The discovery of lytic polysaccharide monooxygenases (LPMOs) as monocopper enzymes for the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides has revolutionized our understanding of enzymatic biomass conversion. In recent years, the debate regarding whether LPMOs function as monooxygenases or peroxygenases has generated significant interest due to its implications for understanding the mechanisms involved in LPMO-mediated lignocellulosic biomass conversion. This review provides a comprehensive analysis of theoretical calculations and kinetic studies, offering a detailed examination of the catalytic mechanism of LPMOs from a physicochemical perspective. By reviewing theoretical investigations focused on the activation of O2/H2O2 and its impact on LPMO monooxygenase/peroxygenase activity, this review aims to inspire novel insight and innovative approaches for exploring the intricate mechanism of LPMOs.

1.
G.
Vaaje-Kolstad
,
B.
Westereng
,
S. J.
Horn
,
Z.
Liu
,
H.
Zhai
,
M.
Sørlie
, and
V. G.
Eijsink
, “
An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides
,”
Science
330
(
6001
),
219
222
(
2010
).
2.
C. M.
Phillips
,
W. T.
Beeson Iv
,
J. H.
Cate
, and
M. A.
Marletta
, “
Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa
,”
ACS Chem. Biol.
6
(
12
),
1399
1406
(
2011
).
3.
R. J.
Quinlan
,
M. D.
Sweeney
,
L.
Lo Leggio
,
H.
Otten
,
J. N.
Poulsen
,
K. S.
Johansen
,
K. B.
Krogh
,
C. I.
Jørgensen
,
M.
Tovborg
, and
A.
Anthonsen
, “
Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
37
),
15079
15084
(
2011
).
4.
W.
Gao
,
H.
Zhang
,
T.
Li
,
J.
Ju
,
H.
Zhou
,
X.
Zong
, and
H.
Yin
, “
Controlled depolymerization of cellulose by photoelectrochemical bioreactor using a lytic polysaccharide monooxygenase
,”
Biochem. Eng. J.
187
,
108597
(
2022
).
5.
T.
Tandrup
,
K. E.
Frandsen
,
K. S.
Johansen
,
J.
Berrin
, and
L.
Lo Leggio
, “
Recent insights into lytic polysaccharide monooxygenases (LPMOs)
,”
Biochem. Soc. Trans.
46
(
6
),
1431
1447
(
2018
).
6.
L. D.
Hansen
,
V. G.
Eijsink
,
S. J.
Horn
, and
A.
Várnai
, “
H2O2 feeding enables LPMO‐assisted cellulose saccharification during simultaneous fermentative production of lactic acid
,”
Biotechnol. Bioeng.
120
,
726
(
2022
).
7.
S.
Kuusk
and
P.
Väljamäe
, “
Kinetics of H2O2-driven catalysis by a lytic polysaccharide monooxygenase from the fungus Trichoderma reesei
,”
J. Biol. Chem.
297
(
5
),
101256
(
2021
).
8.
B.
Bissaro
,
B.
Streit
,
I.
Isaksen
,
V. G.
Eijsink
,
G. T.
Beckham
,
J. L.
Dubois
, and
Å. K.
Røhr
, “
Molecular mechanism of the chitinolytic peroxygenase reaction
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
3
),
1504
1513
(
2020
).
9.
A. A.
Stepnov
,
I. A.
Christensen
,
Z.
Forsberg
,
F. L.
Aachmann
,
G.
Courtade
, and
V. G.
Eijsink
, “
The impact of reductants on the catalytic efficiency of a lytic polysaccharide monooxygenase and the special role of dehydroascorbic acid
,”
FEBS Lett.
596
(
1
),
53
70
(
2022
).
10.
H.
Chang
,
N.
Gacias Amengual
,
A.
Botz
,
L.
Schwaiger
,
D.
Kracher
,
S.
Scheiblbrandner
,
F.
Csarman
, and
R.
Ludwig
, “
Investigating lytic polysaccharide monooxygenase-assisted wood cell wall degradation with microsensors
,”
Nat. Commun.
13
(
1
),
6258
(
2022
).
11.
L.
Rieder
,
D.
Petrović
,
P.
Valjamae
,
V. G.
Eijsink
, and
M.
Sørlie
, “
Kinetic characterization of a putatively chitin-active LPMO reveals a preference for soluble substrates and absence of monooxygenase activity
,”
ACS Catal.
11
(
18
),
11685
11695
(
2021
).
12.
B.
Kim
,
M. T.
Brueggemeyer
,
W. J.
Transue
,
Y.
Park
,
J.
Cho
,
M. A.
Siegler
,
E. I.
Solomon
, and
K. D.
Karlin
, “
Fenton-like chemistry by a copper (I) complex and H2O2 relevant to enzyme peroxygenase C–H hydroxylation
,”
J. Am. Chem. Soc.
145
,
11735
(
2023
).
13.
G. C.
Schröder
,
W. B.
O'Dell
,
P. D.
Swartz
, and
F.
Meilleur
, “
Preliminary results of neutron and x-ray diffraction data collection on a lytic polysaccharide monooxygenase under reduced and acidic conditions
,”
Acta Crystallogr., Sect. F: Struct. Biol. Commun.
77
(
4
),
128
133
(
2021
).
14.
C. M.
Cordas
,
G. N.
Valério
,
A.
Stepnov
,
E.
Kommedal
,
Å. R.
Kjendseth
,
Z.
Forsberg
,
V. G.
Eijsink
, and
J. J.
Moura
, “
Electrochemical characterization of a family AA10 LPMO and the impact of residues shaping the copper site on reactivity
,”
J. Inorg. Biochem.
238
,
112056
(
2023
).
15.
Z.
Forsberg
,
M.
Sørlie
,
D.
Petrović
,
G.
Courtade
,
F. L.
Aachmann
,
G.
Vaaje-Kolstad
,
B.
Bissaro
,
Å. K.
Røhr
, and
V. G.
Eijsink
, “
Polysaccharide degradation by lytic polysaccharide monooxygenases
,”
Curr. Opin. Struct. Biol.
59
,
54
64
(
2019
).
16.
S. M.
Jones
,
W. J.
Transue
,
K. K.
Meier
,
B.
Kelemen
, and
E. I.
Solomon
, “
Kinetic analysis of amino acid radicals formed in H2O2-driven CuI LPMO reoxidation implicates dominant homolytic reactivity
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
22
),
11916
11922
(
2020
).
17.
B.
Wang
,
P. H.
Walton
, and
C.
Rovira
, “
Molecular mechanisms of oxygen activation and hydrogen peroxide formation in lytic polysaccharide monooxygenases
,”
ACS Catal.
9
(
6
),
4958
4969
(
2019
).
18.
E. G.
Kommedal
,
C. F.
Angeltveit
,
L. J.
Klau
,
I.
Ayuso-Fernández
,
B.
Arstad
,
S. G.
Antonsen
,
Y.
Stenstrøm
,
D.
Ekeberg
,
F.
Gírio
, and
F.
Carvalheiro
, “
Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases
,”
Nat. Commun.
14
(
1
),
1063
(
2023
).
19.
G. C.
Schröder
,
W. B.
O'Dell
,
S. P.
Webb
,
P. K.
Agarwal
, and
F.
Meilleur
, “
Capture of activated dioxygen intermediates at the copper-active site of a lytic polysaccharide monooxygenase
,”
Chem. Sci.
13
(
45
),
13303
13320
(
2022
).
20.
B.
Bissaro
and
V. G.
Eijsink
, “
Lytic polysaccharide monooxygenases: Enzymes for controlled and site-specific Fenton-like chemistry
,”
Essays Biochem.
67
,
575
(
2023
).
21.
A. V.
Bernardi
,
L. E.
Gerolamo
,
P. F.
de Gouvêa
,
D. K.
Yonamine
,
L. M. S.
Pereira
,
A. H. C.
de Oliveira
,
S. A.
Uyemura
, and
T. M.
Dinamarco
, “
LPMO Af AA9_B and cellobiohydrolase Af Cel6A from A. fumigatus boost enzymatic saccharification activity of cellulase cocktail
,”
Int. J. Mol. Sci.
22
(
1
),
276
(
2020
).
22.
W. T.
Beeson
,
V. V.
Vu
,
E. A.
Span
,
C. M.
Phillips
, and
M. A.
Marletta
, “
Cellulose degradation by polysaccharide monooxygenases
,”
Annu. Rev. Biochem.
84
,
923
946
(
2015
).
23.
P.
Chylenski
,
B.
Bissaro
,
M.
Sørlie
,
Å. K.
Røhr
,
A.
Varnai
,
S. J.
Horn
, and
V. G.
Eijsink
, “
Lytic polysaccharide monooxygenases in enzymatic processing of lignocellulosic biomass
,”
ACS Catal.
9
(
6
),
4970
4991
(
2019
).
24.
X.
Zhou
and
H.
Zhu
, “
Current understanding of substrate specificity and regioselectivity of LPMOs
,”
Bioresour. Bioprocess.
7
(
1
),
11
(
2020
).
25.
T.
Tan
,
D.
Kracher
,
R.
Gandini
,
C.
Sygmund
,
R.
Kittl
,
D.
Haltrich
,
B. M.
Hällberg
,
R.
Ludwig
, and
C.
Divne
, “
Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation
,”
Nat. Commun.
6
(
1
),
7542
(
2015
).
26.
R. C.
Gregory
,
G. R.
Hemsworth
,
J. P.
Turkenburg
,
S. J.
Hart
,
P. H.
Walton
, and
G. J.
Davies
, “
Activity, stability and 3-D structure of the Cu (II) form of a chitin-active lytic polysaccharide monooxygenase from Bacillus amyloliquefaciens
,”
Dalton Trans.
45
(
42
),
16904
16912
(
2016
).
27.
G. R.
Hemsworth
,
B.
Henrissat
,
G. J.
Davies
, and
P. H.
Walton
, “
Discovery and characterization of a new family of lytic polysaccharide monooxygenases
,”
Nat. Chem. Biol.
10
(
2
),
122
126
(
2014
).
28.
L.
Lo Leggio
,
T. J.
Simmons
,
J. N.
Poulsen
,
K. E.
Frandsen
,
G. R.
Hemsworth
,
M. A.
Stringer
,
P.
Von Freiesleben
,
M.
Tovborg
,
K. S.
Johansen
, and
L.
De Maria
, “
Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase
,”
Nat. Commun.
6
(
1
),
5961
(
2015
).
29.
M.
Couturier
,
S.
Ladeveze
,
G.
Sulzenbacher
,
L.
Ciano
,
M.
Fanuel
,
C.
Moreau
,
A.
Villares
,
B.
Cathala
,
F.
Chaspoul
, and
K. E.
Frandsen
, “
Lytic xylan oxidases from wood-decay fungi unlock biomass degradation
,”
Nat. Chem. Biol.
14
(
3
),
306
310
(
2018
).
30.
F.
Sabbadin
,
G. R.
Hemsworth
,
L.
Ciano
,
B.
Henrissat
,
P.
Dupree
,
T.
Tryfona
,
R. D.
Marques
,
S. T.
Sweeney
,
K.
Besser
, and
L.
Elias
, “
An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion
,”
Nat. Commun.
9
(
1
),
756
(
2018
).
31.
P.
Sun
,
Z.
Huang
,
S.
Banerjee
,
M. A.
Kadowaki
,
R. J.
Veersma
,
S.
Magri
,
R.
Hilgers
,
S. J.
Muderspach
,
C. V.
Laurent
, and
R.
Ludwig
, “
AA16 oxidoreductases boost cellulose-active AA9 lytic polysaccharide monooxygenases from Myceliophthora thermophila
,”
ACS Catal.
13
(
7
),
4454
4467
(
2023
).
32.
F.
Sabbadin
,
S.
Urresti
,
B.
Henrissat
,
A. O.
Avrova
,
L. R.
Welsh
,
P. J.
Lindley
,
M.
Csukai
,
J. N.
Squires
,
P. H.
Walton
, and
G. J.
Davies
, “
Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes
,”
Science
373
(
6556
),
774
779
(
2021
).
33.
W. T.
Beeson
,
C. M.
Phillips
,
J. H.
Cate
, and
M. A.
Marletta
, “
Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases
,”
J. Am. Chem. Soc.
134
(
2
),
890
892
(
2012
).
34.
C. H.
Kjaergaard
,
M. F.
Qayyum
,
S. D.
Wong
,
F.
Xu
,
G. R.
Hemsworth
,
D. J.
Walton
,
N. A.
Young
,
G. J.
Davies
,
P. H.
Walton
, and
K. S.
Johansen
, “
Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
24
),
8797
8802
(
2014
).
35.
S.
Kim
,
J.
Ståhlberg
,
M.
Sandgren
,
R. S.
Paton
, and
G. T.
Beckham
, “
Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
1
),
149
154
(
2014
).
36.
T.
Isaksen
,
B.
Westereng
,
F. L.
Aachmann
,
J. W.
Agger
,
D.
Kracher
,
R.
Kittl
,
R.
Ludwig
,
D.
Haltrich
,
V. G.
Eijsink
, and
S. J.
Horn
, “
A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides
,”
J. Biol. Chem.
289
(
5
),
2632
2642
(
2014
).
37.
B.
Bissaro
,
A.
Várnai
,
Å. K.
Røhr
, and
V. G.
Eijsink
, “
Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass
,”
Microbiol. Mol. Biol. Rev.
82
(
4
),
e00029
(
2018
).
38.
B.
Bissaro
,
Å. K.
Røhr
,
G.
Müller
,
P.
Chylenski
,
M.
Skaugen
,
Z.
Forsberg
,
S. J.
Horn
,
G.
Vaaje-Kolstad
, and
V. G.
Eijsink
, “
Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2
,”
Nat. Chem. Biol.
13
(
10
),
1123
1128
(
2017
).
39.
B.
Bissaro
,
Å. K.
Røhr
,
M.
Skaugen
,
Z.
Forsberg
,
S. J.
Horn
,
G.
Vaaje-Kolstad
, and
V. G.
Eijsink
, “
Fenton-type chemistry by a copper enzyme: Molecular mechanism of polysaccharide oxidative cleavage
,” bioRxiv:097022 (
2016
).
40.
S.
Kuusk
,
B.
Bissaro
,
P.
Kuusk
,
Z.
Forsberg
,
V. G.
Eijsink
,
M.
Sørlie
, and
P.
Väljamäe
, “
Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase
,”
J. Biol. Chem.
293
(
2
),
523
531
(
2018
).
41.
R.
Kont
,
B.
Bissaro
,
V. G.
Eijsink
, and
P.
Väljamäe
, “
Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs)
,”
Nat. Commun.
11
(
1
),
5786
(
2020
).
42.
B.
Bissaro
,
I.
Isaksen
,
G.
Vaaje-Kolstad
,
V. G.
Eijsink
, and
Å. K.
Røhr
, “
How a lytic polysaccharide monooxygenase binds crystalline chitin
,”
Biochemistry
57
(
12
),
1893
1906
(
2018
).
43.
K. E.
Frandsen
,
T. J.
Simmons
,
P.
Dupree
,
J. N.
Poulsen
,
G. R.
Hemsworth
,
L.
Ciano
,
E. M.
Johnston
,
M.
Tovborg
,
K. S.
Johansen
, and
P.
von Freiesleben
, “
The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases
,”
Nat. Chem. Biol.
12
(
4
),
298
303
(
2016
).
44.
G.
Courtade
,
R.
Wimmer
,
Å. K.
Røhr
,
M.
Preims
,
A. K.
Felice
,
M.
Dimarogona
,
G.
Vaaje-Kolstad
,
M.
Sørlie
,
M.
Sandgren
, and
R.
Ludwig
, “
Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
21
),
5922
5927
(
2016
).
45.
D.
Kracher
,
M.
Andlar
,
P. G.
Furtmüller
, and
R.
Ludwig
, “
Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability
,”
J. Biol. Chem.
293
(
5
),
1676
1687
(
2018
).
46.
J. A.
Hangasky
and
M. A.
Marletta
, “
A random-sequential kinetic mechanism for polysaccharide monooxygenases
,”
Biochemistry
57
(
22
),
3191
3199
(
2018
).
47.
L.
Bertini
,
R.
Breglia
,
M.
Lambrughi
,
P.
Fantucci
,
L.
De Gioia
,
M.
Borsari
,
M.
Sola
,
C. A.
Bortolotti
, and
M.
Bruschi
, “
Catalytic mechanism of fungal lytic polysaccharide monooxygenases investigated by first-principles calculations
,”
Inorg. Chem.
57
(
1
),
86
97
(
2018
).
48.
B.
Wang
,
E. M.
Johnston
,
P.
Li
,
S.
Shaik
,
G. J.
Davies
,
P. H.
Walton
, and
C.
Rovira
, “
QM/MM studies into the H2O2-dependent activity of lytic polysaccharide monooxygenases: Evidence for the formation of a caged hydroxyl radical intermediate
,”
ACS Catal.
8
(
2
),
1346
1351
(
2018
).
49.
B.
Wang
,
Z.
Wang
,
G. J.
Davies
,
P. H.
Walton
, and
C.
Rovira
, “
Activation of O2 and H2O2 by lytic polysaccharide monooxygenases
,”
ACS Catal.
10
(
21
),
12760
12769
(
2020
).
50.
J. Y.
Lee
and
K. D.
Karlin
, “
Elaboration of copper–oxygen mediated C–H activation chemistry in consideration of future fuel and feedstock generation
,”
Curr. Opin. Chem. Biol.
25
,
184
193
(
2015
).
51.
W. D.
Bailey
,
D.
Dhar
,
A. C.
Cramblitt
, and
W. B.
Tolman
, “
Mechanistic dichotomy in proton-coupled electron-transfer reactions of phenols with a copper superoxide complex
,”
J. Am. Chem. Soc.
141
(
13
),
5470
5480
(
2019
).
52.
O.
Caldararu
,
E.
Oksanen
,
U.
Ryde
, and
E. D.
Hedegård
, “
Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase
,”
Chem. Sci.
10
(
2
),
576
586
(
2019
).
53.
E. D.
Hedegård
and
U.
Ryde
, “
Molecular mechanism of lytic polysaccharide monooxygenases
,”
Chem. Sci.
9
(
15
),
3866
3880
(
2018
).
54.
R. K.
Singh
,
B. M.
Blossom
,
D. A.
Russo
,
R.
Singh
,
H.
Weihe
,
N. H.
Andersen
,
M. K.
Tiwari
,
P. E.
Jensen
,
C.
Felby
, and
M. J.
Bjerrum
, “
Detection and characterization of a novel copper‐dependent intermediate in a lytic polysaccharide monooxygenase
,”
Chemistry
26
(
2
),
454
463
(
2020
).
55.
W. B.
O'Dell
,
P. K.
Agarwal
, and
F.
Meilleur
, “
Oxygen activation at the active site of a fungal lytic polysaccharide monooxygenase
,”
Angew. Chem. Int. Ed.
56
(
3
),
767
770
(
2017
).
56.
A.
Paradisi
,
E. M.
Johnston
,
M.
Tovborg
,
C. R.
Nicoll
,
L.
Ciano
,
A.
Dowle
,
J.
Mcmaster
,
Y.
Hancock
,
G. J.
Davies
, and
P. H.
Walton
, “
Formation of a copper (II)–tyrosyl complex at the active site of lytic polysaccharide monooxygenases following oxidation by H2O2
,”
J. Am. Chem. Soc.
141
(
46
),
18585
18599
(
2019
).
57.
T.
Uchiyama
,
T.
Uchihashi
,
T.
Ishida
,
A.
Nakamura
,
J. V.
Vermaas
,
M. F.
Crowley
,
M.
Samejima
,
G. T.
Beckham
, and
K.
Igarashi
, “
Lytic polysaccharide monooxygenase increases cellobiohydrolases activity by promoting decrystallization of cellulose surface
,”
Sci. Adv.
8
(
51
),
eade5155
(
2022
).
58.
J. A.
Hangasky
,
A. T.
Iavarone
, and
M. A.
Marletta
, “
Reactivity of O2 versus H2O2 with polysaccharide monooxygenases
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
19
),
4915
4920
(
2018
).
59.
S.
Kuusk
,
R.
Kont
,
P.
Kuusk
,
A.
Heering
,
M.
Sørlie
,
B.
Bissaro
,
V. G.
Eijsink
, and
P.
Väljamäe
, “
Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase
,”
J. Biol. Chem.
294
(
5
),
1516
1528
(
2019
).
60.
L.
Rieder
,
A. A.
Stepnov
,
M.
Sørlie
, and
V. G.
Eijsink
, “
Fast and specific peroxygenase reactions catalyzed by fungal mono-copper enzymes
,”
Biochemistry
60
(
47
),
3633
3643
(
2021
).
61.
A. A.
Stepnov
,
Z.
Forsberg
,
M.
Sørlie
,
G.
Nguyen
,
A.
Wentzel
,
Å. K.
Røhr
, and
V. G.
Eijsink
, “
Unraveling the roles of the reductant and free copper ions in LPMO kinetics
,”
Biotechnol. Biofuels
14
,
28
(
2021
).
62.
S.
Bhatia
,
A.
Purohit
, and
S. K.
Yadav
, “
Kinetic characterization of a lytic polysaccharide monooxygenase reveals a unique specificity for depolymerization at β-O-4 of lignin compounds
,”
ACS Sustainable Chem. Eng.
11
,
4398
(
2023
).
63.
G.
Müller
,
P.
Chylenski
,
B.
Bissaro
,
V. G.
Eijsink
, and
S. J.
Horn
, “
The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail
,”
Biotechnol. Biofuels
11
(
1
),
209
(
2018
).
64.
A.
Peciulyte
,
L.
Samuelsson
,
L.
Olsson
,
K. C.
Mcfarland
,
J.
Frickmann
,
L.
østergård
,
R.
Halvorsen
,
B. R.
Scott
, and
K. S
Johansen
, “
Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase
,”
Biotechnol. Biofuels
11
,
165
(
2018
).
You do not currently have access to this content.