Metal anodes are considered promising candidates for next-generation rechargeable batteries owing to their high theoretical specific capacities. However, practical applications are limited by safety concerns and poor electrochemical performance caused by unstable solid electrolyte interphase (SEI) and uncontrolled metal deposition at the metal anode/electrolyte interface. An in-depth understanding of the interfacial reactions is of vital significance for the development of metal anode-based batteries. In situ electrochemical atomic force microscopy (EC-AFM) enabling high spatial resolution imaging and multifunctional detection is widely used to monitor electrode/electrolyte interfaces in working batteries. In this review, we summarize recent advances in the application of in situ EC-AFM for metal anode processes, including SEI formation and the deposition/dissolution processes of metallic lithium, magnesium, and zinc in metal anode-based batteries, which are conducive to the optimization of metal anodes in energy storage batteries.

1.
J.
Porzio
and
C. D.
Scown
, “
Life-cycle assessment considerations for batteries and battery materials
,”
Adv. Energy Mater
11
(
33
),
2100771
(
2021
).
2.
E.
Fan
,
L.
Li
,
Z.
Wang
,
J.
Lin
,
Y.
Huang
,
Y.
Yao
,
R.
Chen
, and
F.
Wu
, “
Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects
,”
Chem. Rev.
120
(
14
),
7020
7063
(
2020
).
3.
X.
Mu
,
H.
Pan
,
P.
He
, and
H.
Zhou
, “
Li–CO2 and Na–CO2 batteries: Toward greener and sustainable electrical energy storage
,”
Adv. Mater.
32
(
27
),
1903790
(
2020
).
4.
L.
Fan
,
S.
Wei
,
S.
Li
,
Q.
Li
, and
Y.
Lu
, “
Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries
,”
Adv. Energy Mater.
8
(
11
),
1702657
(
2018
).
5.
H.
Kim
,
G.
Jeong
,
Y.-U.
Kim
,
J.-H.
Kim
,
C.-M.
Park
, and
H.-J.
Sohn
, “
Metallic anodes for next generation secondary batteries
,”
Chem. Soc. Rev.
42
(
23
),
9011
9034
(
2013
).
6.
X.
Zhang
,
A.
Wang
,
X.
Liu
, and
J.
Luo
, “
Dendrites in lithium metal anodes: suppression, regulation, and elimination
,”
Acc. Chem. Res.
52
(
11
),
3223
3232
(
2019
).
7.
A.
Wang
,
Q.
Deng
,
L.
Deng
,
X.
Guan
, and
J.
Luo
, “
Eliminating tip dendrite growth by Lorentz force for stable lithium metal anodes
,”
Adv. Funct. Mater.
29
(
25
),
1902630
(
2019
).
8.
B.
Han
,
Z.
Zhang
,
Y.
Zou
,
K.
Xu
,
G.
Xu
,
H.
Wang
,
H.
Meng
,
Y.
Deng
,
J.
Li
, and
M.
Gu
, “
Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy
,”
Adv. Mater.
33
(
22
),
2100404
(
2021
).
9.
Z.
Luo
,
X.
Qiu
,
C.
Liu
,
S.
Li
,
C.
Wang
,
G.
Zou
,
H.
Hou
, and
X.
Ji
, “
Interfacial challenges towards stable Li metal anode
,”
Nano Energy
79
,
105507
(
2021
).
10.
X.
Shen
,
R.
Zhang
,
P.
Shi
,
X.
Chen
, and
Q.
Zhang
, “
How does external pressure shape Li dendrites in Li metal batteries?
,”
Adv. Energy Mater.
11
(
10
),
2003416
(
2021
).
11.
M. K.
Aslam
,
Y.
Niu
,
T.
Hussain
,
H.
Tabassum
,
W.
Tang
,
M.
Xu
, and
R.
Ahuja
, “
How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression
,”
Nano Energy
86
,
106142
(
2021
).
12.
J.
Cao
,
D.
Zhang
,
X.
Zhang
,
M.
Sawangphruk
,
J.
Qin
, and
R.
Liu
, “
A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode
,”
J. Mater. Chem. A
8
(
18
),
9331
9344
(
2020
).
13.
Z.
Yi
,
G.
Chen
,
F.
Hou
,
L.
Wang
, and
J.
Liang
, “
Strategies for the stabilization of Zn metal anodes for Zn-ion batteries
,”
Adv. Energy Mater.
11
(
1
),
2003065
(
2021
).
14.
C.
Wei
,
L.
Tan
,
Y.
Zhang
,
B.
Xi
,
S.
Xiong
,
J.
Feng
, and
Y.
Qian
, “
Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries
,”
Energy Storage Mater.
48
,
447
457
(
2022
).
15.
M.
Mao
,
T.
Gao
,
S.
Hou
, and
C.
Wang
, “
A critical review of cathodes for rechargeable Mg batteries
,”
Chem. Soc. Rev.
47
(
23
),
8804
8841
(
2018
).
16.
X.
Liu
,
Y.
Li
,
X.
Xu
,
L.
Zhou
, and
L.
Mai
, “
Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: Materials and advances
,”
J. Energy Chem.
61
,
104
134
(
2021
).
17.
J.
Xie
and
Q.
Zhang
, “
Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes
,”
Small
15
(
15
),
1805061
(
2019
).
18.
T. D.
Gregory
,
R. J.
Hoffman
, and
R. C.
Winterton
, “
Nonaqueous electrochemistry of magnesium: Applications to energy storage
,”
J. Electrochem. Soc.
137
(
3
),
775
780
(
1990
).
19.
P. G.
Bruce
,
S. A.
Freunberger
,
L. J.
Hardwick
, and
J.-M.
Tarascon
, “
Li–O2 and Li–S batteries with high energy storage
,”
Nat. Mater.
11
(
1
),
19
29
(
2012
).
20.
M.-C.
Kim
,
S.
Choi
,
H.
Kim
,
S.-B.
Han
,
S.-H.
Moon
,
E.-S.
Kim
,
Y.-S.
Kim
, and
K.-W.
Park
, “
Polymeric redox mediator as a stable cathode catalyst for lithium-O2 batteries
,”
J. Power Sources
453
,
227850
(
2020
).
21.
Q.
Zhao
,
Q.
Zhu
,
Y.
Liu
, and
B.
Xu
, “
Status and prospects of MXene-based lithium–sulfur batteries
,”
Adv. Funct. Mater.
31
(
21
),
2100457
(
2021
).
22.
C.-S.
Li
,
Y.
Sun
,
F.
Gebert
, and
S.-L.
Chou
, “
Current progress on rechargeable magnesium–air battery
,”
Adv. Energy Mater.
7
(
24
),
1700869
(
2017
).
23.
L.
Sheng
,
Z.
Hao
,
J.
Feng
,
W.
Du
,
M.
Gong
,
L.
Kang
,
P. R.
Shearing
,
D. J. L.
Brett
,
Y.
Huang
, and
F. R.
Wang
, “
Evaluation and realization of safer Mg-S battery: The decisive role of the electrolyte
,”
Nano Energy
83
,
105832
(
2021
).
24.
T.
Zhou
,
N.
Zhang
,
C.
Wu
, and
Y.
Xie
, “
Surface/interface nanoengineering for rechargeable Zn–air batteries
,”
Energy Environ. Sci.
13
(
4
),
1132
1153
(
2020
).
25.
D.
Liu
,
B.
He
,
Y.
Zhong
,
J.
Chen
,
L.
Yuan
,
Z.
Li
, and
Y.
Huang
, “
A durable ZnS cathode for aqueous Zn-S batteries
,”
Nano Energy
101
,
107474
(
2022
).
26.
B.
Li
,
Z.
Nie
,
M.
Vijayakumar
,
G.
Li
,
J.
Liu
,
V.
Sprenkle
, and
W.
Wang
, “
Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery
,”
Nat. Commun.
6
(
1
),
6303
(
2015
).
27.
C.
Zhang
,
Q.
Chen
,
X.
Ai
,
X.
Li
,
Q.
Xie
,
Y.
Cheng
,
H.
Kong
,
W.
Xu
,
L.
Wang
,
M.-S.
Wang
,
H.
Yang
, and
D.-L.
Peng
, “
Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties
,”
J. Mater. Chem. A
8
(
32
),
16323
16331
(
2020
).
28.
J.
Cui
,
H.
Zheng
, and
K.
He
, “
In situ TEM study on conversion-type electrodes for rechargeable ion batteries
,”
Adv. Mater.
33
(
6
),
2000699
(
2021
).
29.
Z.
Wang
,
Y.
Tang
,
L.
Zhang
,
M.
Li
,
Z.
Shan
, and
J.
Huang
, “
In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures
,”
Small
16
(
28
),
2001899
(
2020
).
30.
G. L.
Rong
,
X. Y.
Zhang
,
W.
Zhao
,
Y. C.
Qiu
,
M. N.
Liu
,
F. M.
Ye
,
Y.
Xu
,
J. F.
Chen
,
Y.
Hou
,
W. F.
Li
,
W. H.
Duan
, and
Y. G.
Zhang
, “
Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution
,”
Adv. Mater.
29
(
13
),
1606187
(
2017
).
31.
J.
Lee
,
S.
Kim
,
J.-H.
Park
,
C.
Jo
,
J.
Chun
,
Y.-E.
Sung
,
E.
Lim
, and
J.
Lee
, “
A small-strain niobium nitride anode with ordered mesopores for ultra-stable potassium-ion batteries
,”
J. Mater. Chem. A
8
(
6
),
3119
3127
(
2020
).
32.
S.-M.
Bak
,
Z.
Shadike
,
R.
Lin
,
X.
Yu
, and
X.-Q.
Yang
, “
In situ/operando synchrotron-based x-ray techniques for lithium-ion battery research
,”
NPG Asia Mater.
10
(
7
),
563
580
(
2018
).
33.
D. P.
Finegan
,
M.
Scheel
,
J. B.
Robinson
,
B.
Tjaden
,
I.
Hunt
,
T. J.
Mason
,
J.
Millichamp
,
M.
Di Michiel
,
G. J.
Offer
,
G.
Hinds
,
D. J. L.
Brett
, and
P. R.
Shearing
, “
In-operando high-speed tomography of lithium-ion batteries during thermal runaway
,”
Nat. Commun.
6
,
6924
(
2015
).
34.
V.
Yufit
,
F.
Tariq
,
D. S.
Eastwood
,
M.
Biton
,
B.
Wu
,
P. D.
Lee
, and
N. P.
Brandon
, “
Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries
,”
Joule
3
(
2
),
485
502
(
2019
).
35.
S.-Y.
Lang
,
Y.
Shi
,
X.-C.
Hu
,
H.-J.
Yan
,
R.
Wen
, and
L.-J.
Wan
, “
Recent progress in the application of in situ atomic force microscopy for rechargeable batteries
,”
Curr. Opin. Electrochem.
17
,
134
142
(
2019
).
36.
Z.-Z.
Shen
,
Y.-Z.
Zhang
,
C.
Zhou
,
R.
Wen
, and
L.-J.
Wan
, “
Revealing the correlations between morphological evolution and surface reactivity of catalytic cathodes in lithium–oxygen batteries
,”
J. Am. Chem. Soc.
143
(
51
),
21604
21612
(
2021
).
37.
S.-Y.
Lang
,
R.-J.
Xiao
,
L.
Gu
,
Y.-G.
Guo
,
R.
Wen
, and
L.-J.
Wan
, “
Interfacial mechanism in lithium–sulfur batteries: How salts mediate the structure evolution and dynamics
,”
J. Am. Chem. Soc.
140
(
26
),
8147
8155
(
2018
).
38.
R.
Kempaiah
,
G.
Vasudevamurthy
, and
A.
Subramanian
, “
Scanning probe microscopy based characterization of battery materials, interfaces, and processes
,”
Nano Energy
65
,
103925
(
2019
).
39.
J.
Wan
,
Z. Z.
Shen
,
R.
Wen
, and
L. J.
Wan
, “
Recent progress of the electrode processes in lithium batteries via in situ electrochemical atomic force microscopy
,”
Sci. Sin. Chim.
51
(
3
),
264
280
(
2021
).
40.
L.
Collins
,
M.
Ahmadi
,
T.
Wu
,
B.
Hu
,
S. V.
Kalinin
, and
S.
Jesse
, “
Breaking the time barrier in Kelvin probe force microscopy: Fast free force reconstruction using the G-mode platform
,”
ACS Nano
11
(
9
),
8717
8729
(
2017
).
41.
Z.
Zhang
,
S.
Said
,
K.
Smith
,
R.
Jervis
,
C. A.
Howard
,
P. R.
Shearing
,
D. J. L.
Brett
, and
T. S.
Miller
, “
Characterizing batteries by in situ electrochemical atomic force microscopy: A critical review
,”
Adv. Energy Mater.
11
(
38
),
2101518
(
2021
).
42.
D.
Dini
,
F.
Cognigni
,
D.
Passeri
,
F. A.
Scaramuzzo
,
M.
Pasquali
, and
M.
Rossi
, “
Review—Multiscale characterization of Li-ion batteries through the combined use of atomic force microscopy and x-ray microscopy and considerations for a correlative analysis of the reviewed data
,”
J. Electrochem. Soc.
168
(
12
),
126522
(
2021
).
43.
A. N.
Patel
and
C.
Kranz
, “
(Multi)functional atomic force microscopy imaging
,”
Annu. Rev. Anal. Chem.
11
(
1
),
329
350
(
2018
).
44.
C. B.
Prater
,
H. J.
Butt
, and
P. K.
Hansma
, “
Atomic force microscopy
,”
Nature
345
(
6278
),
839
840
(
1990
).
45.
S.
Benning
,
C.
Chen
,
R.-A.
Eichel
,
P. H. L.
Notten
, and
F.
Hausen
, “
Direct observation of SEI formation and lithiation in thin-film silicon electrodes via in situ electrochemical atomic force microscopy
,”
ACS Appl. Energy Mater.
2
(
9
),
6761
6767
(
2019
).
46.
T. M.
Arruda
,
J. S.
Lawton
,
A.
Kumar
,
R. R.
Unocic
,
I. I.
Kravchenko
,
T. A.
Zawodzinski
,
S.
Jesse
,
S. V.
Kalinin
, and
N.
Balke
, “
In situ formation of micron-scale Li-metal anodes with high cyclability
,”
ECS Electrochem. Lett.
3
(
1
),
A4
(
2014
).
47.
S.-Y.
Lang
,
Y.
Shi
,
Y.-G.
Guo
,
D.
Wang
,
R.
Wen
, and
L.-J.
Wan
, “
Insight into the interfacial process and mechanism in lithium–sulfur batteries: An in situ AFM study
,”
Angew. Chem. Int. Ed.
55
(
51
),
15835
15839
(
2016
).
48.
S.-Y.
Lang
,
Y.
Shi
,
Y.-G.
Guo
,
R.
Wen
, and
L.-J.
Wan
, “
High-temperature formation of a functional film at the cathode/electrolyte interface in lithium–sulfur batteries: An in situ AFM study
,”
Angew. Chem. Int. Ed.
56
(
46
),
14433
14437
(
2017
).
49.
H.-J.
Guo
,
H.-X.
Wang
,
Y.-J.
Guo
,
G.-X.
Liu
,
J.
Wan
,
Y.-X.
Song
,
X.-A.
Yang
,
F.-F.
Jia
,
F.-Y.
Wang
,
Y.-G.
Guo
,
R.
Wen
, and
L.-J.
Wan
, “
Dynamic evolution of a cathode interphase layer at the surface of LiNi0.5Co0.2Mn0.3O2 in quasi-solid-state lithium batteries
,”
j. Am. Chem. Soc.
142
(
49
),
20752
20762
(
2020
).
50.
Y.-X.
Song
,
Y.
Shi
,
J.
Wan
,
B.
Liu
,
L.-J.
Wan
, and
R.
Wen
, “
Dynamic visualization of cathode/electrolyte evolution in quasi-solid-state lithium batteries
,”
Adv. Energy Mater.
10
(
25
),
2000465
(
2020
).
51.
X.-B.
Cheng
,
R.
Zhang
,
C.-Z.
Zhao
,
F.
Wei
,
J.-G.
Zhang
, and
Q.
Zhang
, “
A review of solid electrolyte interphases on lithium metal anode
,”
Adv. Sci.
3
(
3
),
1500213
(
2016
).
52.
A.
Wang
,
S.
Kadam
,
H.
Li
,
S.
Shi
, and
Y.
Qi
, “
Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
,”
NPJ Comput. Mater.
4
(
1
),
15
(
2018
).
53.
H. P.
Wu
,
H.
Jia
,
C. M.
Wang
,
J. G.
Zhang
, and
W.
Xu
, “
Recent progress in understanding solid electrolyte interphase on lithium metal anodes
,”
Adv. Energy Mater.
11
(
5
),
2003092
(
2021
).
54.
Y.
Li
and
Y.
Qi
, “
Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface
,”
Energy Environ. Sci.
12
(
4
),
1286
1295
(
2019
).
55.
D.
Liu
,
Z.
Shadike
,
R.
Lin
,
K.
Qian
,
H.
Li
,
K.
Li
,
S.
Wang
,
Q.
Yu
,
M.
Liu
,
S.
Ganapathy
,
X.
Qin
,
Q.-H.
Yang
,
M.
Wagemaker
,
F.
Kang
,
X.-Q.
Yang
, and
B.
Li
, “
Review of recent development of in situ/operando characterization techniques for lithium battery research
,”
Adv. Mater.
31
(
28
),
1806620
(
2019
).
56.
J.
Wan
,
Z.
Zuo
,
Z.-Z.
Shen
,
W.-P.
Chen
,
G.-X.
Liu
,
X.-C.
Hu
,
Y.-X.
Song
,
S.
Xin
,
Y.-G.
Guo
,
R.
Wen
,
Y.
Li
, and
L.-J.
Wan
, “
Interfacial evolution of the solid electrolyte interphase and lithium deposition in graphdiyne-based lithium-ion batteries
,”
J. Am. Chem. Soc.
144
,
9354
(
2022
).
57.
Y.
He
,
L.
Jiang
,
T.
Chen
,
Y.
Xu
,
H.
Jia
,
R.
Yi
,
D.
Xue
,
M.
Song
,
A.
Genc
,
C.
Bouchet-Marquis
,
L.
Pullan
,
T.
Tessner
,
J.
Yoo
,
X.
Li
,
J.-G.
Zhang
,
S.
Zhang
, and
C.
Wang
, “
Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading
,”
Nat. Nanotechnol.
16
(
10
),
1113
1120
(
2021
).
58.
L.-P.
Hou
,
X.-Q.
Zhang
,
B.-Q.
Li
, and
Q.
Zhang
, “
Cycling a lithium metal anode at 90 °C in a liquid electrolyte
,”
Angew. Chem. Int. Ed.
59
(
35
),
15109
15113
(
2020
).
59.
M. R.
Busche
,
T.
Drossel
,
T.
Leichtweiss
,
D. A.
Weber
,
M.
Falk
,
M.
Schneider
,
M.-L.
Reich
,
H.
Sommer
,
P.
Adelhelm
, and
J.
Janek
, “
Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts
,”
Nat. Chem.
8
(
5
),
426
434
(
2016
).
60.
M. G.
Verde
,
L.
Baggetto
,
N.
Balke
,
G. M.
Veith
,
J. K.
Seo
,
Z.
Wang
, and
Y. S.
Meng
, “
Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale
,”
ACS Nano
10
(
4
),
4312
4321
(
2016
).
61.
W.-W.
Wang
,
Y.
Gu
,
J.-H.
Wang
,
Z.-B.
Chen
,
X.-T.
Yin
,
Q.-H.
Wu
,
J.-W.
Yan
, and
B.-W.
Mao
, “
Probing mechanical properties of solid-electrolyte interphases on Li nuclei by in situ AFM
,”
J. Electrochem. Soc.
169
(
2
),
020563
(
2022
).
62.
T.
Liu
,
L.
Lin
,
X.
Bi
,
L.
Tian
,
K.
Yang
,
J.
Liu
,
M.
Li
,
Z.
Chen
,
J.
Lu
,
K.
Amine
,
K.
Xu
, and
F.
Pan
, “
In situ quantification of interphasial chemistry in Li-ion battery
,”
Nat. Nanotechnol.
14
(
1
),
50
56
(
2019
).
63.
W.-W.
Wang
,
Y.
Gu
,
H.
Yan
,
K.-X.
Li
,
Z.-B.
Chen
,
Q.-H.
Wu
,
C.
Kranz
,
J.-W.
Yan
, and
B.-W.
Mao
, “
Formation sequence of solid electrolyte interphases and impacts on lithium deposition and dissolution on copper: An in situ atomic force microscopic study
,”
Faraday Discuss.
233
(
0
),
190
205
(
2022
).
64.
Y.
Shi
,
G.-X.
Liu
,
J.
Wan
,
R.
Wen
, and
L.-J.
Wan
, “
In situ nanoscale insights into the evolution of solid electrolyte interphase shells: Revealing interfacial degradation in lithium metal batteries
,”
Sci. China Chem.
64
(
5
),
734
738
(
2021
).
65.
R.
Kumar
,
A.
Tokranov
,
B. W.
Sheldon
,
X.
Xiao
,
Z.
Huang
,
C.
Li
, and
T.
Mueller
, “
In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes
,”
ACS Energy Lett.
1
(
4
),
689
697
(
2016
).
66.
H.
Zhang
,
X.
Judez
,
A.
Santiago
,
M.
Martinez-Ibañez
,
M. Á.
Muñoz-Márquez
,
J.
Carrasco
,
C.
Li
,
G. G.
Eshetu
, and
M.
Armand
, “
Fluorine-free noble salt anion for high-performance all-solid-state lithium–sulfur batteries
,”
Adv. Energy Mater.
9
(
25
),
1900763
(
2019
).
67.
J.
Zhu
,
X.
Li
,
C.
Wu
,
J.
Gao
,
H.
Xu
,
Y.
Li
,
X.
Guo
,
H.
Li
, and
W.
Zhou
, “
A Multilayer ceramic electrolyte for all-solid-state Li batteries
,”
Angew. Chem. Int. Ed.
60
(
7
),
3781
3790
(
2021
).
68.
Y.
Shi
,
H.-J.
Yan
,
R.
Wen
, and
L.-J.
Wan
, “
Direct visualization of nucleation and growth processes of solid electrolyte interphase film using in situ atomic force microscopy
,”
ACS Appl. Mater. Interfaces
9
(
26
),
22063
22067
(
2017
).
69.
I.
Yoon
,
S.
Jurng
,
D. P.
Abraham
,
B. L.
Lucht
, and
P. R.
Guduru
, “
In situ measurement of the plane-strain modulus of the solid electrolyte interphase on lithium-metal anodes in ionic liquid electrolytes
,”
Nano Lett.
18
(
9
),
5752
5759
(
2018
).
70.
G.
Wang
,
X.
Xiong
,
D.
Xie
,
X.
Fu
,
X.
Ma
,
Y.
Li
,
Y.
Liu
,
Z.
Lin
,
C.
Yang
, and
M.
Liu
, “
Suppressing dendrite growth by a functional electrolyte additive for robust Li metal anodes
,”
Energy Stor. Mater.
23
,
701
706
(
2019
).
71.
N.
Piao
,
S.
Liu
,
B.
Zhang
,
X.
Ji
,
X.
Fan
,
L.
Wang
,
P.-F.
Wang
,
T.
Jin
,
S.-C.
Liou
,
H.
Yang
,
J.
Jiang
,
K.
Xu
,
M. A.
Schroeder
,
X.
He
, and
C.
Wang
, “
Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes
,”
ACS Energy Lett.
6
(
5
),
1839
1848
(
2021
).
72.
J.
Zheng
,
M. H.
Engelhard
,
D.
Mei
,
S.
Jiao
,
B. J.
Polzin
,
J.-G.
Zhang
, and
W.
Xu
, “
Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
,”
Nat. Energy
2
(
3
),
17012
(
2017
).
73.
E.
Cha
,
M. D.
Patel
,
J.
Park
,
J.
Hwang
,
V.
Prasad
,
K.
Cho
, and
W.
Choi
, “
2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries
,”
Nat. Nanotechnol.
13
(
4
),
337
344
(
2018
).
74.
R.
Zhang
,
Y.
Qin
,
P.
Liu
,
C.
Jia
,
Y.
Tang
, and
H.
Wang
, “
How does molybdenum disulfide store charge: A minireview
,”
ChemSusChem
13
(
6
),
1354
1365
(
2020
).
75.
T.
Stephenson
,
Z.
Li
,
B.
Olsen
, and
D.
Mitlin
, “
Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites
,”
Energy Environ. Sci.
7
(
1
),
209
231
(
2014
).
76.
Z.
Zhu
,
Y.
Tang
,
Z.
Lv
,
J.
Wei
,
Y.
Zhang
,
R.
Wang
,
W.
Zhang
,
H.
Xia
,
M.
Ge
, and
X.
Chen
, “
Fluoroethylene carbonate enabling a robust LiF-rich solid electrolyte interphase to enhance the stability of the MoS2 anode for lithium-ion storage
,”
Angew. Chem. Int. Ed.
57
(
14
),
3656
3660
(
2018
).
77.
J.
Wan
,
Y.
Hao
,
Y.
Shi
,
Y.-X.
Song
,
H.-J.
Yan
,
J.
Zheng
,
R.
Wen
, and
L.-J.
Wan
, “
Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries
,”
Nat. Commun.
10
(
1
),
3265
(
2019
).
78.
S.-Y.
Lang
,
Z.-Z.
Shen
,
X.-C.
Hu
,
Y.
Shi
,
Y.-G.
Guo
,
F.-F.
Jia
,
F.-Y.
Wang
,
R.
Wen
, and
L.-J.
Wan
, “
Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode
,”
Nano Energy
75
,
104967
(
2020
).
79.
G. H.
Wrodnigg
,
J. O.
Besenhard
, and
M.
Winter
, “
Ethylene sulfite as electrolyte additive for lithium‐ion cells with graphitic anodes
,”
J. Electrochem. Soc.
146
(
2
),
470
472
(
1999
).
80.
A.
Li
,
P.
Du
,
Z.
Chen
,
R.
Zhao
,
W.
Huang
,
L.
Zou
,
D.
Huang
, and
H.
Chen
, “
Effects of ethylene sulfite as a supplementary film-forming additive on the electrochemical performance of graphite anode in EC-based electrolyte
,”
Ionics
21
(
9
),
2431
2438
(
2015
).
81.
L.
Madec
,
R.
Petibon
,
K.
Tasaki
,
J.
Xia
,
J. P.
Sun
,
I. G.
Hill
, and
J. R.
Dahn
, “
Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi1/3Mn1/3Co1/3O2/graphite pouch cells: Electrochemical, GC-MS and XPS analysis
,”
Phys. Chem. Chem. Phys.
17
(
40
),
27062
27076
(
2015
).
82.
B.
Li
,
M. Q.
Xu
,
T. T.
Li
,
W. S.
Li
, and
S. J.
Hu
, “
Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries
,”
Electrochem. Commun.
17
,
92
95
(
2012
).
83.
J.
Self
,
D. S.
Hall
,
L.
Madec
, and
J. R.
Dahn
, “
The role of prop-1-ene-1,3-sultone as an additive in lithium-ion cells
,”
J. Power Sources
298
,
369
378
(
2015
).
84.
J.
Xia
,
L.
Ma
,
C. P.
Aiken
,
K. J.
Nelson
,
L. P.
Chen
, and
J. R.
Dahn
, “
Comparative study on prop-1-ene-1,3-sultone and vinylene carbonate as electrolyte additives for Li(Ni1/3Mn13Co1/3)O2/graphite pouch cells
,”
J. Electrochem. Soc.
161
(
10
),
A1634
A1641
(
2014
).
85.
L.
Lin
,
K.
Yang
,
R.
Tan
,
M.
Li
,
S.
Fu
,
T.
Liu
,
H.
Chen
, and
F.
Pan
, “
Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated by in situ AFM and ex situ characterizations
,”
J. Mater. Chem. A
5
(
36
),
19364
19370
(
2017
).
86.
A.
Mukhopadhyay
and
K.
Jangid Manoj
, “
Li metal battery, heal thyself
,”
Science
359
(
6383
),
1463
1463
(
2018
).
87.
J. M.
Tarascon
and
M.
Armand
, “
Issues and challenges facing rechargeable lithium batteries
,”
Nature
414
(
6861
),
359
367
(
2001
).
88.
E. C.
Evarts
, “
Lithium batteries to the limits of lithium
,”
Nature
526
(
7575
),
S93
S95
(
2015
).
89.
R. H.
Wang
,
W. S.
Cui
,
F. L.
Chu
, and
F. X.
Wu
, “
Lithium metal anodes: Present and future
,”
J. Energy Chem.
48
,
145
159
(
2020
).
90.
L.
Zheng
,
R.
Yi
,
N.
Zheng
,
Y.
Shen
, and
L.
Chen
, “
Review—Lithium carbon composite material for practical lithium metal batteries
,”
Chin. J. Chem.
41
(
7
),
814
824
(
2023
).
91.
J. F.
Qian
,
W. A.
Henderson
,
W.
Xu
,
P.
Bhattacharya
,
M.
Engelhard
,
O.
Borodin
, and
J. G.
Zhang
, “
High rate and stable cycling of lithium metal anode
,”
Nat. Commun.
6
,
6362
(
2015
).
92.
Y.
Ding
and
G.
Yu
, “
When graphite meets Li metal
,”
Natl. Sci. Rev.
7
(
10
),
1521
1522
(
2020
).
93.
X.
Fan
and
C.
Wang
, “
High-voltage liquid electrolytes for Li batteries: Progress and perspectives
,”
Chem. Soc. Rev.
50
(
18
),
10486
10566
(
2021
).
94.
S.-Y.
Lang
,
X.-C.
Hu
,
R.
Wen
, and
L.-J.
Wan
, “
In situ/operando visualization of electrode processes in lithium-sulfur batteries: A review
,”
J. Electrochem.
25
(
2
),
141
159
(
2019
).
95.
Z.
Lu
,
W.
Li
,
Y.
Long
,
J.
Liang
,
Q.
Liang
,
S.
Wu
,
Y.
Tao
,
Z.
Weng
,
W.
Lv
, and
Q.-H.
Yang
, “
Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode
,”
Adv. Funct. Mater.
30
(
7
),
1907343
(
2020
).
96.
S. Y.
Han
,
C.
Lee
,
J. A.
Lewis
,
D.
Yeh
,
Y.
Liu
,
H.-W.
Lee
, and
M. T.
McDowell
, “
Stress evolution during cycling of alloy-anode solid-state batteries
,”
Joule
5
(
9
),
2450
2465
(
2021
).
97.
S.
Sarkar
and
P. P.
Mukherjee
, “
Synergistic voltage and electrolyte mediation improves sodiation kinetics in μ-Sn alloy-anodes
,”
Energy Storage Mater.
43
,
305
316
(
2021
).
98.
S.
Gao
,
F.
Sun
,
N.
Liu
,
H.
Yang
, and
P.-F.
Cao
, “
Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries—A review
,”
Mater. Today
40
,
140
159
(
2020
).
99.
Y.
Zhong
,
Y.
Chen
,
Y.
Cheng
,
Q.
Fan
,
H.
Zhao
,
H.
Shao
,
Y.
Lai
,
Z.
Shi
,
X.
Ke
, and
Z.
Guo
, “
Li alginate-based artificial SEI layer for stable lithium metal anodes
,”
ACS Appl. Mater. Interfaces
11
(
41
),
37726
37731
(
2019
).
100.
W.
Liu
,
P.
Liu
, and
D.
Mitlin
, “
Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes
,”
Adv. Energy Mater.
10
(
43
),
2002297
(
2020
).
101.
F.
Ren
,
Z.
Li
,
Y.
Zhu
,
P.
Huguet
,
S.
Deabate
,
D.
Wang
, and
Z.
Peng
, “
Artificial nucleation sites with stable SEI for Li metal anodes by aggressive Al pulverization
,”
Nano Energy
73
,
104746
(
2020
).
102.
T.-W.
Zhang
,
J.-L.
Chen
,
T.
Tian
,
B.
Shen
,
Y.-D.
Peng
,
Y.-H.
Song
,
B.
Jiang
,
L.-L.
Lu
,
H.-B.
Yao
, and
S.-H.
Yu
, “
Sustainable separators for high-performance lithium ion batteries enabled by chemical modifications
,”
Adv. Funct. Mater.
29
(
28
),
1902023
(
2019
).
103.
P.
Li
,
H.
Lv
,
Z.
Li
,
X.
Meng
,
Z.
Lin
,
R.
Wang
, and
X.
Li
, “
The electrostatic attraction and catalytic effect enabled by ionic–covalent organic nanosheets on MXene for separator modification of lithium–sulfur batteries
,”
Adv. Mater.
33
(
17
),
2007803
(
2021
).
104.
J.
Dai
,
C.
Shi
,
C.
Li
,
X.
Shen
,
L.
Peng
,
D.
Wu
,
D.
Sun
,
P.
Zhang
, and
J.
Zhao
, “
A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes
,”
Energy Environ. Sci.
9
(
10
),
3252
3261
(
2016
).
105.
T.
Wu
,
K.
Wang
,
M.
Xiang
, and
Q.
Fu
, “
Progresses in manufacturing techniques of lithium-ion battery separators in china
,”
Chin. J. Chem.
37
(
12
),
1207
1215
(
2019
).
106.
Q.
Li
,
W.
Xue
,
X.
Sun
,
X.
Yu
,
H.
Li
, and
L.
Chen
, “
Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries
,”
Energy Storage Mater.
38
,
482
488
(
2021
).
107.
S.
Yang
,
M.
Hao
,
Z.
Wang
,
Z.
Xie
,
Z.
Cai
,
M.
Hu
,
B.
Chen
,
L.
Wang
, and
K.
Zhou
, “
2,2,2-Trifluoroethyl trifluoroacetate as effective electrolyte additive for uniform Li deposition in lithium metal batteries
,”
Chem. Eng. J.
435
,
134897
(
2022
).
108.
R.
Zhao
,
X.
Li
,
Y.
Si
,
S.
Tang
,
W.
Guo
, and
Y.
Fu
, “
Cu(NO3)2 as efficient electrolyte additive for 4 V class Li metal batteries with ultrahigh stability
,”
Energy Storage Mater.
37
,
1
7
(
2021
).
109.
Y. L.
Jie
,
X. D.
Ren
,
R. G.
Cao
,
W. B.
Cai
, and
S. H.
Jiao
, “
Advanced liquid electrolytes for rechargeable Li metal batteries
,”
Adv. Funct. Mater.
30
(
25
),
1910777
(
2020
).
110.
X.
He
,
Y.
Ni
,
Y.
Hou
,
Y.
Lu
,
S.
Jin
,
H.
Li
,
Z.
Yan
,
K.
Zhang
, and
J.
Chen
, “
Insights into the ionic conduction mechanism of quasi-solid polymer electrolytes through multispectral characterization
,”
Angew. Chem. Int. Ed.
60
(
42
),
22672
22677
(
2021
).
111.
W.
Ren
,
C.
Ding
,
X.
Fu
, and
Y.
Huang
, “
Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives
,”
Energy Storage Mater.
34
,
515
535
(
2021
).
112.
X.
Qu
,
Y.
Guo
, and
X.
Liu
, “
Highly stretchable and elastic polymer electrolytes with high ionic conductivity and Li-ion transference number for high-rate lithium batteries
,”
Chin. J. Chem.
40
(
21
),
2559
2567
(
2022
).
113.
Z.
Song
,
J.
Ding
,
B.
Liu
,
X.
Liu
,
X.
Han
,
Y.
Deng
,
W.
Hu
, and
C.
Zhong
, “
Zinc–air batteries: A rechargeable Zn–air battery with high energy efficiency and long life enabled by a highly water-retentive gel electrolyte with reaction modifier
,”
Adv. Mater.
32
(
22
),
2070172
(
2020
).
114.
J.
Wan
,
W.-P.
Chen
,
G.-X.
Liu
,
Y.
Shi
,
S.
Xin
,
Y.-G.
Guo
,
R.
Wen
, and
L.-J.
Wan
, “
Insights into the nitride-regulated processes at the electrolyte/electrode interface in quasi-solid-state lithium metal batteries
,”
J. Energy Chem.
67
,
780
786
(
2022
).
115.
Z.
Gao
,
H.
Sun
,
L.
Fu
,
F.
Ye
,
Y.
Zhang
,
W.
Luo
, and
Y.
Huang
, “
Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries
,”
Adv. Mater.
30
(
17
),
1705702
(
2018
).
116.
L.
Xu
,
J.
Li
,
W.
Deng
,
H.
Shuai
,
S.
Li
,
Z.
Xu
,
J.
Li
,
H.
Hou
,
H.
Peng
,
G.
Zou
, and
X.
Ji
, “
Garnet solid electrolyte for advanced all-solid-state Li batteries
,”
Adv. Energy Mater.
11
(
2
),
2000648
(
2021
).
117.
A. L.
Santhosha
,
L.
Medenbach
,
J. R.
Buchheim
, and
P.
Adelhelm
, “
The indium−lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability,” Batteries
Supercaps
2
(
6
),
524
529
(
2019
).
118.
G.
Violano
,
G. P.
Demelio
, and
L.
Afferrante
, “
On the DMT adhesion theory: From the first studies to the modern applications in rough contacts
,”
Procedia Struct. Integr.
12
,
58
70
(
2018
).
119.
J.
Wan
,
Y.-X.
Song
,
W.-P.
Chen
,
H.-J.
Guo
,
Y.
Shi
,
Y.-J.
Guo
,
J.-L.
Shi
,
Y.-G.
Guo
,
F.-F.
Jia
,
F.-Y.
Wang
,
R.
Wen
, and
L.-J.
Wan
, “
Micromechanism in all-solid-state alloy-metal batteries: Regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution
,”
J. Am. Chem. Soc.
143
(
2
),
839
848
(
2021
).
120.
H. T.
Wang
and
Y. B.
Tang
, “
Artificial solid electrolyte interphase acting as ‘armor’ to protect the anode materials for high-performance lithium-ion battery
,”
Chem. Res. Chin. Univ.
36
(
3
),
402
409
(
2020
).
121.
N.-W.
Li
,
Y.
Shi
,
Y.-X.
Yin
,
X.-X.
Zeng
,
J.-Y.
Li
,
C.-J.
Li
,
L.-J.
Wan
,
R.
Wen
, and
Y.-G.
Guo
, “
Inside cover: A flexible solid electrolyte interphase layer for long-life lithium metal anodes (Angew. Chem. Int. Ed. 6/2018)
,”
Angew. Chem. Int. Ed.
57
(
6
),
1422
1422
(
2018
).
122.
S.
Kim
,
C.
Jung
,
H.
Kim
,
K. E.
Thomas-Alyea
,
G.
Yoon
,
B.
Kim
,
M. E.
Badding
,
Z.
Song
,
J.
Chang
,
J.
Kim
,
D.
Im
, and
K.
Kang
, “
The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte
,”
Adv. Energy Mater.
10
(
12
),
1903993
(
2020
).
123.
G.-X.
Liu
,
J.
Wan
,
Y.
Shi
,
H.-J.
Guo
,
Y.-X.
Song
,
K.-C.
Jiang
,
Y.-G.
Guo
,
R.
Wen
, and
L.-J.
Wan
, “
Direct tracking of additive-regulated evolution on the lithium anode in quasi-solid-state lithium–sulfur batteries
,”
Adv. Energy Mater.
12
(
40
),
2201411
(
2022
).
124.
T.
Gao
,
M.
Noked
,
A. J.
Pearse
,
E.
Gillette
,
X.
Fan
,
Y.
Zhu
,
C.
Luo
,
L.
Suo
,
M. A.
Schroeder
,
K.
Xu
,
S. B.
Lee
,
G. W.
Rubloff
, and
C.
Wang
, “
Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation
,”
J. Am. Chem. Soc.
137
(
38
),
12388
12393
(
2015
).
125.
Y.
Xu
,
G.
Zhou
,
S.
Zhao
,
W.
Li
,
F.
Shi
,
J.
Li
,
J.
Feng
,
Y.
Zhao
,
Y.
Wu
,
J.
Guo
,
Y.
Cui
, and
Y.
Zhang
, “
Improving a Mg/S battery with YCl3 additive and magnesium polysulfide
,”
Adv. Sci.
6
(
4
),
1800981
(
2019
).
126.
Z.
Zhang
,
S.
Dong
,
Z.
Cui
,
A.
Du
,
G.
Li
, and
G.
Cui
, “
Rechargeable magnesium batteries using conversion-type cathodes: A perspective and minireview
,”
Small Methods
2
(
10
),
1800020
(
2018
).
127.
X.
Lei
,
X.
Liang
,
R.
Yang
,
F.
Zhang
,
C.
Wang
,
C.-S.
Lee
, and
Y.
Tang
, “
Rational design strategy of novel energy storage systems: toward high-performance rechargeable magnesium batteries
,”
Small
18
(
22
),
2200418
(
2022
).
128.
N.
Zhang
,
S.
Huang
,
Z.
Yuan
,
J.
Zhu
,
Z.
Zhao
, and
Z.
Niu
, “
Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries
,”
Angew. Chem. Int. Ed.
60
(
6
),
2861
2865
(
2021
).
129.
Z.
Zhang
,
M.
Song
,
C.
Si
,
W.
Cui
, and
Y.
Wang
, “
Amorphous germanium-crystalline bismuth films as a promising anode for magnesium-ion batteries
,”
eScience
3
(
1
),
100070
(
2023
).
130.
Y.
Xu
,
Y.
Ye
,
S.
Zhao
,
J.
Feng
,
J.
Li
,
H.
Chen
,
A.
Yang
,
F.
Shi
,
L.
Jia
,
Y.
Wu
,
X.
Yu
,
P.-A.
Glans-Suzuki
,
Y.
Cui
,
J.
Guo
, and
Y.
Zhang
, “
In situ x-ray absorption spectroscopic investigation of the capacity degradation mechanism in Mg/S batteries
,”
Nano Lett.
19
(
5
),
2928
2934
(
2019
).
131.
A.
Robba
,
A.
Vizintin
,
J.
Bitenc
,
G.
Mali
,
I.
Arčon
,
M.
Kavčič
,
M.
Žitnik
,
K.
Bučar
,
G.
Aquilanti
,
C.
Martineau-Corcos
,
A.
Randon-Vitanova
, and
R.
Dominko
, “
Mechanistic study of magnesium–sulfur batteries
,”
Chem. Mater.
29
(
21
),
9555
9564
(
2017
).
132.
Y.
Nakayama
,
R.
Matsumoto
,
K.
Kumagae
,
D.
Mori
,
Y.
Mizuno
,
S.
Hosoi
,
K.
Kamiguchi
,
N.
Koshitani
,
Y.
Inaba
,
Y.
Kudo
,
H.
Kawasaki
,
E. C.
Miller
,
J. N.
Weker
, and
M. F.
Toney
, “
Zinc blende magnesium sulfide in rechargeable magnesium-sulfur batteries
,”
Chem. Mater.
30
(
18
),
6318
6324
(
2018
).
133.
Y.
Xu
,
W.
Li
,
G.
Zhou
,
Z.
Pan
, and
Y.
Zhang
, “
A non-nucleophilic mono-Mg2+ electrolyte for rechargeable Mg/S battery
,”
Energy Stor. Mater.
14
,
253
257
(
2018
).
134.
J. H.
Kwak
,
Y.
Jeoun
,
S. H.
Oh
,
S.
Yu
,
J.-H.
Lim
,
Y.-E.
Sung
,
S.-H.
Yu
, and
H.-D.
Lim
, “
Operando visualization of morphological evolution in Mg metal anode: Insight into dendrite suppression for stable Mg metal batteries
,”
ACS Energy Lett.
7
(
1
),
162
170
(
2022
).
135.
X.-C.
Hu
,
Y.
Shi
,
S.-Y.
Lang
,
X.
Zhang
,
L.
Gu
,
Y.-G.
Guo
,
R.
Wen
, and
L.-J.
Wan
, “
Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries
,”
Nano Energy
49
,
453
459
(
2018
).
136.
T.
Kakibe
,
J-y
Hishii
,
N.
Yoshimoto
,
M.
Egashira
, and
M.
Morita
, “
Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries
,”
J. Power Sources
203
,
195
200
(
2012
).
137.
X.-C.
Hu
,
S.-Y.
Lang
,
Y.
Shi
,
R.
Wen
, and
L.-J.
Wan
, “
In situ AFM of interfacial evolution at magnesium metal anode
,”
J. Electroanal. Chem.
896
,
115301
(
2021
).
138.
H.
Wang
,
X.
Feng
,
Y.
Chen
,
Y.-S.
Liu
,
K. S.
Han
,
M.
Zhou
,
M. H.
Engelhard
,
V.
Murugesan
,
R. S.
Assary
,
T. L.
Liu
,
W.
Henderson
,
Z.
Nie
,
M.
Gu
,
J.
Xiao
,
C.
Wang
,
K.
Persson
,
D.
Mei
,
J.-G.
Zhang
,
K. T.
Mueller
,
J.
Guo
,
K.
Zavadil
,
Y.
Shao
, and
J.
Liu
, “
Reversible electrochemical interface of Mg metal and conventional electrolyte enabled by intermediate adsorption
,”
ACS Energy Lett.
5
(
1
),
200
206
(
2020
).
139.
X.-C.
Hu
,
Z.-Z.
Shen
,
J.
Wan
,
Y.-X.
Song
,
B.
Liu
,
H.-J.
Yan
,
R.
Wen
, and
L.-J.
Wan
, “
Insight into interfacial processes and degradation mechanism in magnesium metal batteries
,”
Nano Energy
78
,
105338
(
2020
).
140.
E.
Hu
and
X.-Q.
Yang
, “
Rejuvenating zinc batteries
,”
Nat. Mater.
17
(
6
),
480
481
(
2018
).
141.
L.
Ma
,
M. A.
Schroeder
,
O.
Borodin
,
T. P.
Pollard
,
M. S.
Ding
,
C.
Wang
, and
K.
Xu
, “
Realizing high zinc reversibility in rechargeable batteries
,”
Nat. Energy
5
(
10
),
743
749
(
2020
).
142.
J.
Hao
,
X.
Li
,
S.
Zhang
,
F.
Yang
,
X.
Zeng
,
S.
Zhang
,
G.
Bo
,
C.
Wang
, and
Z.
Guo
, “
Designing dendrite-free zinc anodes for advanced aqueous zinc batteries
,”
Adv. Funct. Mater.
30
(
30
),
2001263
(
2020
).
143.
S.
Wu
,
Z.
Hu
,
P.
He
,
L.
Ren
,
J.
Huang
, and
J.
Luo
, “
Crystallographic engineering of Zn anodes for aqueous batteries
,”
eScience
3
,
100120
(
2023
).
144.
H.
Yang
,
Z.
Chang
,
Y.
Qiao
,
H.
Deng
,
X.
Mu
,
P.
He
, and
H.
Zhou
, “
Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries
,”
Angew. Chem. Int. Ed.
59
(
24
),
9377
9381
(
2020
).
145.
B. J.
Chae
,
Y. E.
Jung
,
Y. L.
Chang
, and
T.
Yim
, “
Metal–organic framework as a multifunctional additive for selectively trapping transition-metal components in lithium-ion batteries
,”
ACS Sustainable Chem. Eng.
6
(
7
),
8547
8553
(
2018
).
146.
M.
Li
,
Z.
Li
,
X.
Wang
,
J.
Meng
,
X.
Liu
,
B.
Wu
,
C.
Han
, and
L.
Mai
, “
Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: From electrolytes to electrode materials
,”
Energy Environ. Sci.
14
(
7
),
3796
3839
(
2021
).
147.
C.
Han
,
W.
Li
,
H. K.
Liu
,
S.
Dou
, and
J.
Wang
, “
Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries
,”
Nano Energy
74
,
104880
(
2020
).
148.
F.
Wang
,
O.
Borodin
,
T.
Gao
,
X.
Fan
,
W.
Sun
,
F.
Han
,
A.
Faraone
,
J. A.
Dura
,
K.
Xu
, and
C.
Wang
, “
Highly reversible zinc metal anode for aqueous batteries
,”
Nat. Mater.
17
(
6
),
543
549
(
2018
).
149.
J.
Hao
,
X.
Li
,
X.
Zeng
,
D.
Li
,
J.
Mao
, and
Z.
Guo
, “
Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries
,”
Energy Environ. Sci.
13
(
11
),
3917
3949
(
2020
).
150.
L.
Cao
,
D.
Li
,
T.
Deng
,
Q.
Li
, and
C.
Wang
, “
Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries
,”
Angew. Chem. Int. Ed.
59
(
43
),
19292
19296
(
2020
).
151.
Y.
Chu
,
S.
Zhang
,
S.
Wu
,
Z.
Hu
,
G.
Cui
, and
J.
Luo
, “
In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes
,”
Energy Environ. Sci.
14
(
6
),
3609
3620
(
2021
).
152.
L.
Kang
,
M.
Cui
,
F.
Jiang
,
Y.
Gao
,
H.
Luo
,
J.
Liu
,
W.
Liang
, and
C.
Zhi
, “
Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries
,”
Adv. Energy Mater.
8
(
25
),
1801090
(
2018
).
153.
J. Y.
Kim
,
G.
Liu
,
G. Y.
Shim
,
H.
Kim
, and
J. K.
Lee
, “
Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes
,”
Adv. Funct. Mater.
30
(
36
),
2004210
(
2020
).
154.
J.
Hao
,
B.
Li
,
X.
Li
,
X.
Zeng
,
S.
Zhang
,
F.
Yang
,
S.
Liu
,
D.
Li
,
C.
Wu
, and
Z.
Guo
, “
An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries
,”
Adv. Mater.
32
(
34
),
2003021
(
2020
).
155.
S.
Clark
,
A. R.
Mainar
,
E.
Iruin
,
L. C.
Colmenares
,
J. A.
Blázquez
,
J. R.
Tolchard
,
Z.
Jusys
, and
B.
Horstmann
, “
Designing aqueous organic electrolytes for zinc–air batteries: Method, simulation, and validation
,”
Adv. Energy Mater.
10
(
10
),
1903470
(
2020
).
156.
H.
Li
,
C.
Han
,
Y.
Huang
,
Y.
Huang
,
M.
Zhu
,
Z.
Pei
,
Q.
Xue
,
Z.
Wang
,
Z.
Liu
,
Z.
Tang
,
Y.
Wang
,
F.
Kang
,
B.
Li
, and
C.
Zhi
, “
An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte
,”
Energy Environ. Sci.
11
(
4
),
941
951
(
2018
).
157.
S. J.
Banik
and
R.
Akolkar
, “
Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive
,”
J. Electrochem. Soc.
160
(
11
),
D519
D523
(
2013
).
158.
J.
Hao
,
J.
Long
,
B.
Li
,
X.
Li
,
S.
Zhang
,
F.
Yang
,
X.
Zeng
,
Z.
Yang
,
W. K.
Pang
, and
Z.
Guo
, “
Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive
,”
Adv. Funct. Mater.
29
(
34
),
1903605
(
2019
).
159.
P.
Sun
,
L.
Ma
,
W.
Zhou
,
M.
Qiu
,
Z.
Wang
,
D.
Chao
, and
W.
Mai
, “
Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive
,”
Angew. Chem. Int. Ed.
60
(
33
),
18247
18255
(
2021
).
160.
C.
Liu
,
Z.
Luo
,
W.
Deng
,
W.
Wei
,
L.
Chen
,
A.
Pan
,
J.
Ma
,
C.
Wang
,
L.
Zhu
,
L.
Xie
,
X.-Y.
Cao
,
J.
Hu
,
G.
Zou
,
H.
Hou
, and
X.
Ji
, “
Liquid alloy interlayer for aqueous zinc-ion battery
,”
ACS Energy Lett.
6
(
2
),
675
683
(
2021
).
161.
Y.
Song
,
J.
Hu
,
J.
Tang
,
W.
Gu
,
L.
He
, and
X.
Ji
, “
Real-time x-ray imaging reveals interfacial growth, suppression, and dissolution of zinc dendrites dependent on anions of ionic liquid additives for rechargeable battery applications
,”
ACS Appl. Mater. Interfaces
8
(
46
),
32031
32040
(
2016
).
162.
X.
Zhou
,
Y.
Lu
,
Q.
Zhang
,
L.
Miao
,
K.
Zhang
,
Z.
Yan
,
F.
Li
, and
J.
Chen
, “
Exploring the interfacial chemistry between zinc anodes and aqueous electrolytes via an in situ visualized characterization system
,”
ACS Appl. Mater. Interfaces
12
(
49
),
55476
55482
(
2020
).
163.
X.
Guo
,
Z.
Zhang
,
J.
Li
,
N.
Luo
,
G.-L.
Chai
,
T. S.
Miller
,
F.
Lai
,
P.
Shearing
,
D. J. L.
Brett
,
D.
Han
,
Z.
Weng
,
G.
He
, and
I. P.
Parkin
, “
Alleviation of dendrite formation on zinc anodes via electrolyte additives
,”
ACS Energy Lett.
6
(
2
),
395
403
(
2021
).
164.
K.
Zhao
,
G.
Fan
,
J.
Liu
,
F.
Liu
,
J.
Li
,
X.
Zhou
,
Y.
Ni
,
M.
Yu
,
Y.-M.
Zhang
,
H.
Su
,
Q.
Liu
, and
F.
Cheng
, “
Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives
,”
J. Am. Chem. Soc.
144
(
25
),
11129
11137
(
2022
).
165.
J.
Zhao
,
J.
Zhang
,
W.
Yang
,
B.
Chen
,
Z.
Zhao
,
H.
Qiu
,
S.
Dong
,
X.
Zhou
,
G.
Cui
, and
L.
Chen
, “ ‘
Water-in-deep eutectic solvent’ electrolytes enable zinc metal anodes for rechargeable aqueous batteries
,”
Nano Energy
57
,
625
634
(
2019
).
166.
L.
Cao
,
D.
Li
,
E.
Hu
,
J.
Xu
,
T.
Deng
,
L.
Ma
,
Y.
Wang
,
X.-Q.
Yang
, and
C.
Wang
, “
Solvation structure design for aqueous Zn metal batteries
,”
J. Am. Chem. Soc.
142
(
51
),
21404
21409
(
2020
).
167.
Q.
Zhang
,
Y.
Ma
,
Y.
Lu
,
X.
Zhou
,
L.
Lin
,
L.
Li
,
Z.
Yan
,
Q.
Zhao
,
K.
Zhang
, and
J.
Chen
, “
Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode
,”
Angew. Chem. Int. Ed.
60
(
43
),
23357
23364
(
2021
).
168.
D.
Reber
,
R.
Grissa
,
M.
Becker
,
R.-S.
Kühnel
, and
C.
Battaglia
, “
Anion selection criteria for water-in-salt electrolytes
,”
Adv. Energy Mater.
11
(
5
),
2002913
(
2021
).
169.
T.
Liang
,
R.
Hou
,
Q.
Dou
,
H.
Zhang
, and
X.
Yan
, “
The applications of water-in-salt electrolytes in electrochemical energy storage devices
,”
Adv. Funct. Mater.
31
(
3
),
2006749
(
2021
).
170.
L.
Suo
,
O.
Borodin
,
T.
Gao
,
M.
Olguin
,
J.
Ho
,
X.
Fan
,
C.
Luo
,
C.
Wang
, and
K.
Xu
, “
‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries
,”
Science
350
(
6263
),
938
943
(
2015
).
171.
S.
Lee
,
I.
Kang
,
J.
Kim
,
S. h
Kim
,
K.
Kang
, and
J.
Hong
, “
Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities
,”
J. Power Sources
472
,
228334
(
2020
).
172.
S.
Wang
,
Z.
Wang
,
Y.
Yin
,
T.
Li
,
N.
Chang
,
F.
Fan
,
H.
Zhang
, and
X.
Li
, “
A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation
,”
Energy Environ. Sci.
14
(
7
),
4077
4084
(
2021
).
173.
X.
Zhou
,
Q.
Zhang
,
Z.
Hao
,
Y.
Ma
,
O. A.
Drozhzhin
, and
F.
Li
, “
Unlocking the allometric growth and dissolution of Zn anodes at initial nucleation and an early stage with atomic force microscopy
,”
ACS Appl. Mater. Interfaces
13
(
44
),
53227
53234
(
2021
).
174.
P.
He
and
J.
Huang
, “
Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode
,”
ACS Energy Lett.
6
(
5
),
1990
1995
(
2021
).
175.
C.
Zhao
,
X.
Wang
,
C.
Shao
,
G.
Li
,
J.
Wang
,
D.
Liu
, and
X.
Dong
, “
The strategies of boosting the performance of highly reversible zinc anodes in zinc-ion batteries: Recent progress and future perspectives
,”
Sustainable Energy Fuels
5
(
2
),
332
350
(
2021
).
176.
Z.
Zhang
,
S.
Said
,
K.
Smith
,
Y. S.
Zhang
,
G.
He
,
R.
Jervis
,
P. R.
Shearing
,
T. S.
Miller
, and
D. J. L.
Brett
, “
Dendrite suppression by anode polishing in zinc-ion batteries
,”
J. Mater. Chem. A
9
(
27
),
15355
15362
(
2021
).
You do not currently have access to this content.