
27.
F.
Hui
,
W.
Fang
,
W. S.
Leong
,
T.
Kpulun
,
H.
Wang
,
H. Y.
Yang
,
M. A.
Villena
,
G.
Harris
,
J.
Kong
, and
M.
Lanza
, “
Electrical homogeneity of large-area chemical vapor deposited multilayer hexagonal boron nitride sheets
,”
ACS Appl. Mater. Interfaces
9
,
39895
39900
(
2017
).
28.
R. J.
Chang
,
X.
Wang
,
S.
Wang
,
Y.
Sheng
,
B.
Porter
,
H.
Bhaskaran
, and
J. H.
Warner
, “
Growth of large single-crystalline monolayer hexagonal boron nitride by oxide-assisted chemical vapor deposition
,”
Chem. Mater.
29
,
6252
6260
(
2017
).
29.
Y.
Uchida
,
S.
Nakandakari
,
K.
Kawahara
,
S.
Yamasaki
,
M.
Mitsuhara
, and
H.
Ago
, “
Controlled growth of large-area uniform multilayer hexagonal boron nitride as an effective 2D substrate
,”
ACS Nano
12
,
6236
6244
(
2018
).
30.
Z.
Shi
,
G.
Lu
,
P.
Yang
,
T.
Wu
,
W.
Yin
,
C.
Zhang
,
R.
Jiang
, and
X.
Xie
, “
Controlled synthesis of uniform multilayer hexagonal boron nitride films on Fe2B alloy
,”
RSC Adv.
9
,
10155
10158
(
2019
).
31.
J. S.
Lee
,
S. H.
Choi
,
S. J.
Yun
,
Y. I.
Kim
,
S.
Boandoh
,
J. H.
Park
,
B. G.
Shin
,
H.
Ko
,
S. H.
Lee
,
Y. M.
Kim
,
Y. H.
Lee
,
K. K.
Kim
, and
S. M.
Kim
, “
Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation
,”
Science
362
(
80
),
817
821
(
2018
).
32.
L.
Wang
,
X.
Xu
,
L.
Zhang
,
R.
Qiao
,
M.
Wu
,
Z.
Wang
,
S.
Zhang
,
J.
Liang
,
Z.
Zhang
,
Z.
Zhang
,
W.
Chen
,
X.
Xie
,
J.
Zong
,
Y.
Shan
,
Y.
Guo
,
M.
Willinger
,
H.
Wu
,
Q.
Li
,
W.
Wang
,
P.
Gao
,
S.
Wu
,
Y.
Zhang
,
Y.
Jiang
,
D.
Yu
,
E.
Wang
,
X.
Bai
,
Z. J.
Wang
,
F.
Ding
, and
K.
Liu
, “
Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper
,”
Nature
570
,
91
95
(
2019
).
33.
B.
Tan
,
H.
Yang
,
Y.
Hu
,
F.
Gao
,
L.
Wang
,
M.
Dai
,
S.
Zhang
,
H.
Shang
,
H.
Chen
, and
P.
Hu
, “
Synthesis of high-quality multilayer hexagonal boron nitride films on Au foils for ultrahigh rejection ratio solar-blind photodetection
,”
ACS Appl. Mater. Interfaces
12
,
28351
28359
(
2020
).
34.
Z.
Shi
,
X.
Wang
,
Q.
Li
,
P.
Yang
,
G.
Lu
,
R.
Jiang
,
H.
Wang
,
C.
Zhang
,
C.
Cong
,
Z.
Liu
,
T.
Wu
,
H.
Wang
,
Q.
Yu
, and
X.
Xie
, “
Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates
,”
Nat. Commun.
11
,
849
(
2020
).
35.
T. A.
Chen
,
C. P.
Chuu
,
C. C.
Tseng
,
C. K.
Wen
,
H. S. P.
Wong
,
S.
Pan
,
R.
Li
,
T. A.
Chao
,
W. C.
Chueh
,
Y.
Zhang
,
Q.
Fu
,
B. I.
Yakobson
,
W. H.
Chang
, and
L. J.
Li
, “
Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)
,”
Nature
579
(
111
),
219
223
(
2020
).
36.
A.
Hemmi
,
H.
Cun
,
S.
Brems
,
C.
Huyghebaert
, and
T.
Greber
, “
Wafer-scale, epitaxial growth of single layer hexagonal boron nitride on Pt(111)
,”
J. Phys. Mater.
4
,
044012
(
2021
).
37.
K. Y.
Ma
,
L.
Zhang
,
S.
Jin
,
Y.
Wang
,
S. I.
Yoon
,
H.
Hwang
,
J.
Oh
,
D. S.
Jeong
,
M.
Wang
,
S.
Chatterjee
,
G.
Kim
,
A. R.
Jang
,
J.
Yang
,
S.
Ryu
,
H. Y.
Jeong
,
R. S.
Ruoff
,
M.
Chhowalla
,
F.
Ding
, and
H. S.
Shin
, “
Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111)
,”
Nature
606
,
88
93
(
2022
).
38.
Q.
Zhang
,
H.
Chen
,
S.
Liu
,
Y.
Yu
,
C.
Wang
,
J.
Han
,
G.
Shao
, and
Z.
Yao
, “
Self-aligned stitching growth of centimeter-scale quasi-single-crystalline hexagonal boron nitride monolayers on liquid copper
,”
"Nanoscale
14
,
3112
3122
(
2022
).
39.
X.
Zhou
,
X.
Xue
,
L.
Cai
,
S.
Liu
,
M.
Liu
, and
G.
Yu
, “
Large-area orientation-controlled growth of hexagonal boron nitride on liquid copper
,”
ACS Appl. Electron. Mater.
4
,
6261
6268
(
2022
).
40.
A.
Biswas
,
Q.
Ruan
,
F.
Lee
,
C.
Li
,
S. A.
Iyengar
,
A. B.
Puthirath
,
X.
Zhang
,
H.
Kannan
,
T.
Gray
,
A. G.
Birdwell
,
M. R.
Neupane
,
P. B.
Shah
,
D. A.
Ruzmetov
,
T. G.
Ivanov
,
R.
Vajtai
,
M.
Tripathi
,
A.
Dalton
,
B. I.
Yakobson
, and
P. M.
Ajayan
, “
Unidirectional domain growth of hexagonal boron nitride thin films
,”
Appl. Mater. Today
30
,
101734
(
2023
).
41.
J.
Kim
,
K. Y.
Doh
,
S.
Moon
,
C. W.
Choi
,
H.
Jeong
,
J.
Kim
,
W.
Yoo
,
K.
Park
,
K.
Chong
,
C.
Chung
,
H.
Choi
,
S. Y.
Choi
,
D.
Lee
, and
J. K.
Kim
, “
Conformal growth of hexagonal boron nitride on high-aspect-ratio silicon-based nanotrenches
,”
Chem. Mater.
35
,
2429
2438
(
2023
).
42.
M. A.
Kriegel
,
K. M.
Omambac
,
S.
Franzka
,
F. J.
Meyer zu Heringdorf
, and
M.
Horn-von Hoegen
, “
Incommensurability and negative thermal expansion of single layer hexagonal boron nitride
,”
Appl. Surf. Sci.
624
,
157156
(
2023
).
43.
K. M.
Omambac
,
M. A.
Kriegel
,
M.
Petrović
,
B.
Finke
,
C.
Brand
,
F. J.
Meyer zu Heringdorf
, and
M.
Horn-von Hoegen
, “
Interplay of kinetic limitations and disintegration: Selective growth of hexagonal boron nitride and borophene monolayers on metal substrates
,”
ACS Nano
17
(
18
),
17946
17955
(
2023
).
44.
S. I.
Yoon
,
K. Y.
Ma
,
T. Y.
Kim
, and
H. S.
Shin
, “
Proton conductivity of a hexagonal boron nitride membrane and its energy applications
,”
J. Mater. Chem. A.
8
,
2898
2912
(
2020
).
45.
Q.
Li
,
X.
Zou
,
M.
Liu
,
J.
Sun
,
Y.
Gao
,
Y.
Qi
,
X.
Zhou
,
B. I.
Yakobson
,
Y.
Zhang
, and
Z.
Liu
, “
Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111)
,”
Nano Lett.
15
,
5804
5810
(
2015
).
46.
W.
Yao
,
B.
Wu
, and
Y.
Liu
, “
Growth and grain boundaries in 2D materials
,”
ACS Nano
14
,
9320
9346
(
2020
).
47.
S.
Frueh
,
R.
Kellett
,
C.
Mallery
,
T.
Molter
,
W. S.
Willis
,
C.
King'Ondu
, and
S. L.
Suib
, “
Pyrolytic decomposition of ammonia borane to boron nitride
,”
Inorg. Chem.
50
,
783
792
(
2011
).
48.
V.
Babenko
,
G.
Lane
,
A. A.
Koos
,
A. T.
Murdock
,
K.
So
,
J.
Britton
,
S. S.
Meysami
,
J.
Moffat
, and
N.
Grobert
, “
Time dependent decomposition of ammonia borane for the controlled production of 2D hexagonal boron nitride
,”
Sci. Rep.
7
,
14297
(
2017
).
49.
B.
Sompalle
,
C.-D.
Liao
,
B.
Wei
,
M.
de
,
F.
Cerqueira
,
N.
Nicoara
,
Z.
Wang
,
S.
Sadewasser
, and
P.
Alpuim
, “
Role of sublimation kinetics of ammonia borane in chemical vapor deposition of uniform, large-area hexagonal boron nitride
,”
J. Vac. Sci. Technol. A.
39
,
042202
(
2021
).
50.
A. S.
Zavgorodnii
and
A. Y.
Timoshkin
, “
Borazine thermal decomposition in unsaturated vapor
,”
Russ. J. Gen. Chem.
88
,
2476
2479
(
2018
).
51.
G.
Keifer
and
F.
Effenberger
, “
Stereochemistry of the cycloaddition of sulfonyl isocyanates and N-sulfinylsulfonamides to enol ethers
,”
Angew. Chem., Int. Ed.
6
,
951
952
(
1967
).
52.
A. W.
Laubengayer
,
P. C.
Moews
, and
R. F.
Porter
, “
The condensation of borazine to polycyclic boron-nitrogen frameworks by pyrolytic dehydrogenation
,”
J. Am. Chem. Soc.
83
,
1337
1342
(
1961
).
53.
S.
Chatterjee
,
Z.
Luo
,
M.
Acerce
,
D. M.
Yates
,
A. T. C.
Johnson
, and
L. G.
Sneddon
, “
Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions
,”
Chem. Mater.
23
,
4414
4416
(
2011
).
54.
A.
Ismach
,
H.
Chou
,
D. A.
Ferrer
,
Y.
Wu
,
S.
McDonnell
,
H. C.
Floresca
,
A.
Covacevich
,
C.
Pope
,
R.
Piner
,
M. J.
Kim
,
R. M.
Wallace
,
L.
Colombo
, and
R. S.
Ruoff
, “
Toward the controlled synthesis of hexagonal boron nitride films
,”
ACS Nano
6
,
6378
6385
(
2012
).
55.
Y.
Kobayashi
,
T.
Nakamura
,
T.
Akasaka
,
T.
Makimoto
, and
N.
Matsumoto
, “
Hexagonal boron nitride on Ni (1 1 1) substrate grown by flow-rate modulation epitaxy
,”
J. Cryst. Growth.
298
,
325
327
(
2007
).
56.
Y.
Cheng
,
X.
Yin
,
Y.
Liu
,
S.
Li
,
L.
Cheng
, and
L.
Zhang
, “
BN coatings prepared by low pressure chemical vapor deposition using boron trichloride-ammonia-hydrogen-argon mixture gases
,”
Surf. Coat. Technol.
204
,
2797
2802
(
2010
).
57.
O.
Tsuda
,
K.
Watanabe
, and
T.
Taniguchi
, “
Crystallization of hexagonal boron nitride exhibiting excitonic luminescence in the deep ultraviolet region at room temperature via thermal chemical vapor phase deposition
,”
Diamond Relat. Mater.
19
,
83
90
(
2010
).
58.
Y.
Stehle
,
H. M.
Meyer
,
R. R.
Unocic
,
M.
Kidder
,
G.
Polizos
,
P. G.
Datskos
,
R.
Jackson
,
S. N.
Smirnov
, and
I. V.
Vlassiouk
, “
Synthesis of hexagonal boron nitride monolayer: Control of nucleation and crystal morphology
,”
Chem. Mater.
27
,
8041
8047
(
2015
).
59.
R. S.
Pease
, “
An x-ray study of boron nitride
,”
Acta Crystallogr.
5
,
356
361
(
1952
).
60.
J. H.
Park
,
S. J.
Yun
,
H.
Kim
,
D. H.
Luong
,
S. M.
Kim
,
S. H.
Choi
,
W.
Yang
,
J.
Kong
,
K. K.
Kim
, and
Y. H.
Lee
, “
Large-area monolayer hexagonal boron nitride on Pt foil
,”
ACS Nano.
8
(
8
),
8520
8528
(
2014
).
61.
Q.
Wu
,
J. H.
Park
,
S.
Park
,
S. J.
Jung
,
H.
Suh
,
N.
Park
,
W.
Wongwiriyapan
,
S.
Lee
,
Y. H.
Lee
, and
Y. J.
Song
, “
Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains
,”
Sci. Rep.
5
,
16159
(
2015
).
62.
Y. Y.
Stehle
,
X.
Sang
,
R. R.
Unocic
,
D.
Voylov
,
R. K.
Jackson
,
S.
Smirnov
, and
I.
Vlassiouk
, “
Anisotropic etching of hexagonal boron nitride and graphene: Question of edge terminations
,”
Nano Lett.
17
,
7306
7314
(
2017
).
63.
L.
Wang
,
B.
Wu
,
H.
Liu
,
L.
Huang
,
Y.
Li
,
W.
Guo
,
X.
Chen
,
P.
Peng
,
L.
Fu
,
Y.
Yang
,
P.
Hu
, and
Y.
Liu
, “
Water-assisted growth of large-sized single crystal hexagonal boron nitride grains
,”
Mater. Chem. Front.
1
,
1836
1840
(
2017
).
64.
J. C.
Koepke
,
J. D.
Wood
,
Y.
Chen
,
S. W.
Schmucker
,
X.
Liu
,
N. N.
Chang
,
L.
Nienhaus
,
J. W.
Do
,
E. A.
Carrion
,
J.
Hewaparakrama
,
A.
Rangarajan
,
I.
Datye
,
R.
Mehta
,
R. T.
Haasch
,
M.
Gruebele
,
G. S.
Girolami
,
E.
Pop
, and
J. W.
Lyding
, “
Role of pressure in the growth of hexagonal boron nitride thin films from ammonia-borane
,”
Chem. Mater.
28
,
4169
4179
(
2016
).
65.
X.
Chen
,
C.
Tan
,
X.
Liu
,
K.
Luan
,
Y.
Guan
,
X.
Liu
,
J.
Zhao
,
L.
Hou
,
Y.
Gao
, and
Z.
Chen
, “
Growth of hexagonal boron nitride films on silicon substrates by low-pressure chemical vapor deposition
,”
J. Mater. Sci.
32
,
3713
3719
(
2021
).
66.
Y.
Chen
,
H.
Liang
,
X.
Xia
,
H.
Zhang
,
J.
Shi
,
Q.
Abbas
, and
G.
Du
, “
Growth temperature impact on film quality of hBN grown on Al2O3 using non-catalyzed borazane CVD
,”
J. Mater. Sci.
28
,
14341
14347
(
2017
).
67.
P. R.
Kidambi
,
R.
Blume
,
J.
Kling
,
J. B.
Wagner
,
C.
Baehtz
,
R. S.
Weatherup
,
R.
Schloegl
,
B. C.
Bayer
, and
S.
Hofmann
, “
In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper
,”
Chem. Mater.
26
,
6380
6392
(
2014
).
68.
G. E.
Wood
,
A. J.
Marsden
,
J. J.
Mudd
,
M.
Walker
,
M.
Asensio
,
J.
Avila
,
K.
Chen
,
G. R.
Bell
, and
N. R.
Wilson
, “
Van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil: Growth, crystallography and electronic band structure
,”
2D Mater.
2
,
025003
(
2015
).
69.
X.
Gao
,
S.
Wang
, and
S.
Lin
, “
Defective hexagonal boron nitride nanosheet on Ni(111) and Cu(111): Stability, electronic structures, and potential applications
,”
ACS Appl. Mater. Interfaces
8
,
24238
24247
(
2016
).
70.
Y.
Uchida
,
T.
Iwaizako
,
S.
Mizuno
,
M.
Tsuji
, and
H.
Ago
, “
Epitaxial chemical vapour deposition growth of monolayer hexagonal boron nitride on a Cu(111)/sapphire substrate
,”
Phys. Chem. Chem. Phys.
19
,
8230
8235
(
2017
).
71.
S.
Joshi
,
D.
Ecija
,
R.
Koitz
,
M.
Iannuzzi
,
A. P.
Seitsonen
,
J.
Hutter
,
H.
Sachdev
,
S.
Vijayaraghavan
,
F.
Bischoff
,
K.
Seufert
,
J. V.
Barth
, and
W.
Auwärter
, “
Boron nitride on Cu(111): An electronically corrugated monolayer
,”
Nano Lett.
12
,
5821
5828
(
2012
).
72.
R. Y.
Tay
,
H. J.
Park
,
G. H.
Ryu
,
D.
Tan
,
S. H.
Tsang
,
H.
Li
,
W.
Liu
,
E. H. T.
Teo
,
Z.
Lee
,
Y.
Lifshitz
, and
R. S.
Ruoff
, “
Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper
,”
Nanoscale
8
,
2434
2444
(
2016
).
73.
L.
Liu
,
D. A.
Siegel
,
W.
Chen
,
P.
Liu
,
J.
Guo
,
G.
Duscher
,
C.
Zhao
,
H.
Wang
,
W.
Wang
,
X.
Bai
,
K. F.
McCarty
,
Z.
Zhang
, and
G.
Gu
, “
Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy
,”
Proc. Natl. Acad. Sci.
U.S. A.
111
,
16670
16675
(
2014
).
74.
X.
Song
,
J.
Gao
,
Y.
Nie
,
T.
Gao
,
J.
Sun
,
D.
Ma
,
Q.
Li
,
Y.
Chen
,
C.
Jin
,
A.
Bachmatiuk
,
M. H.
Rümmeli
,
F.
Ding
,
Y.
Zhang
, and
Z.
Liu
, “
Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation
,”
Nano Res.
8
,
3164
3176
(
2015
).
75.
L.
Tan
,
J.
Han
,
R. G.
Mendes
,
M. H.
Rümmeli
,
J.
Liu
,
Q.
Wu
,
X.
Leng
,
T.
Zhang
,
M.
Zeng
, and
L.
Fu
, “
Self-aligned single-crystalline hexagonal boron nitride arrays: Toward higher integrated electronic devices
,”
Adv. Electron. Mater.
1
,
1500223
(
2015
).
76.
D.
Geng
,
X.
Zhao
,
K.
Zhou
,
W.
Fu
,
Z.
Xu
,
S. J.
Pennycook
,
L. K.
Ang
, and
H. Y.
Yang
, “
From self-assembly hierarchical h-BN patterns to centimeter-scale uniform monolayer h-BN film
,”
Adv. Mater. Interfaces.
6
,
1801493
(
2019
).
77.
M.
Ajmal
,
S.
Lee
,
Y. C.
Cho
,
S. J.
Kim
,
S. E.
Park
,
C. R.
Cho
, and
S. Y.
Jeong
, “
Fabrication of the best conductor from single-crystal copper and the contribution of grain boundaries to the Debye temperature
,”
CrystEngComm
14
,
1463
1467
(
2012
).
78.
Y. C.
Cho
,
S.
Lee
,
M.
Ajmal
,
W. K.
Kim
,
C. R.
Cho
,
S. Y.
Jeong
,
J. H.
Park
,
S. E.
Park
,
S.
Park
,
H. K.
Pak
, and
H. C.
Kim
, “
Copper better than silver: Electrical resistivity of the grain-free single-crystal copper wire
,”
Cryst. Growth Des.
10
,
2780
2784
(
2010
).
79.
S. I.
Yoon
,
D. J.
Seo
,
G.
Kim
,
M.
Kim
,
C. Y.
Jung
,
Y. G.
Yoon
,
S. H.
Joo
,
T. Y.
Kim
, and
H. S.
Shin
, “
AA′-stacked trilayer hexagonal boron nitride membrane for proton exchange membrane fuel cells
,”
" ACS Nano
12
,
10764
10771
(
2018
).
80.
M.
Galbiati
,
A. C.
Stoot
,
D. M. A.
Mackenzie
,
P.
Bøggild
, and
L.
Camilli
, “
Real-time oxide evolution of copper protected by graphene and boron nitride barriers
,”
Sci. Rep.
7
,
39770
(
2017
).
81.
M. Y.
Li
,
C. H.
Chen
,
Y.
Shi
, and
L. J.
Li
, “
Heterostructures based on two-dimensional layered materials and their potential applications
,”
Mater. Today.
19
,
322
335
(
2016
).
82.
P. V.
Pham
,
S. C.
Bodepudi
,
K.
Shehzad
,
Y.
Liu
,
Y.
Xu
,
B.
Yu
, and
X.
Duan
, “
2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges
,”
Chem. Rev.
122
,
6514
6613
(
2022
).
83.
X.
Zong
,
H.
Hu
,
G.
Ouyang
,
J.
Wang
,
R.
Shi
,
L.
Zhang
,
Q.
Zeng
,
C.
Zhu
,
S.
Chen
,
C.
Cheng
,
B.
Wang
,
H.
Zhang
,
Z.
Liu
,
W.
Huang
,
T.
Wang
,
L.
Wang
, and
X.
Chen
, “
Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications
,”
Light
9
,
114
(
2020
).
84.
D. N.
Futaba
, “
Hexagonal boron nitride heterostructures go large
,”
Nat. Electron.
6
,
104
105
(
2023
).
85.
D.
Fu
,
X.
Zhao
,
Y. Y.
Zhang
,
L.
Li
,
H.
Xu
,
A. R.
Jang
,
S. I.
Yoon
,
P.
Song
,
S. M.
Poh
,
T.
Ren
,
Z.
Ding
,
W.
Fu
,
T. J.
Shin
,
H. S.
Shin
,
S. T.
Pantelides
,
W.
Zhou
, and
K. P.
Loh
, “
Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride
,”
J. Am. Chem. Soc.
139
,
9392
9400
(
2017
).
86.
J. M.
Garcia
,
U.
Wurstbauer
,
A.
Levy
,
L. N.
Pfeiffer
,
A.
Pinczuk
,
A. S.
Plaut
,
L.
Wang
,
C. R.
Dean
,
R.
Buizza
,
A. M.
Van Der Zande
,
J.
Hone
,
K.
Watanabe
, and
T.
Taniguchi
, “
Graphene growth on h-BN by molecular beam epitaxy
,”
Solid State Commun.
152
,
975
978
(
2012
).
87.
J. H.
Park
,
S. H.
Choi
,
J.
Zhao
,
S.
Song
,
W.
Yang
,
S. M.
Kim
,
K. K.
Kim
, and
Y. H.
Lee
, “
Thickness-controlled multilayer hexagonal boron nitride film prepared by plasma-enhanced chemical vapor deposition
,”
Curr. Appl. Phys.
16
,
1229
1235
(
2016
).
88.
L.
Samad
,
S. M.
Bladow
,
Q.
Ding
,
J.
Zhuo
,
R. M.
Jacobberger
,
M. S.
Arnold
, and
S.
Jin
, “
Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy
,”
ACS Nano
10
,
7039
7046
(
2016
).
89.
X.
Zhang
,
F.
Zhang
,
Y.
Wang
,
D. S.
Schulman
,
T.
Zhang
,
A.
Bansal
,
N.
Alem
,
S.
Das
,
V. H.
Crespi
,
M.
Terrones
, and
J. M.
Redwing
, “
Defect-controlled nucleation and orientation of WSe2 on hBN: A route to single-crystal epitaxial monolayers
,”
ACS Nano
13
,
3341
3352
(
2019
).
90.
H.
Arjmandi-Tash
, “
In situ growth of graphene on hexagonal boron nitride for electronic transport applications
,”
J. Mater. Chem. C
8
,
380
386
(
2020
).
91.
Q.
Wu
,
J.
Lee
,
J.
Sun
, and
Y. J.
Song
, “
In situ direct growth of graphene/hexagonal boron nitride heterostructure on SiO2 substrate without metal catalyst
,”
Carbon
138
,
76
80
(
2018
).
92.
E.
Evans
and
D. L.
Mills
, “
Theory of inelastic scattering of slow electrons by long-wavelength surface of optical phonons: Multiphonon processes
,”
Phys. Rev. B
7
,
853
868
(
1973
).
93.
N.
Fang
,
K.
Otsuka
,
A.
Ishii
,
T.
Taniguchi
,
K.
Watanabe
,
K.
Nagashio
, and
Y. K.
Kato
, “
Hexagonal boron nitride as an ideal substrate for carbon nanotube photonics
,”
ACS Photonics
7
,
1773
1779
(
2020
).
94.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
, “
Boron nitride substrates for high-quality graphene electronics
,”
Nat. Nanotechnol.
5
,
722
726
(
2010
).
95.
A.
Raja
,
L.
Waldecker
,
J.
Zipfel
,
Y.
Cho
,
S.
Brem
,
J. D.
Ziegler
,
M.
Kulig
,
T.
Taniguchi
,
K.
Watanabe
,
E.
Malic
,
T. F.
Heinz
,
T. C.
Berkelbach
, and
A.
Chernikov
, “
Dielectric disorder in two-dimensional materials
,”
Nat. Nanotechnol.
14
,
832
837
(
2019
).
96.
N.
Fang
,
S.
Toyoda
,
T.
Taniguchi
,
K.
Watanabe
, and
K.
Nagashio
, “
Full energy spectra of interface state densities for n- and p-type MoS2 field-effect transistors
,”
Adv. Funct. Mater.
29
,
1904465
(
2019
).
97.
B.
Xu
,
S.
Qi
,
M.
Jin
,
X.
Cai
,
L.
Lai
,
Z.
Sun
,
X.
Han
,
Z.
Lin
,
H.
Shao
,
P.
Peng
,
Z.
Xiang
,
J. E.
ten Elshof
,
R.
Tan
,
C.
Liu
,
Z.
Zhang
,
X.
Duan
, and
J.
Ma
, “
2020 roadmap on two-dimensional materials for energy storage and conversion
,”
Chin. Chem. Lett.
30
,
2053
2064
(
2019
).
98.
S.
Lu
,
P.
Shen
,
H.
Zhang
,
G.
Liu
,
B.
Guo
,
Y.
Cai
,
H.
Chen
,
F.
Xu
,
T.
Zheng
,
F.
Xu
,
X.
Chen
,
D.
Cai
, and
J.
Kang
, “
Towards n-type conductivity in hexagonal boron nitride
,”
Nat. Commun.
13
,
3109
(
2022
).
99.
Q.
Weng
,
X.
Wang
,
X.
Wang
,
Y.
Bando
, and
D.
Golberg
, “
Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications
,”
Chem. Soc. Rev.
45
,
3989
4012
(
2016
).
100.
C.
Dai
,
Y.
Tanaka
,
M.
Awais
,
X.
Chen
, and
A.
Paramane
, “
Effect of dopamine-functionalized nano-h-BN on the charge dynamics and thermal properties of epoxy resins at high temperatures for potential power module encapsulation application
,”
ACS Appl. Electron. Mater.
3
,
5345
5354
(
2021
).
101.
H.
Hwang
,
D.
Kang
,
Y. J.
Park
, and
H. S.
Shin
, “
Dopamine-assisted wet spinning and mechanical reinforcement of graphene oxide fibers
,”
Bull. Korean Chem. Soc.
44
,
60
66
(
2023
).
102.
R.
Kurapati
,
L.
Muzi
,
A. P. R.
de Garibay
,
J.
Russier
,
D.
Voiry
,
I. A.
Vacchi
,
M.
Chhowalla
, and
A.
Bianco
, “
Enzymatic biodegradability of pristine and functionalized transition metal dichalcogenide MoS2 nanosheets
,”
Adv. Funct. Mater.
27
,
1605176
(
2017
).
103.
D.
Han
,
J.
Zhang
,
Z.
Weng
,
D.
Kong
,
Y.
Tao
,
F.
Ding
,
D.
Ruan
, and
Q. H.
Yang
, “
Two-dimensional materials for lithium/sodium-ion capacitors
,”
Mater. Today Energy.
11
,
30
45
(
2019
).
104.
M.
Waqas
,
S.
Ali
,
W.
Lv
,
D.
Chen
,
B.
Boateng
, and
W.
He
, “
High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries
,”
Adv. Mater. Interfaces
6
,
1801330
(
2019
).
105.
W.
Luo
,
L.
Zhou
,
K.
Fu
,
Z.
Yang
,
J.
Wan
,
M.
Manno
,
Y.
Yao
,
H.
Zhu
,
B.
Yang
, and
L.
Hu
, “
A thermally conductive separator for stable Li metal anodes
,”
Nano Lett.
15
,
6149
6154
(
2015
).
106.
X.
Chen
,
X. R.
Chen
,
T. Z.
Hou
,
B. Q.
Li
,
X. B.
Cheng
,
R.
Zhang
, and
Q.
Zhang
, “
Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes
,”
Sci. Adv.
5
,
7728
(
2019
).
107.
C.
Niu
,
H.
Pan
,
W.
Xu
,
J.
Xiao
,
J. G.
Zhang
,
L.
Luo
,
C.
Wang
,
D.
Mei
,
J.
Meng
,
X.
Wang
,
Z.
Liu
,
L.
Mai
, and
J.
Liu
, “
Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
,”
Nat. Nanotechnol.
14
,
594
601
(
2019
).
108.
S.
Angizi
,
S. A. A.
Alem
, and
A.
Pakdel
, “
Towards integration of two-dimensional hexagonal boron nitride (2D h-BN) in energy conversion and storage devices
,”
Energies
15
,
1162
(
2022
).
109.
S.
Hu
,
M.
Lozada-Hidalgo
,
F. C.
Wang
,
A.
Mishchenko
,
F.
Schedin
,
R. R.
Nair
,
E. W.
Hill
,
D. W.
Boukhvalov
,
M. I.
Katsnelson
,
R. A. W.
Dryfe
,
I. V.
Grigorieva
,
H. A.
Wu
, and
A. K.
Geim
, “
Proton transport through one-atom-thick crystals
,”
Nature.
516
,
227
230
(
2014
).
110.
L.
Britnell
,
R. V.
Gorbachev
,
R.
Jalil
,
B. D.
Belle
,
F.
Schedin
,
M. I.
Katsnelson
,
L.
Eaves
,
S. V.
Morozov
,
A. S.
Mayorov
,
N. M. R.
Peres
,
A. H.
Castro Neto
,
J.
Leist
,
A. K.
Geim
,
L. A.
Ponomarenko
, and
K. S.
Novoselov
, “
Electron tunneling through ultrathin boron nitride crystalline barriers
,”
Nano Lett.
12
,
1707
1710
(
2012
).
111.
F.
Ducry
,
D.
Waldhoer
,
T.
Knobloch
,
M.
Csontos
,
N.
Jimenez Olalla
,
J.
Leuthold
,
T.
Grasser
, and
M.
Luisier
, “
An ab initio study on resistance switching in hexagonal boron nitride
,”
npj 2D Mater. Appl.
6
,
58
(
2022
).
112.
N.
Clark
,
L.
Nguyen
,
M. J.
Hamer
,
F.
Schedin
,
E. A.
Lewis
,
E.
Prestat
,
A.
Garner
,
Y.
Cao
,
M.
Zhu
,
R.
Kashtiban
,
J.
Sloan
,
D.
Kepaptsoglou
,
R. V.
Gorbachev
, and
S. J.
Haigh
, “
Scalable patterning of encapsulated black phosphorus
,”
Nano Lett.
18
,
5373
5381
(
2018
).
113.
S.
Ahn
,
G.
Kim
,
P. K.
Nayak
,
S. I.
Yoon
,
H.
Lim
,
H. J.
Shin
, and
H. S.
Shin
, “
Prevention of transition metal dichalcogenide photodegradation by encapsulation with h-BN layers
,”
ACS Nano
10
,
8973
8979
(
2016
).
114.
R. A.
Doganov
,
E. C. T.
O'Farrell
,
S. P.
Koenig
,
Y.
Yeo
,
A.
Ziletti
,
A.
Carvalho
,
D. K.
Campbell
,
D. F.
Coker
,
K.
Watanabe
,
T.
Taniguchi
,
A. H. C.
Neto
, and
B.
Özyilmaz
, “
Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere
,”
Nat. Commun.
6
,
6647
(
2015
).
115.
B.
Liu
,
L.
Chen
,
G.
Liu
,
A. N.
Abbas
,
M.
Fathi
, and
C.
Zhou
, “
High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors
,”
ACS Nano
8
,
5304
5314
(
2014
).
116.
K. K.
Kim
,
H. S.
Lee
, and
Y. H.
Lee
, “
Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics
,”
Chem. Soc. Rev.
47
,
6342
6369
(
2018
).
117.
Y.
Yang
,
J.
Li
,
J.
Yin
,
S.
Xu
,
C.
Mullan
,
T.
Taniguchi
,
K.
Watanabe
,
A. K.
Geim
,
K. S.
Novoselov
, and
A.
Mishchenko
, “
In situ manipulation of van der Waals heterostructures for twistronics
,”
Sci. Adv.
6
,
eabd3655
(
2020
).
118.
K.
Kim
,
A.
DaSilva
,
S.
Huang
,
B.
Fallahazad
,
S.
Larentis
,
T.
Taniguchi
,
K.
Watanabe
,
B. J.
LeRoy
,
A. H.
MacDonald
, and
E.
Tutuc
, “
Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3364
3369
(
2017
).
119.
J. D.
Caldwell
,
I.
Aharonovich
,
G.
Cassabois
,
J. H.
Edgar
,
B.
Gil
, and
D. N.
Basov
, “
Photonics with hexagonal boron nitride
,”
Nat. Rev. Mater.
4
,
552
567
(
2019
).
120.
M. A.
Butt
,
S. N.
Khonina
, and
N. L.
Kazanskiy
, “
Recent advances in photonic crystal optical devices: A review
,”
Opt. Laser Technol.
142
,
107265
(
2021
).
121.
S.
Hu
and
S. M.
Weiss
, “
Design of photonic crystal cavities for extreme light concentration
,”
ACS Photonics
3
,
1647
1653
(
2016
).
122.
S.
Kim
,
J. E.
Fröch
,
J.
Christian
,
M.
Straw
,
J.
Bishop
,
D.
Totonjian
,
K.
Watanabe
,
T.
Taniguchi
,
M.
Toth
, and
I.
Aharonovich
, “
Photonic crystal cavities from hexagonal boron nitride
,”
Nat. Commun.
9
,
2623
(
2018
).
123.
J. E.
Fröch
,
S.
Kim
,
N.
Mendelson
,
M.
Kianinia
,
M.
Toth
, and
I.
Aharonovich
, “
Coupling hexagonal boron nitride quantum emitters to photonic crystal cavities
,”
ACS Nano
14
,
7085
7091
(
2020
).
124.
J. E.
Fröch
,
L. P.
Spencer
,
M.
Kianinia
,
D. D.
Totonjian
,
M.
Nguyen
,
A.
Gottscholl
,
V.
Dyakonov
,
M.
Toth
,
S.
Kim
, and
I.
Aharonovich
, “
Coupling spin defects in hexagonal boron nitride to monolithic bullseye cavities
,”
Nano Lett.
21
,
6549
6555
(
2021
).
125.
S. J.
Yang
,
M. Y.
Choi
, and
C. J.
Kim
, “
Engineering grain boundaries in two-dimensional electronic materials
,”
Adv. Mater.
35
,
2203425
(
2023
).
126.
P.
He
,
Q.
Cao
,
P.
Wang
,
H.
Wang
,
S.
Zheng
,
S.
Lei
,
S.
Liu
, and
Q.
Peng
, “
A grain boundary regulates the friction behaviors between graphene and a gold substrate
,”
Crystals
9
,
418
(
2019
).
127.
S. E.
Krasavin
and
V. A.
Osipov
, “
Electrical resistivity of polycrystalline graphene: Effect of grain-boundary-induced strain fields
,”
Sci. Rep.
12
,
14553
(
2022
).
128.
N. J.
Guo
,
W.
Liu
,
Z. P.
Li
,
Y. Z.
Yang
,
S.
Yu
,
Y.
Meng
,
Z. A.
Wang
,
X. D.
Zeng
,
F. F.
Yan
,
Q.
Li
,
J. F.
Wang
,
J. S.
Xu
,
Y. T.
Wang
,
J. S.
Tang
,
C. F.
Li
, and
G. C.
Guo
, “
Generation of spin defects by ion implantation in hexagonal boron nitride
,”
ACS Omega
7
,
1733
1739
(
2022
).
129.
J.
Comtet
,
B.
Grosjean
,
E.
Glushkov
,
A.
Avsar
,
K.
Watanabe
,
T.
Taniguchi
,
R.
Vuilleumier
,
M. L.
Bocquet
, and
A.
Radenovic
, “
Direct observation of water-mediated single-proton transport between hBN surface defects
,”
Nat. Nanotechnol.
15
,
598
604
(
2020
).
130.
Z. Q.
Xu
,
C.
Elbadawi
,
T. T.
Tran
,
M.
Kianinia
,
X.
Li
,
D.
Liu
,
T. B.
Hoffman
,
M.
Nguyen
,
S.
Kim
,
J. H.
Edgar
,
X.
Wu
,
L.
Song
,
S.
Ali
,
M.
Ford
,
M.
Toth
, and
I.
Aharonovich
, “
Single photon emission from plasma treated 2D hexagonal boron nitride
,”
Nanoscale
10
,
7957
7965
(
2018
).
131.
S.
Sharma
,
G.
Kalita
,
R.
Vishwakarma
,
Z.
Zulkifli
, and
M.
Tanemura
, “
Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal
,”
Sci. Rep.
5
,
10426
(
2015
).
132.
X.
Ling
,
W.
Fang
,
Y. H.
Lee
,
P. T.
Araujo
,
X.
Zhang
,
J. F.
Rodriguez-Nieva
,
Y.
Lin
,
J.
Zhang
,
J.
Kong
, and
M. S.
Dresselhaus
, “
Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2
,”
Nano Lett.
14
,
3033
3040
(
2014
).
133.
Q.
Cai
,
S.
Mateti
,
H.
Jiang
,
L. H.
Li
,
S.
Huang
, and
Y.
Chen
, “
Boron nitride nanosheets for surface-enhanced Raman spectroscopy
,”
Mater. Today Phys.
22
,
100575
(
2022
).
134.
N.
Basu
,
M. S. S.
Bharathi
,
M.
Sharma
,
K.
Yadav
,
A. S.
Parmar
,
V. R.
Soma
, and
J.
Lahiri
, “
Large area few‐layer hexagonal boron nitride as a Raman enhancement material
,”
Nanomaterials
11
,
1
13
(
2021
).
135.
G.
Kim
,
M.
Kim
,
C.
Hyun
,
S.
Hong
,
K. Y.
Ma
,
H. S.
Shin
, and
H.
Lim
, “
Hexagonal boron nitride/Au substrate for manipulating surface plasmon and enhancing capability of surface-enhanced Raman spectroscopy
,”
ACS Nano
10
,
11156
11162
(
2016
).
136.
Q.
Cai
,
S.
Mateti
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Huang
,
Y.
Chen
, and
L. H.
Li
, “
Boron nitride nanosheet-veiled gold nanoparticles for surface-enhanced Raman scattering
,”
ACS Appl. Mater. Interfaces
8
,
15630
15636
(
2016
).
137.
T. Q. P.
Vuong
,
G.
Cassabois
,
P.
Valvin
,
E.
Rousseau
,
A.
Summerfield
,
C. J.
Mellor
,
Y.
Cho
,
T. S.
Cheng
,
J. D.
Albar
,
L.
Eaves
,
C. T.
Foxon
,
P. H.
Beton
,
S. V.
Novikov
, and
B.
Gil
, “
Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy
,”
2D Mater.
4
,
021023
(
2017
).
138.
M.
Kneissl
,
III-Nitride Ultraviolet Emitters: Technology and Applications
(
Springer Nature
,
2016
), Vol.
197
.
139.
Y.
Peng
,
R.
Liang
,
Y.
Mou
,
J.
Dai
,
M.
Chen
, and
X.
Luo
, “
Progress and perspective of near-ultraviolet and deep-ultraviolet light-emitting diode packaging technologies
,”
J. Electron. Packag. Trans. ASME.
141
,
040804
(
2019
).
140.
S.
Moon
,
J.
Kim
,
J.
Park
,
S.
Im
,
J.
Kim
,
I.
Hwang
, and
J.
kyu Kim
, “
Hexagonal boron nitride for next-generation photonics and electronics
,”
Adv. Mater.
35
,
2204161
(
2023
).
141.
B.
Gil
,
Physics of Wurtzite Nitrides and Oxides
(
Springer Nature
,
2014
), Vol.
197
.
You do not currently have access to this content.