The use of visible light to enable small molecule synthesis has grown substantially over the last 15 years. While much of the focus has been on the development of new methods, mechanistic and kinetic studies can provide valuable information about reaction steps and highlight directions for optimization and new methods. This review focuses on reports of visible light, homogenous photoredox reactions that emphasize direct observation of reaction intermediates and/or contain a significant focus on mechanistic and kinetic studies. How these types of studies can improve reaction yields and rates are highlighted. Finally, reaction quantum yields for over 200 photoredox reactions are summarized for the first time. This often-neglected reaction parameter provides valuable insights into the efficiency of photoredox reactions as well as the clues to the underlying mechanism.

1.
M. A.
Ischay
,
M. E.
Anzovino
,
J.
Du
, and
T. P.
Yoon
, “
Efficient visible light photocatalysis of [2 + 2] enone cycloadditions
,”
J. Am. Chem. Soc.
130
,
12886
12887
(
2008
).
2.
D. A.
Nicewicz
and
D. W. C.
MacMillan
, “
Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes
,”
Science
322
(
5898
),
77
80
(
2008
).
3.
J. M. R.
Narayanam
,
J. W.
Tucker
, and
C. R. J.
Stephenson
, “
Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction
,”
J. Am. Chem. Soc.
131
(
25
),
8756
8757
(
2009
).
4.
A. Y.
Chan
,
I. B.
Perry
,
N. B.
Bissonnette
,
B. F.
Buksh
,
G. A.
Edwards
,
L. I.
Frye
,
O. L.
Garry
,
M. N.
Lavagnino
,
B. X.
Li
,
Y.
Liang
,
E.
Mao
,
A.
Millet
,
J. V.
Oakley
,
N. L.
Reed
,
H. A.
Sakai
,
C. P.
Seath
, and
D. W. C.
MacMillan
, “
Metallaphotoredox: The merger of photoredox and transition metal catalysis
,”
Chem. Rev.
122
(
2
),
1485
1542
(
2021
).
5.
N. A.
Romero
and
D. A.
Nicewicz
, “
Organic photoredox catalysis
,”
Chem. Rev.
116
(
17
),
10075
10166
(
2016
).
6.
C. K.
Prier
and
D. W. C.
MacMillan
, “
Dual photoredox catalysis: The merger of photoredox catalysis with other catalytic activation modes
,” in
Visible Light Photocatalysis in Organic Chemistry
(
John Wiley and Sons
,
2018
), pp,
299
333
.
7.
N.
Holmberg-Douglas
and
D. A.
Nicewicz
, “
Photoredox-catalyzed C–H functionalization reactions
,”
Chemical
122
(
2
),
1925
2016
(
2021
).
8.
N. L.
Reed
and
T. P.
Yoon
, “
Oxidase reactions in photoredox catalysis
,”
Chem. Soc. Rev.
50
(
5
),
2954
2967
(
2021
).
9.
M.
Schmalzbauer
,
M.
Marcon
, and
B.
König
, “
Excited state anions in organic transformations
,”
Angew. Chem., Int. Ed.
60
(
12
),
6270
6292
(
2020
).
10.
A. R.
Allen
,
E. A.
Noten
, and
C. R. J.
Stephenson
, “
Aryl transfer strategies mediated by photoinduced electron transfer
,”
Chem. Rev.
122
(
2
),
2695
2751
(
2021
).
11.
D. M.
Hedstrand
,
W. H.
Kruizinga
, and
R. M.
Kellogg
, “
Light induced and dye accelerated reductions of phenacyl onium salts by 1,4-dihydropyridines
,”
Tetrahedron Lett.
19
(
14
),
1255
1258
(
1978
).
12.
T. J.
Van Bergen
,
D. M.
Hedstrand
,
W. H.
Kruizinga
, and
R. M.
Kellogg
, “
Chemistry of dihydropyridines. 9. Hydride transfer from 1,4-dihydropyridines to sp3-hybridized carbon in sulfonium salts and activated halides. studies with Nad(P)H models
,”
J. Org. Chem.
44
(
26
),
4953
4962
(
1979
).
13.
H.
Cano-Yelo
and
A.
Deronzier
, “
Photocatalysis of the Pschorr reaction by tris-(2,2′-bipyridyl)ruthenium(ii) in the phenanthrene series
,”
J. Chem. Soc., Perkin Trans.
2
,
1093
1098
(
1984
).
14.
H.
Cano-Yelo
and
A.
Deronzier
, “
Photocatalysis of the pschorr reaction by Ru(bpy)32+
,”
J. Photochem.
37
(
2
),
315
321
(
1987
).
15.
S.
Link
and
M. A.
El-Sayed
, “
Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals
,”
Int. Rev. Phys. Chem.
19
(
3
),
409
453
(
2000
).
16.
J.
Ma
,
X.
Zhang
, and
D. L.
Phillips
, “
Time-resolved spectroscopic observation and characterization of water-assisted photoredox reactions of selected aromatic carbonyl compounds
,”
Acc. Chem. Res.
52
(
3
),
726
737
(
2019
).
17.
N.
Hoffmann
, “
Photochemical reactions as key steps in organic synthesis
,”
Chem. Rev.
108
(
3
),
1052
1103
(
2008
).
18.
C. K.
Prier
,
D. A.
Rankic
, and
D. W. C.
MacMillan
, “
Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis
,”
Chem. Rev.
113
(
7
),
5322
5363
(
2013
).
19.
D. M.
Arias-Rotondo
and
J. K.
McCusker
, “
The photophysics of photoredox catalysis: A roadmap for catalyst design
,”
Chem. Soc. Rev.
45
(
21
),
5803
5820
(
2016
).
20.
M. V.
Bobo
,
J. J.
Kuchta
, and
A. K.
Vannucci
, “
Recent advancements in the development of molecular organic photocatalysts
,”
Org. Biomol. Chem.
19
(
22
),
4816
4834
(
2021
).
21.
N.
Noto
and
S.
Saito
, “
Arylamines as more strongly reducing organic photoredox catalysts than fac- [Ir(ppy)3]
,”
ACS Catal.
12
(
24
),
15400
15415
(
2022
).
22.
M. D.
Woodhouse
and
J. K.
McCusker
, “
Mechanistic origin of photoredox catalysis involving iron(II) polypyridyl chromophores
,”
J. Am. Chem. Soc.
142
(
38
),
16229
16233
(
2020
).
23.
A.
Aydogan
,
R. E.
Bangle
,
A.
Cadranel
,
M. D.
Turlington
,
D. T.
Conroy
,
E.
Cauët
,
M. L.
Singleton
,
G. J.
Meyer
,
R. N.
Sampaio
,
B.
Elias
, and
L.
Troian-Gautier
, “
Accessing photoredox transformations with an iron(III) photosensitizer and green light
,”
J. Am. Chem. Soc.
143
(
38
),
15661
15673
(
2021
).
24.
Y.
Zhang
,
T. S.
Lee
,
J. L.
Petersen
, and
C.
Milsmann
, “
A zirconium photosensitizer with a long-lived excited state: Mechanistic insight into photoinduced single-electron transfer
,”
J. Am. Chem. Soc.
140
(
18
),
5934
5947
(
2018
).
25.
C. B.
Larsen
and
O. S.
Wenger
, “
Photoredox catalysis with metal complexes made from earth-abundant elements
,”
Chem. -Eur. J.
24
(
9
),
2039
2058
(
2017
).
26.
I. N.
Mills
,
J. A.
Porras
, and
S.
Bernhard
, “
Judicious design of cationic, cyclometalated Ir(III) complexes for photochemical energy conversion and optoelectronics
,”
Acc. Chem. Res.
51
(
2
),
352
364
(
2018
).
27.
L.
Capaldo
and
D.
Ravelli
, “
The dark side of photocatalysis: One thousand ways to close the cycle
,”
Eur. J. Org. Chem.
2020
(
19
),
2783
2806
.
28.
X. L.
Soto
and
J. R.
Swierk
, “
Using lifetime and quenching rate constant to determine optimal quencher concentration
,”
ACS Omega
7
(
29
),
25532
25536
(
2022
).
29.
A.
Juneau
,
T. O.
Hope
,
J.
Malenfant
,
M.
Mesko
,
J.
McNeill
, and
M.
Frenette
, “
Methods to predict potential reagents in iridium-based photoredox catalysis calibrated with Stern–Volmer quenching rate constants
,”
ACS Catal.
12
(
4
),
2348
2356
(
2022
).
30.
R. N.
Motz
,
A. C.
Sun
,
D.
Lehnherr
, and
S.
Ruccolo
, “
High throughput determination of Stern–Volmer quenching constants for common photocatalysts and quenchers
,”
ACS Org. Inorg. Au
(published online) (2023).
31.
N.
Elgrishi
,
K. J.
Rountree
,
B. D.
McCarthy
,
E. S.
Rountree
,
T. T.
Eisenhart
, and
J. L.
Dempsey
, “
A practical beginner's guide to cyclic voltammetry
,”
J. Chem. Educ.
95
(
2
),
197
206
(
2017
).
32.
B. G.
Stevenson
,
C.
Gironda
,
E.
Talbott
,
A.
Prascsak
,
N. L.
Burnett
,
R. V.
Nakhamiyayev
,
V.
Kompanijec
,
R. V.
Nakhamiyayev
,
L. A.
Fredin
, and
J. R.
Swierk
, “
Photoredox product selectivity controlled by persistent radical stability
,”
J. Org. Chem.
(published online) (
2023
).
33.
P. J. H.
Williams
,
G. A.
Boustead
,
D. E.
Heard
,
P. W.
Seakins
,
A. R.
Rickard
, and
V.
Chechik
, “
New approach to the detection of short-lived radical intermediates
,”
J. Am. Chem. Soc.
144
(
35
),
15969
15976
(
2022
).
34.
K.-Y.
Kuan
and
D. A.
Singleton
, “
Isotope effects and the mechanism of photoredox-promoted (2 + 2) cycloadditions of enones
,”
J. Org. Chem.
86
(
9
),
6305
6313
(
2021
).
35.
S.
Ruccolo
,
Y.
Qin
,
C.
Schnedermann
, and
D. G.
Nocera
, “
General strategy for improving the quantum efficiency of photoredox hydroamidation catalysis
,”
J. Am. Chem. Soc.
140
(
44
),
14926
14937
(
2018
).
36.
Y.
Ben-Tal
and
G. C.
Lloyd-Jones
, “
Kinetics of a Ni/Ir-photocatalyzed coupling of ArBr with RBr: Intermediacy of ArNiII(L)Br and rate/selectivity factors
,”
J. Am. Chem. Soc.
144
(
33
),
15372
15382
(
2022
).
37.
W. B.
Swords
,
S. J.
Chapman
,
H.
Hofstetter
,
A. L.
Dunn
, and
T. P.
Yoon
, “
Variable temperature LED–NMR: Rapid insights into a photocatalytic mechanism from reaction progress kinetic analysis
,”
J. Org. Chem.
87
(
17
),
11776
11782
(
2022
).
38.
X.-Z.
Shu
,
M.
Zhang
,
Y.
He
,
H.
Frei
, and
F. D.
Toste
, “
Dual visible light photoredox and gold-catalyzed arylative ring expansion
,”
J. Am. Chem. Soc.
136
(
16
),
5844
5847
(
2014
).
39.
B.
Reiß
,
Q.
Hu
,
E.
Riedle
, and
H. A.
Wagenknecht
, “
The dependence of chemical quantum yields of visible light photoredox catalysis on the irradiation power
,”
ChemPhotoChem
5
(
11
),
1009
1019
(
2021
).
40.
B. G.
Stevenson
,
E. H.
Spielvogel
,
E. A.
Loiaconi
,
V. M.
Wambua
,
R. V.
Nakhamiyayev
, and
J. R.
Swierk
, “
Mechanistic investigations of an α-aminoarylation photoredox reaction
,”
J. Am. Chem. Soc.
143
(
23
),
8878
8885
(
2021
).
41.
J. R.
Swierk
, “
The cost of quantum yield
,”
Org. Process Res. Dev.
27
,
1411
1419
(
2023
).
42.
C.
Wang
and
A.
Malinoski
, “
Perspective: Mechanistic investigations of photocatalytic processes with time-resolved optical spectroscopy
,”
J. Chem. Phys.
157
(
16
),
160901
(
2022
).
43.
N.
Kandoth
,
J.
Pérez Hernández
,
E.
Palomares
, and
J.
Lloret-Fillol
, “
Mechanisms of photoredox catalysts: The role of optical spectroscopy
,”
Sustainable Energy Fuels
5
(
3
),
638
665
(
2021
).
44.
K. J.
Kron
,
A.
Rodriguez-Katakura
,
R.
Elhessen
, and
S.
Mallikarjun Sharada
, “
Photoredox chemistry with organic catalysts: Role of computational methods
,”
ACS Omega
6
(
49
),
33253
33264
(
2021
).
45.
M.
Yuan
,
Z.
Song
,
S. O.
Badir
,
G. A.
Molander
, and
O.
Gutierrez
, “
On the nature of C(sp3)–C(sp2) bond formation in nickel-catalyzed tertiary radical cross-couplings: A case study of Ni/photoredox catalytic cross-coupling of alkyl radicals and aryl halides
,”
J. Am. Chem. Soc.
142
(
15
),
7225
7234
(
2020
).
46.
D.
Ziegenbalg
,
A.
Pannwitz
,
S.
Rau
,
B.
Dietzek‐Ivanšić
, and
C.
Streb
, “
Comparative evaluation of light‐driven catalysis: A framework for standardized reporting of data
,”
Angew. Chem., Int. Ed.
61
(
28
),
e202114106
(
2022
).
47.
S.
Sundararajan
and
E. L.
Wehry
, “
Photoredox chemistry of bis(2,9-dimethyl-1,10-phenanthroline)copper(II) complexes in aqueous and methanolic media
,”
J. Phys. Chem.
76
(
11
),
1528
1536
(
1972
).
48.
G.
Ferraudi
and
J. F.
Endicott
, “
Charge-transfer photochemistry of azido complexes of cobalt(III) and rhodium(III). Chemistry of flash photolytically generated nitrenes
,”
Inorg. Chem.
12
(
10
),
2389
2396
(
1973
).
49.
H.
Way
and
N.
Filipescu
, “
Photolysis of oxalatoammine complexes of cobalt(III) in aqueous solution
,”
Inorg. Chem.
8
(
8
),
1609
1611
(
1969
).
50.
P.
Natarajan
and
J. F.
Endicott
, “
Direct observation of the dibromide radical anion oxidation of tris(bipyridyl)ruthenium(II). evidence for a triplet-to-triplet energy transfer mechanism in the photosensitized redox decomposition of cobalt(III) substrates
,”
J. Phys. Chem.
77
(
7
),
971
972
(
1973
).
51.
E. F.
Ullman
and
W. A.
Henderson
, Jr.
, “
The mechanism of the photochemical valence tautomerization of 2,3-diphenylindenone oxide. IV. Evidence for vibrationally excited ground-state intermediates1a
,”
J. Am. Chem. Soc.
88
(
21
),
4942
4960
(
1966
).
52.
J. J.
McBrady
and
R.
Livingston
, “
The Formation of tetravalent uranium during the uranyl-sensitized photochemical decomposition of oxalic acid
,”
J. Phys. Chem.
50
(
3
),
176
190
(
1946
).
53.
S. C.
Lind
and
R.
Livingston
, “
The photochemical polymerization of acetylene
,”
J. Am. Chem. Soc.
56
(
7
),
1550
1551
(
1934
).
54.
D. I.
Schuster
and
I. S.
Krull
, “
Evidence for a 1,2-hydrogen-atom migration in a photochemically generated diradical1,2
,”
J. Am. Chem. Soc.
88
(
14
),
3456
3457
(
1966
).
55.
S. P.
Schmidt
and
G. B.
Schuster
, “
Photolysis of o-phenylene oxalate. A high-yield photodecarbonylation reaction
,”
J. Org. Chem.
43
(
9
),
1823
1824
(
1978
).
56.
R. S.
Cooke
and
G. S.
Hammond
, “
Mechanisms of photochemical reactions in solution. LXII. Naphthalene-sensitized photoracemization of sulfoxides
,”
J. Am. Chem. Soc.
92
(
9
),
2739
2745
(
1970
).
57.
R. G.
Norrish
and
M. E.
Appleyard
, “
191. Primary photochemical reactions. Part IV. Decomposition of methyl ethyl ketone and methyl butyl ketone
,”
J. Chem. Soc.
1934
,
874
.
58.
R. A.
Crellin
,
M. C.
Lambert
, and
A.
Ledwith
, “
Photochemical 2 + 2 cycloaddition via a cation-radical chain reaction
,”
J. Chem. Soc. D
1970
(
11
),
682
.
59.
S. E.
Braslavsky
,
A. M.
Braun
,
A. E.
Cassano
,
A. V.
Emeline
,
M. I.
Litter
,
L.
Palmisano
,
V. N.
Parmon
, and
N.
Serpone
, “
Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011)
,”
Pure Appl. Chem.
83
,
931
1014
(
2011
).
60.
F.
Lévesque
,
M. J.
Di Maso
,
K.
Narsimhan
,
M. K.
Wismer
, and
J. R.
Naber
, “
Design of a kilogram scale, plug flow photoreactor enabled by high power LEDs
,”
Org. Process Res. Dev.
24
(
12
),
2935
2940
(
2020
).
61.
R. A.
Garza-Sanchez
,
A.
Tlahuext-Aca
,
G.
Tavakoli
, and
F.
Glorius
, “
Visible light-mediated direct decarboxylative C-H functionalization of heteroarenes
,”
ACS Catal.
7
(
6
),
4057
4061
(
2017
).
62.
M. A.
Cismesia
and
T. P.
Yoon
, “
Characterizing chain processes in visible light photoredox catalysis
,”
Chem. Sci.
6
(
10
),
5426
5434
(
2015
).
63.
C. G.
Hatchard
and
C. A.
Parker
, “
A new sensitive chemical actinometer - II. Potassium ferrioxalate as a standard chemical actinometer
,”
Proc. R. Soc. A
235
(
1203
),
518
536
(
1956
).
64.
B.
Vandekerckhove
,
N.
Piens
,
B.
Metten
,
C. V.
Stevens
, and
T. S. A.
Heugebaert
, “
Practical ferrioxalate actinometry for the determination of photon fluxes in production-oriented photoflow reactors
,”
Org. Process Res. Dev.
26
(
8
),
2392
2402
(
2022
).
65.
J.
Rabani
,
H.
Mamane
,
D.
Pousty
, and
J. R.
Bolton
, “
Practical chemical actinometry—A review
,”
Photochem. Photobiol.
97
(
5
),
873
902
(
2021
).
66.
E.
de Pedro Beato
,
D.
Mazzarella
,
M.
Balletti
, and
P.
Melchiorre
, “
Photochemical generation of acyl and carbamoyl radicals using a nucleophilic organic catalyst: Applications and mechanism thereof
,”
Chem. Sci.
11
(
24
),
6312
6324
(
2020
).
67.
K.
Zhao
,
Z.
Zhang
,
X.
Cui
,
Y.
Wang
,
X.
Wu
,
W.
Li
,
J.
Wu
,
L.
Zhao
,
J.
Guo
, and
T.
Loh
, “
Visible-light-induced regio- and stereoselective C(sp2)-H trifluoroethylation of enamides with 2,2,2-trifluoroethyl iodide
,”
Org. Lett.
22
(
22
),
9029
9035
(
2020
).
68.
J.
Xie
,
T.
Zhang
,
F.
Chen
,
N.
Mehrkens
,
F.
Rominger
,
M.
Rudolph
, and
A. S.
Hashmi
, “
Gold-catalyzed highly selective photoredox C(sp2)−H difluoroalkylation and perfluoroalkylation of hydrazones
,”
Angew. Chem., Int. Ed.
55
(
8
),
2934
2938
(
2016
).
69.
H.
Huang
,
Q.
Dai
,
H.
Leng
,
Q.
Li
,
S.
Yang
,
Y.
Tao
,
X.
Zhang
,
T.
Qi
, and
J.
Li
, “
Suzuki-type cross-coupling of alkyl trifluoroborates with acid fluoride enabled by NHC/photoredox dual catalysis
,”
Chem. Sci.
13
(
9
),
2584
2590
(
2022
).
70.
Y.
Miyake
,
K.
Nakajima
, and
Y.
Nishibayashi
, “
Visible light-mediated oxidative decarboxylation of arylacetic acids into benzyl radicals: Addition to electron-deficient alkenes by using photoredox catalysts
,”
Chem. Commun.
49
(
71
),
7854
(
2013
).
71.
K.
Nakajima
,
S.
Nojima
, and
Y.
Nishibayashi
, “
Nickel- and photoredox-catalyzed cross-coupling reactions of aryl halides with 4-alkyl-1,4-dihydropyridines as formal nucleophilic alkylation reagents
,”
Angew. Chem., Int. Ed.
55
(
45
),
14106
14110
(
2016
).
72.
N.
Queyriaux
,
W.
Swords
,
H.
Agarwala
,
B.
Johnson
,
S.
Ott
, and
L.
Hammarström
, “
Mechanistic insights on the non-innocent role of electron donors: reversible photocapture of CO2 by Ru(II)-polypyridyl complexes
,”
Dalton Trans.
48
(
45
),
16894
16898
(
2019
).
73.
M. W.
Logan
,
Y. A.
Lau
,
Y.
Zheng
,
E. A.
Hall
,
M. A.
Hettinger
,
R. P.
Marks
,
M. L.
Hosler
,
F. M.
Rossi
,
Y.
Yuan
, and
F. J.
Uribe-Romo
, “
Heterogeneous photoredox synthesis of N-hydroxy-oxazolidinones catalysed by metal–organic frameworks
,”
Catal. Sci. Technol.
6
(
14
),
5647
5655
(
2016
).
74.
S. P.
Pitre
,
C. D.
McTiernan
,
H.
Ismaili
, and
J. C.
Scaiano
, “
Mechanistic insights and kinetic analysis for the oxidative hydroxylation of arylboronic acids by visible light photoredox catalysis: A metal-free alternative
,”
J. Am. Chem. Soc.
135
(
36
),
13286
13289
(
2013
).
75.
A.
McNally
,
C. K.
Prier
, and
D. W. C.
MacMillan
, “
Discovery of an α-amino C−H arylation reaction using the strategy of accelerated serendipity
,”
Science
334
(
6059
),
1114
–−
1117
(
2011
).
76.
D.
Leifert
and
A.
Studer
, “
The persistent radical effect in organic synthesis
,”
Angew. Chem., Int. Ed.
59
,
74
108
(
2020
).
77.
M.
Rueda-Becerril
,
O.
Mahé
,
M.
Drouin
,
M. B.
Majewski
,
J. G.
West
,
M. O.
Wolf
,
G. M.
Sammis
, and
J.-F.
Paquin
, “
Direct C–F bond formation using photoredox catalysis
,”
J. Am. Chem. Soc.
136
(
6
),
2637
2641
(
2014
).
78.
N. A.
Larionova
,
J. M.
Ondozabal
, and
X. C.
Cambeiro
, “
Reduction of electron‐deficient alkenes enabled by a photoinduced hydrogen atom transfer
,”
Adv. Synth. Catal.
363
(
2
),
558
564
(
2020
).
79.
A. U.
Meyer
,
T.
Slanina
,
C.-J.
Yao
, and
B.
König
, “
Metal-free perfluoroarylation by visible light photoredox catalysis
,”
ACS Catal.
6
(
1
),
369
375
(
2015
).
80.
N.
Noto
,
K.
Takahashi
,
S.
Goryo
,
A.
Takakado
,
K.
Iwata
,
T.
Koike
, and
M.
Akita
, “
Laser flash photolysis studies on radical monofluoromethylation by (diarylamino)naphthalene photoredox catalysis: Long lifetime of the excited state is not always a requisite
,”
J. Org. Chem.
85
(
20
),
13220
13227
(
2020
).
81.
R.
Martinez-Haya
,
M. A.
Miranda
, and
M. L.
Marin
, “
Metal-free photocatalytic reductive dehalogenation using visible-light: A time-resolved mechanistic study
,”
Eur. J. Org. Chem.
2017
,
2164
2169
.
82.
V. A.
Pistritto
,
S.
Liu
, and
D. A.
Nicewicz
, “
Mechanistic investigations into amination of unactivated arenes via cation radical accelerated nucleophilic aromatic substitution
,”
J. Am. Chem. Soc.
144
(
33
),
15118
15131
(
2022
).
83.
K. S.
Kjaer
,
N.
Kaul
,
O.
Prakash
,
P.
Chábera
,
N. W.
Rosemann
,
A.
Honarfar
,
O.
Gordivska
,
L. A.
Fredin
,
K.-E.
Bergquist
,
L.
Häggström
,
T.
Ericsson
,
L.
Lindh
,
A.
Yartsev
,
S.
Styring
,
P.
Huang
,
J.
Uhlig
,
J.
Bendix
,
D.
Strand
,
V.
Sundström
,
P.
Persson
,
R.
Lomoth
, and
K.
Wärnmark
, “
Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime
,”
Science
363
,
249
253
(
2019
).
84.
K.
Suzuki
,
A.
Kobayashi
,
S.
Kaneko
,
K.
Takehira
,
T.
Yoshihara
,
H.
Ishida
,
Y.
Shiina
,
S.
Oishi
, and
S.
Tobita
, “
Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector
,”
Phys. Chem. Chem. Phys.
11
,
9850
9860
(
2009
).
85.
A.
Bahamonde
and
P.
Melchiorre
, “
Mechanism of the stereoselective α-alkylation of aldehydes driven by the photochemical activity of enamines
,”
J. Am. Chem. Soc.
138
(
25
),
8019
8030
(
2016
).
86.
E. P.
Farney
,
S. J.
Chapman
,
W. B.
Swords
,
M. D.
Torelli
,
R. J.
Hamers
, and
T. P.
Yoon
, “
Discovery and elucidation of counteranion dependence in photoredox catalysis
,”
J. Am. Chem. Soc.
141
(
15
),
6385
6391
(
2019
).
87.
H. G.
Yayla
,
F.
Peng
,
I. K.
Mangion
,
M.
McLaughlin
,
L.-C.
Campeau
,
I. W.
Davies
,
D. A.
DiRocco
, and
R. R.
Knowles
, “
Discovery and mechanistic study of a photocatalytic indoline dehydrogenation for the synthesis of elbasvir
,”
Chem. Sci.
7
(
3
),
2066
2073
(
2016
).
88.
Y.
Cai
,
J.
Wang
,
Y.
Zhang
,
Z.
Li
,
D.
Hu
,
N.
Zheng
, and
H.
Chen
, “
Detection of fleeting amine radical cations and elucidation of chain processes in visible-light-mediated [3 + 2] annulation by online mass spectrometric techniques
,”
J. Am. Chem. Soc.
139
(
35
),
12259
12266
(
2017
).
89.
T. O.
Paulisch
,
F.
Strieth-Kalthoff
,
C.
Henkel
,
L.
Pitzer
,
D. M.
Guldi
, and
F.
Glorius
, “
Chain propagation determines the chemo- and regioselectivity of alkyl radical additions to C–O vs. C–C double bonds
,”
Chem. Sci.
11
(
3
),
731
736
(
2020
).
90.
M. D.
Ryan
,
R. M.
Pearson
,
T. A.
French
, and
G. M.
Miyake
, “
Impact of light intensity on control in photoinduced organocatalyzed atom transfer radical polymerization
,”
Macromolecules
50
(
12
),
4616
4622
(
2017
).
91.
D. A.
Corbin
,
K. O.
Puffer
,
K. A.
Chism
,
J. P.
Cole
,
J. C.
Theriot
,
B. G.
McCarthy
,
B. L.
Buss
,
C.-H.
Lim
,
S. R.
Lincoln
,
B. S.
Newell
, and
G. M.
Miyake
, “
Radical addition to N,N-diaryl dihydrophenazine photoredox catalysts and implications in photoinduced organocatalyzed atom transfer radical polymerization
,”
Macromolecules
54
(
10
),
4507
4516
(
2021
).
92.
D. A.
Corbin
,
B. G.
McCarthy
,
Z.
van de Lindt
, and
G. M.
Miyake
, “
Radical cations of phenoxazine and dihydrophenazine photoredox catalysts and their role as deactivators in organocatalyzed atom transfer radical polymerization
,”
Macromolecules
54
(
10
),
4726
4738
(
2021
).
93.
Y. M.
Lattke
,
D. A.
Corbin
,
S. M.
Sartor
,
B. G.
McCarthy
,
G. M.
Miyake
, and
N. H.
Damrauer
, “
Interrogation of O-ATRP activation conducted by singlet and triplet excited states of phenoxazine photocatalysts
,”
J. Phys. Chem. A
125
(
15
),
3109
3121
(
2021
).
94.
D. A.
Corbin
,
C.
Cremer
,
K. O.
Puffer
,
B. S.
Newell
,
F. W.
Patureau
, and
G. M.
Miyake
, “
Effects of the chalcogenide identity in N‐aryl phenochalcogenazine photoredox catalysts
,”
ChemCatChem
14
(
17
),
e202200485
(
2022
).
95.
D.
Koyama
,
H. J.
Dale
, and
A. J.
Orr-Ewing
, “
Ultrafast observation of a photoredox reaction mechanism: photoinitiation in organocatalyzed atom-transfer radical polymerization
,”
J. Am. Chem. Soc.
140
(
4
),
1285
1293
(
2018
).
96.
L.
Lewis-Borrell
,
M.
Sneha
,
A.
Bhattacherjee
,
I. P.
Clark
, and
A. J.
Orr-Ewing
, “
Mapping the multi-step mechanism of a photoredox catalyzed atom-transfer radical polymerization reaction by direct observation of the reactive intermediates
,”
Chem. Sci.
11
(
17
),
4475
4481
(
2020
).
97.
A.
Bhattacherjee
,
M.
Sneha
,
L.
Lewis-Borrell
,
G.
Amoruso
,
T. A. A.
Oliver
,
J.
Tyler
,
I. P.
Clark
, and
A. J.
Orr-Ewing
, “
Singlet and triplet contributions to the excited-state activities of dihydrophenazine, phenoxazine, and phenothiazine organocatalysts used in atom transfer radical polymerization
,”
J. Am. Chem. Soc.
143
(
9
),
3613
3627
(
2021
).
98.
M.
Sneha
,
A.
Bhattacherjee
,
L.
Lewis-Borrell
,
I. P.
Clark
, and
A. J.
Orr-Ewing
, “
Structure-dependent electron transfer rates for dihydrophenazine, phenoxazine, and phenothiazine photoredox catalysts employed in atom transfer radical polymerization
,”
J. Phys. Chem. B
125
(
28
),
7840
7854
(
2021
).
99.
B.
McCarthy
,
S.
Sartor
,
J.
Cole
,
N.
Damrauer
, and
G. M.
Miyake
, “
Solvent effects and side reactions in organocatalyzed atom transfer radical polymerization for enabling the controlled polymerization of acrylates catalyzed by diaryl dihydrophenazines
,”
Macromolecules
53
(
21
),
9208
9219
(
2020
).
100.
X.
Pan
,
C.
Fang
,
M.
Fantin
,
N.
Malhotra
,
W. Y.
So
,
L. A.
Peteanu
,
A. A.
Isse
,
A.
Gennaro
,
P.
Liu
, and
K.
Matyjaszewski
, “
Mechanism of photoinduced metal-free atom transfer radical polymerization: Experimental and computational studies
,”
J. Am. Chem. Soc.
138
(
7
),
2411
2425
(
2016
).
101.
I.
Ghosh
,
T.
Ghosh
,
J. I.
Bardagi
, and
B.
König
, “
Reduction of aryl halides by consecutive visible light-induced electron transfer processes
,”
Science
346
(
6210
),
725
728
(
2014
).
102.
C. J.
Zeman
,
S.
Kim
,
F.
Zhang
, and
K. S.
Schanze
, “
Direct observation of the reduction of aryl halides by a photoexcited perylene diimide radical anion
,”
J. Am. Chem. Soc.
142
(
5
),
2204
2207
(
2020
).
103.
D. Y.
Jeong
,
D. S.
Lee
,
H. L.
Lee
,
S.
Nah
,
J. Y.
Lee
,
E. J.
Cho
, and
Y.
You
, “
Evidence and governing factors of the radical-ion photoredox catalysis
,”
ACS Catal.
12
(
10
),
6047
6059
(
2022
).
104.
C.
Kerzig
,
X.
Guo
, and
O. S.
Wenger
, “
Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis
,”
J. Am. Chem. Soc.
141
(
5
),
2122
2127
(
2019
).
105.
C.
Kerzig
and
O. S.
Wenger
, “
Reactivity control of a photocatalytic system by changing the light intensity
,”
Chem. Sci.
10
(
48
),
11023
11029
(
2019
).
106.
J. P.
Cole
,
D.-F.
Chen
,
M.
Kudisch
,
R. M.
Pearson
,
C.-H.
Lim
, and
G. M.
Miyake
, “
Organocatalyzed birch reduction driven by visible light
,”
J. Am. Chem. Soc.
142
(
31
),
13573
13581
(
2020
).
107.
I.
Ghosh
,
R. S.
Shaikh
, and
B.
König
, “
Sensitization-initiated electron transfer for photoredox catalysis
,”
Angew. Chem., Int. Ed.
56
(
29
),
8544
8549
(
2017
).
108.
M. S.
Coles
,
G.
Quach
,
J. E.
Beves
, and
E. G.
Moore
, “
A photophysical study of sensitization‐initiated electron transfer: Insights into the mechanism of photoredox activity
,”
Angew. Chem., Int. Ed.
59
(
24
),
9522
9526
(
2020
).
109.
M.
Marchini
,
G.
Bergamini
,
P. G.
Cozzi
,
P.
Ceroni
, and
V.
Balzani
, “
Photoredox catalysis: The need to elucidate the photochemical mechanism
,”
Angew. Chem., Int. Ed.
56
(
42
),
12820
12821
(
2017
).
110.
I.
Ghosh
,
J. I.
Bardagi
, and
B.
König
, “
Reply to ‘Photoredox catalysis: The need to elucidate the photochemical mechanism
,’”
Angew. Chem. Int. Ed.
56
(
42
),
12822
12824
(
2017
).
111.
T. U.
Connell
,
C. L.
Fraser
,
M. L.
Czyz
,
Z. M.
Smith
,
D. J.
Hayne
,
E. H.
Doeven
,
J.
Agugiaro
,
D. J.
Wilson
,
J. L.
Adcock
,
A. D.
Scully
,
D. E.
Gómez
,
N. W.
Barnett
,
A.
Polyzos
, and
P. S.
Francis
, “
The tandem photoredox catalysis mechanism of [Ir(ppy)2(dtb-bpy)]+ enabling access to energy demanding organic substrates
,”
J. Am. Chem. Soc.
141
(
44
),
17646
17658
(
2019
).
112.
F.
Glaser
and
O. S.
Wenger
, “
Red light-based dual photoredox strategy resembling the Z-scheme of natural photosynthesis
,”
JACS Au
2
(
6
),
1488
1503
(
2022
).
113.
S. J.
Horsewill
,
G.
Hierlmeier
,
Z.
Farasat
,
J. P.
Barham
, and
D. J.
Scott
, “
Shining fresh light on complex photoredox mechanisms through isolation of intermediate radical anions
,”
ACS Catal.
13
,
9392
9403
(
2023
).
114.
A. J.
Rieth
,
M. I.
Gonzalez
,
B.
Kudisch
,
M.
Nava
, and
D. G.
Nocera
, “
How radical are ‘radical’ photocatalysts? A closed-shell Meisenheimer complex is identified as a super-reducing photoreagent
,”
J. Am. Chem. Soc.
143
(
35
),
14352
14359
(
2021
).
115.
D. C.
Miller
,
G. J.
Choi
,
H. S.
Orbe
, and
R. R.
Knowles
, “
Catalytic olefin hydroamidation enabled by proton-coupled electron transfer
,”
J. Am. Chem. Soc.
137
(
42
),
13492
13495
(
2015
).
116.
D. C.
Miller
,
J. M.
Ganley
,
A. J.
Musacchio
,
T. C.
Sherwood
,
W. R.
Ewing
, and
R. R.
Knowles
, “
Anti-Markovnikov hydroamination of unactivated alkenes with primary alkyl amines
,”
J. Am. Chem. Soc.
141
(
42
),
16590
16594
(
2019
).
117.
Y.
Qin
,
Q.
Zhu
,
R.
Sun
,
J. M.
Ganley
,
R. R.
Knowles
, and
D. G.
Nocera
, “
Mechanistic investigation and optimization of photoredox anti-Markovnikov hydroamination
,”
J. Am. Chem. Soc.
143
(
27
),
10232
10242
(
2021
).
118.
D. S.
Hamilton
and
D. A.
Nicewicz
, “
Direct catalytic anti-Markovnikov hydroetherification of alkenols
,”
J. Am. Chem. Soc.
134
(
45
),
18577
18580
(
2012
).
119.
A. J.
Perkowski
and
D. A.
Nicewicz
, “
Direct catalytic anti-Markovnikov addition of carboxylic acids to alkenes
,”
J. Am. Chem. Soc.
135
(
28
),
10334
10337
(
2013
).
120.
T. M.
Nguyen
and
D. A.
Nicewicz
, “
Anti-Markovnikov hydroamination of alkenes catalyzed by an organic photoredox system
,”
J. Am. Chem. Soc.
135
(
26
),
9588
9591
(
2013
).
121.
T. M.
Nguyen
,
N.
Manohar
, and
D. A.
Nicewicz
, “
Anti-Markovnikov hydroamination of alkenes catalyzed by a two-component organic photoredox system: Direct access to phenethylamine derivatives
,”
Angew. Chem., Int. Ed.
53
(
24
),
6198
6201
(
2014
).
122.
D. J.
Wilger
,
J.-M. M.
Grandjean
,
T. R.
Lammert
, and
D. A.
Nicewicz
, “
The direct anti-markovnikov addition of mineral acids to styrenes
,”
Nat. Chem.
6
(
8
),
720
726
(
2014
).
123.
D. J.
Wilger
,
N. J.
Gesmundo
, and
D. A.
Nicewicz
, “
Catalytic hydrotrifluoromethylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system
,”
Chem. Sci.
4
(
8
),
3160
(
2013
).
124.
N. A.
Romero
and
D. A.
Nicewicz
, “
Mechanistic insight into the photoredox catalysis of anti-Markovnikov alkene hydrofunctionalization reactions
,”
J. Am. Chem. Soc.
136
(
49
),
17024
17035
(
2014
).
125.
S. C.
Mallojjala
,
V. O.
Nyagilo
,
S. A.
Corio
,
A.
Adili
,
A.
Dagar
,
K. A.
Loyer
,
D.
Seidel
, and
J. S.
Hirschi
, “
Probing the free energy landscape of organophotoredox-catalyzed anti-Markovnikov hydrofunctionalization of alkenes
,”
J. Am. Chem. Soc.
144
(
38
),
17692
17699
(
2022
).
126.
D. A.
Singleton
and
A. A.
Thomas
, “
High-precision simultaneous determination of multiple small kinetic isotope effects at natural abundance
,”
J. Am. Chem. Soc.
117
(
36
),
9357
9358
(
1995
).
127.
E. H.
Spielvogel
,
B. G.
Stevenson
,
M. J.
Stringer
,
Y.
Hu
,
L. A.
Fredin
, and
J. R.
Swierk
, “
Insights into the mechanism of an allylic arylation reaction via photoredox-coupled hydrogen atom transfer
,”
J. Org. Chem.
87
(
1
),
223
230
(
2021
).
128.
J. D.
Cuthbertson
and
D. W. C.
MacMillan
, “
The direct arylation of allylic sp3 C–H bonds via organic and photoredox catalysis
,”
Nature
519
(
7541
),
74
77
(
2015
).
129.
Z.
Zuo
,
D. T.
Ahneman
,
L.
Chu
,
J. A.
Terrett
,
A. G.
Doyle
, and
D. W.
MacMillan
, “
Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp3-carbons with aryl halides
,”
Science
345
(
6195
),
437
440
(
2014
).
130.
J. C.
Tellis
,
D. N.
Primer
, and
G. A.
Molander
, “
Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis
,”
Science
345
(
6195
),
433
436
(
2014
).
131.
O.
Gutierrez
,
J. C.
Tellis
,
D. N.
Primer
,
G. A.
Molander
, and
M. C.
Kozlowski
, “
Nickel-catalyzed cross-coupling of photoredox-generated radicals: Uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings
,”
J. Am. Chem. Soc.
137
(
15
),
4896
4899
(
2015
).
132.
D. R.
Heitz
,
J. C.
Tellis
, and
G. A.
Molander
, “
Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations
,”
J. Am. Chem. Soc.
138
(
39
),
12715
12718
(
2016
).
133.
B. J.
Shields
and
A. G.
Doyle
, “
Direct C(sp3)–H cross coupling enabled by catalytic generation of chlorine radicals
,”
J. Am. Chem. Soc.
138
(
39
),
12719
12722
(
2016
).
134.
E. R.
Welin
,
C.
Le
,
D. M.
Arias-Rotondo
,
J. K.
McCusker
, and
D. W. C.
MacMillan
, “
Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II)
,”
Science
355
(
6323
),
380
385
(
2017
).
135.
B. J.
Shields
,
B.
Kudisch
,
G. D.
Scholes
, and
A. G.
Doyle
, “
Long-lived charge-transfer states of nickel(II) aryl halide complexes facilitate bimolecular photoinduced electron transfer
,”
J. Am. Chem. Soc.
140
(
8
),
3035
3039
(
2018
).
136.
S. I.
Ting
,
S.
Garakyaraghi
,
C. M.
Taliaferro
,
B. J.
Shields
,
G. D.
Scholes
,
F. N.
Castellano
, and
A. G.
Doyle
, “
3d-d excited states of Ni(II) complexes relevant to photoredox catalysis: Spectroscopic identification and mechanistic implications
,”
J. Am. Chem. Soc.
142
(
12
),
5800
5810
(
2020
).
137.
L.
Tian
,
N. A.
Till
,
B.
Kudisch
,
D. W.
MacMillan
, and
G. D.
Scholes
, “
Transient absorption spectroscopy offers mechanistic insights for an iridium/nickel-catalyzed C–O coupling
,”
J. Am. Chem. Soc.
142
(
10
),
4555
4559
(
2020
).
138.
J.
Shin
,
J.
Lee
,
J.-M.
Suh
, and
K.
Park
, “
Ligand-field transition-induced C–S bond formation from nickelacycles
,”
Chem. Sci.
12
(
48
),
15908
15915
(
2021
).
139.
D. A.
Cagan
,
D.
Bím
,
B.
Silva
,
N. P.
Kazmierczak
,
B. J.
McNicholas
, and
R. G.
Hadt
, “
Elucidating the mechanism of excited-state bond homolysis in nickel–bipyridine photoredox catalysts
,”
J. Am. Chem. Soc.
144
(
14
),
6516
6531
(
2022
).
140.
C.-H.
Lim
,
M.
Kudisch
,
B.
Liu
, and
G. M.
Miyake
, “
C–N cross-coupling via photoexcitation of nickel–amine complexes
,”
J. Am. Chem. Soc.
140
(
24
),
7667
7673
(
2018
).
141.
M.
Kudisch
,
C.-H.
Lim
,
P.
Thordarson
, and
G. M.
Miyake
, “
Energy transfer to Ni-amine complexes in dual catalytic, light-driven C–N cross-coupling reactions
,”
J. Am. Chem. Soc.
141
(
49
),
19479
19486
(
2019
).
142.
J. A.
Malik
,
A.
Madani
,
B.
Pieber
, and
P. H.
Seeberger
, “
Evidence for photocatalyst involvement in oxidative additions of nickel-catalyzed carboxylate O-arylations
,”
J. Am. Chem. Soc.
142
(
25
),
11042
11049
(
2020
).
143.
N. A.
Till
,
L.
Tian
,
Z.
Dong
,
G. D.
Scholes
, and
D. W. C.
MacMillan
, “
Mechanistic analysis of metallaphotoredox C–N coupling: Photocatalysis initiates and perpetuates Ni(I)/Ni(III) coupling activity
,”
J. Am. Chem. Soc.
142
(
37
),
15830
15841
(
2020
).
144.
R.
Sun
,
Y.
Qin
,
S.
Ruccolo
,
C.
Schnedermann
,
C.
Costentin
, and
D. G.
Nocera
, “
Elucidation of a redox-mediated reaction cycle for nickel-catalyzed cross coupling
,”
J. Am. Chem. Soc.
141
(
1
),
89
93
(
2018
).
145.
Y.
Qin
,
R.
Sun
,
N. P.
Gianoulis
, and
D. G.
Nocera
, “
Photoredox nickel-catalyzed C–S cross-coupling: Mechanism, kinetics, and generalization
,”
J. Am. Chem. Soc.
143
(
4
),
2005
2015
(
2021
).
146.
N. A.
Till
,
S.
Oh
,
D. W.
MacMillan
, and
M. J.
Bird
, “
The application of pulse radiolysis to the study of Ni(I) intermediates in Ni-catalyzed cross-coupling reactions
,”
J. Am. Chem. Soc.
143
(
25
),
9332
9337
(
2021
).
147.
R.
Kancherla
,
K.
Muralirajan
,
B.
Maity
,
S.
Karuthedath
,
G. S.
Kumar
,
F.
Laquai
,
L.
Cavallo
, and
M.
Rueping
, “
Mechanistic insights into photochemical nickel-catalyzed cross-couplings enabled by energy transfer
,”
Nat. Commun.
13
(
1
),
2737
(
2022
).
148.
B.
Maity
,
T. R.
Scott
,
G. D.
Stroscio
,
L.
Gagliardi
, and
L.
Cavallo
, “
The role of excited states of LNiII/III(aryl)(halide) complexes in Ni–halide bond homolysis in the arylation of Csp3–H bonds
,”
ACS Catal.
12
(
21
),
13215
13224
(
2022
).
149.
S.
Kim
and
F. D.
Toste
, “
Mechanism of photoredox-initiated C–C and C–N bond formation by arylation of IPrAu(I)–CF3 and IPrAu(I)–succinimide
,”
J. Am. Chem. Soc.
141
(
10
),
4308
4315
(
2019
).
150.
S.
Witzel
,
M.
Hoffmann
,
M.
Rudolph
,
F.
Rominger
,
A.
Dreuw
, and
A. S. K.
Hashmi
, “
A radical chain: Mononuclear ‘gold only’ photocatalysis
,”
Adv. Synth. Catal.
364
(
3
),
581
592
(
2021
).
151.
B.
Limburg
,
À.
Cristòfol
, and
A. W.
Kleij
, “
Decoding key transient inter-catalyst interactions in a reductive metallaphotoredox-catalyzed allylation reaction
,”
J. Am. Chem. Soc.
144
(
24
),
10912
10920
(
2022
).
152.
M.
Neumeier
,
U.
Chakraborty
,
D.
Schaarschmidt
,
V.
Pena O'Shea
,
R.
Perez‐Ruiz
, and
A.
Jacobi von Wangelin
, “
Combined photoredox and iron catalysis for the cyclotrimerization of alkynes
,”
Angew. Chem., Int. Ed.
59
(
32
),
13473
13478
(
2020
).

Supplementary Material

You do not currently have access to this content.