Heterogeneous interfaces are central to many energy-related applications in the nanoscale. From the first-principles electronic structure perspective, one of the outstanding problems is accurately and efficiently calculating how the frontier quasiparticle levels of one component are aligned in energy with those of another at the interface, i.e., the so-called interfacial band alignment or level alignment. The alignment or the energy offset of these frontier levels is phenomenologically associated with the charge-transfer barrier across the interface and therefore dictates the interfacial dynamics. Although many-body perturbation theory provides a formally rigorous framework for computing the interfacial quasiparticle electronic structure, it is often associated with a high computational cost and is limited by its perturbative nature. It is, therefore, of great interest to develop practical alternatives, preferably based on density functional theory (DFT), which is known for its balance between efficiency and accuracy. However, conventional developments of density functionals largely focus on total energies and thermodynamic properties, and the design of functionals aiming for interfacial electronic structure is only emerging recently. This Review is dedicated to a self-contained narrative of the interfacial electronic structure problem and the efforts of the DFT community in tackling it. Since interfaces are closely related to surfaces, we first discuss the key physics behind the surface and interface electronic structure, namely, the image potential and the gap renormalization. This is followed by a review of early examinations of the surface exchange-correlation hole and the exchange-correlation potential, which are central quantities in DFT. Finally, we survey two modern endeavors in functional development that focus on the interfacial electronic structure, namely, the dielectric-dependent hybrids and local hybrids.

1.
M. A.
Green
,
A.
Ho-Baillie
, and
H. J.
Snaith
, “
The emergence of perovskite solar cells
,”
Nat. Photonics
8
,
506
(
2014
).
2.
Z.
Wang
,
C.
Li
, and
K.
Domen
, “
Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting
,”
Chem. Soc. Rev.
48
,
2109
(
2019
).
3.
Y.
Liu
,
Y.
Huang
, and
X.
Duan
, “
Van der Waals integration before and beyond two-dimensional materials
,”
Nature
567
,
323
(
2019
).
4.
J. B.
Goodenough
and
K.-S.
Park
, “
The Li-ion rechargeable battery: A perspective
,”
J. Am. Chem. Soc.
135
,
1167
(
2013
).
5.
T.
Ihn
,
Semiconductor Nanostructures: Quantum States and Electronic Transport
,
1st ed.
(
Oxford University Press
,
Oxford
,
2010
).
6.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
7.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
8.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
(
1982
).
9.
J. P.
Perdew
and
M.
Levy
, “
Physical content of the exact Kohn–Sham orbital energies: Band gaps and derivative discontinuities
,”
Phys. Rev. Lett.
51
,
1884
(
1983
).
10.
L. J.
Sham
and
M.
Schlüter
, “
Density-functional theory of the energy gap
,”
Phys. Rev. Lett.
51
,
1888
(
1983
).
11.
G.
Onida
,
L.
Reining
, and
A.
Rubio
, “
Electronic excitations: Density-functional versus many-body Green's-function approaches
,”
Rev. Mod. Phys.
74
,
601
(
2002
).
12.
L.
Hedin
, “
New method for calculating the one-particle Green's function with application to the electron-gas problem
,”
Phys. Rev.
139
,
A796
(
1965
).
13.
A.
Marini
,
C.
Hogan
,
M.
Grüning
, and
D.
Varsano
, “
yambo: An ab initio tool for excited state calculations
,”
Comput. Phys. Commun.
180
,
1392
(
2009
).
14.
J.
Deslippe
,
G.
Samsonidze
,
D. A.
Strubbe
,
M.
Jain
,
M. L.
Cohen
, and
S. G.
Louie
, “
BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures
,”
Comput. Phys. Commun.
183
,
1269
(
2012
).
15.
M.
Govoni
and
G.
Galli
, “
Large scale GW calculations
,”
J. Chem. Theory Comput.
11
,
2680
(
2015
).
16.
S.
Kümmel
and
L.
Kronik
, “
Orbital-dependent density functionals: Theory and applications
,”
Rev. Mod. Phys.
80
,
3
(
2008
).
17.
A.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
, “
Challenges for density functional theory
,”
Chem. Rev.
112
,
289
(
2012
).
18.
K.
Burke
, “
Perspective on density functional theory
,”
J. Chem. Phys.
136
,
150901
(
2012
).
19.
A. D.
Becke
, “
Perspective: Fifty years of density-functional theory in chemical physics
,”
J. Chem. Phys.
140
,
18A301
(
2014
).
20.
R. O.
Jones
, “
Density functional theory: Its origins, rise to prominence, and future
,”
Rev. Mod. Phys.
87
,
897
(
2015
).
21.
H. S.
Yu
,
S. L.
Li
, and
D. G.
Truhlar
, “
Perspective: Kohn–Sham density functional theory descending a staircase
,”
J. Chem. Phys.
145
,
130901
(
2016
).
22.
A. M.
Teale
,
T.
Helgaker
,
A.
Savin
,
C.
Adamo
,
B.
Aradi
,
A. V.
Arbuznikov
,
P. W.
Ayers
,
E. J.
Baerends
,
V.
Barone
,
P.
Calaminici
,
E.
Cances
,
E. A.
Carter
,
P. K.
Chattaraj
,
H.
Chermette
,
I.
Ciofini
,
T. D.
Crawford
,
F.
De Proft
,
J. F.
Dobson
,
C.
Draxl
,
T.
Frauenheim
,
E.
Fromager
,
P.
Fuentealba
,
L.
Gagliardi
,
G.
Galli
,
J.
Gao
,
P.
Geerlings
,
N.
Gidopoulos
,
P. M. W.
Gill
,
P.
Gori-Giorgi
,
A.
Gorling
,
T.
Gould
,
S.
Grimme
,
O.
Gritsenko
,
H. J. A.
Jensen
,
E. R.
Johnson
,
R. O.
Jones
,
M.
Kaupp
,
A. M.
Koster
,
L.
Kronik
,
A.
Krylov
,
I. S.
Kvaal
,
A.
Laestadius
,
M.
Levy
,
M.
Lewin
,
S.
Liu
,
P.-F.
Loos
,
N. T.
Maitra
,
F.
Neese
,
J. P.
Perdew
,
K.
Pernal
,
P.
Pernot
,
P.
Piecuch
,
E.
Rebolini
,
L.
Reining
,
P.
Romaniello
,
A.
Ruzsinszky
,
D. R.
Salahub
,
M.
Scheffler
,
P.
Schwerdtfeger
,
V. N.
Staroverov
,
J.
Sun
,
E.
Tellgren
,
D. J.
Tozer
,
S. B.
Trickey
,
C. A.
Ullrich
,
A.
Vela
,
G.
Vignale
,
T. A.
Wesolowski
,
X.
Xu
, and
W.
Yang
, “
DFT exchange: Sharing perspectives on the workhorse of quantum chemistry and materials science
,”
Phys. Chem. Chem. Phys.
24
,
28700
(
2022
).
23.
C.
Draxl
,
D.
Nabok
, and
K.
Hannewald
, “
Organic/inorganic hybrid materials: Challenges for ab initio methodology
,”
Acc. Chem. Res.
47
,
3225
(
2014
).
24.
Y. L.
Huang
,
Y. J.
Zheng
,
Z.
Song
,
D.
Chi
,
A. T. S.
Wee
, and
S. Y.
Quek
, “
The organic-2D transition metal dichalcogenide heterointerface
,”
Chem. Soc.
47
,
3241
(
2018
).
25.
C.
Xie
,
Z.
Niu
,
D.
Kim
,
M.
Li
, and
P.
Yang
, “
Surface and interface control in nanoparticle catalysis
,”
Chem. Rev.
120
,
1184
(
2020
).
26.
H.
Chen
,
W.
Zhang
,
M.
Li
,
G.
He
, and
X.
Guo
, “
Interface engineering in organic field-effect transistors: Principles, applications, and perspectives
,”
Chem. Rev.
120
,
2879
(
2020
).
27.
G.
Gonella
,
E. H. G.
Backus
,
Y.
Nagata
,
D. J.
Bonthuis
,
P.
Loche
,
A.
Schlaich
,
R. R.
Netz
,
A.
Kuhnle
,
I. T.
McCrum
,
M. T. M.
Koper
,
M.
Wolf
,
B.
Winter
,
G.
Meijer
,
R. K.
Campen
, and
M.
Bonn
, “
Water at charged interfaces
,”
Nat. Rev. Chem.
5
,
466
(
2021
).
28.
O. T.
Hofmann
,
E.
Zojer
,
L.
Hörmann
,
A.
Jeindl
, and
R. J.
Maurer
, “
First-principles calculations of hybrid inorganic–organic interfaces: From state-of-the-art to best practice
,”
Phys. Chem. Chem. Phys.
23
,
8132
(
2021
).
29.
N. D.
Lang
and
W.
Kohn
, “
Theory of metal surfaces: Charge density and surface energy
,”
Phys. Rev. B
1
,
4555
(
1970
).
30.
N. D.
Lang
and
W.
Kohn
, “
Theory of metal surfaces: Work function
,”
Phys. Rev. B
3
,
1215
(
1971
).
31.
N. D.
Lang
and
W.
Kohn
, “
Theory of metal surfaces: Induced surface charge and image potential
,”
Phys. Rev. B
7
,
3541
(
1973
).
32.
J. A.
Appelbaum
and
D. R.
Hamann
, “
Variational calculation of the image potential near a metal surface
,”
Phys. Rev. B
6
,
1122
(
1972
).
33.
J. C.
Inkson
, “
The electrostatic image potential in metal semiconductor junctions
,”
J. Phys. C: Solid State Phys.
4
,
591
(
1971
).
34.
J. C.
Inkson
, “
The electron-electron interaction near an interface
,”
Surf. Sci.
28
,
69
(
1971
).
35.
J. C.
Inkson
, “
Many-body effects at metal-semiconductor junctions. I. Surface plasmons and the electron-electron screened interaction
,”
J. Phys. C: Solid State Phys.
5
,
2599
(
1972
).
36.
J. C.
Inkson
, “
Many-body effects at metal-semiconductor junctions. II. The self energy and band structure distortion
,”
J. Phys. C: Solid State Phys.
6
,
1350
(
1973
).
37.
D. M.
Newns
, “
Fermi–Thomas response of a metal surface to an external point charge
,”
J. Chem. Phys.
50
,
4572
(
1969
).
38.
P.
Gies
and
R. R.
Gerhardts
, “
Self-consistent calculation of the electron distribution at a jellium surface in a strong static electric field
,”
Phys. Rev. B
31
,
6843(R)
(
1985
).
39.
P.
Gies
and
R. R.
Gerhardts
, “
Self-consistent calculation of electron-density profiles at strongly charged jellium surfaces
,”
Phys. Rev. B
33
,
982
(
1986
).
40.
F.
Schreier
and
F.
Rebentrost
, “
Self-consistent electron densities of a semi-infinite jellium metal surface in strong static electrical fields
,”
J. Phys. C: Solid State Phys.
20
,
2609
(
1987
).
41.
M.
Weber
and
A.
Liebsch
, “
Density-functional approach to second-harmonic generation at metal surfaces
,”
Phys. Rev. B
35
,
7411
(
1987
).
42.
M. G.
Weber
and
A.
Liebsch
, “
Theory of second-harmonic generation by metal overlayers
,”
Phys. Rev. B
36
,
6411
(
1987
).
43.
P. A.
Serena
,
J. M.
Soler
, and
N.
García
, “
Work function and image-plane position of metal surfaces
,”
Phys. Rev. B
37
,
8701
(
1988
).
44.
K.-M.
Ho
,
B. N.
Harmon
, and
S. H.
Liu
, “
Surface-state contribution to the electroreflectance of noble metals
,”
Phys. Rev. Lett.
44
,
1531
(
1980
).
45.
D. M.
Kolb
,
W.
Boeck
,
K.-M.
Ho
, and
S. H.
Liu
, “
Observation of surface states on Ag(100) by infrared and visible electroreflectance spectroscopy
,”
Phys. Rev. Lett.
47
,
1921
(
1981
).
46.
C. L.
Fu
and
K. M.
Ho
, “
External-charge-induced surface reconstruction on Ag(110)
,”
Phys. Rev. Lett.
63
,
1617
(
1989
).
47.
G. C.
Aers
and
J. E.
Inglesfield
, “
Electric field and Ag(001) surface electronic structure
,”
Surf. Sci.
217
,
367
(
1989
).
48.
J. E.
Inglesfield
, “
The screening of an electric field at an Al(001) surface
,”
Surf. Sci.
188
,
L701
(
1989
).
49.
M. W.
Finnis
, “
The interaction of a point charge with an aluminium (111) surface
,”
Surf. Sci.
241
,
61
(
1991
).
50.
H. J.
Kreuzer
,
L. C.
Wang
, and
N. D.
Lang
, “
Self-consistent calculation of atomic adsorption on metals in high electric fields
,”
Phys. Rev. B
45
,
12050
(
1992
).
51.
S. C.
Lam
and
R. J.
Needs
, “
Field-ion microscope tunnelling calculations for the aluminium (111) and (110) surfaces
,”
Surf. Sci.
277
,
173
(
1992
).
52.
S. C.
Lam
and
R. J.
Needs
, “
First-principles calculations of the screening of electric fields at the aluminium(111) and (110) surfaces
,”
J. Phys.: Condens. Matter
5
,
2101
(
1993
).
53.
D. R.
Penn
, “
Wave-number-dependent dielectric function of semiconductors
,”
Phys. Rev.
128
,
2093
(
1962
).
54.
J. B.
Neaton
,
M. S.
Hybertsen
, and
S. G.
Louie
, “
Renormalization of molecular electronic levels at metal-molecule interfaces
,”
Phys. Rev. Lett.
97
,
216405
(
2006
).
55.
S. Y.
Quek
,
L.
Venkataraman
,
H. J.
Choi
,
S. G.
Louie
,
M. S.
Hybertsen
, and
J. B.
Neaton
, “
Amine-gold linked single-molecule circuits: Experiment and theory
,”
Nano Lett.
7
,
3477
(
2007
).
56.
Z.-F.
Liu
,
S.
Wei
,
H.
Yoon
,
O.
Adak
,
I.
Ponce
,
Y.
Jiang
,
W.-D.
Jang
,
L. M.
Campos
,
L.
Venkataraman
, and
J. B.
Neaton
, “
Control of single-molecule junction conductance of porphyrins via a transition-metal center
,”
Nano Lett.
14
,
5365
(
2014
).
57.
Y.
Li
,
D.
Lu
, and
G.
Galli
, “
Calculation of quasi-particle energies of aromatic self-assembled monolayers on Au(111)
,”
J. Chem. Theory Comput.
5
,
881
(
2009
).
58.
D. A.
Egger
,
Z.-F.
Liu
,
J. B.
Neaton
, and
L.
Kronik
, “
Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory
,”
Nano Lett.
15
,
2448
(
2015
).
59.
K. S.
Thygesen
and
A.
Rubio
, “
Renormalization of molecular quasiparticle levels at metal-molecule interfaces: Trends across binding regimes
,”
Phys. Rev. Lett.
102
,
046802
(
2009
).
60.
P. W.
Anderson
, “
Localized magnetic states in metals
,”
Phys. Rev.
124
,
41
(
1961
).
61.
J. M.
Garcia-Lastra
,
C.
Rostgaard
,
A.
Rubio
, and
K. S.
Thygesen
, “
Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces
,”
Phys. Rev. B
80
,
245427
(
2009
).
62.
M.
Strange
and
K. S.
Thygesen
, “
Image-charge-induced localization of molecular orbitals at metal-molecule interfaces: Self-consistent GW calculations
,”
Phys. Rev. B
86
,
195121
(
2012
).
63.
J.
Bardeen
, “
Theory of the work function. II. The surface double layer
,”
Phys. Rev.
49
,
653
(
1936
).
64.
H. J.
Juretschke
, “
Exchange potential in the surface region of a free-electron metal
,”
Phys. Rev.
92
,
1140
(
1953
).
65.
J. E.
Inglesfield
and
I. D.
Moore
, “
The exchange-correlation hole at a surface
,”
Solid State Commun.
26
,
867
(
1978
).
66.
V.
Sahni
and
K.-P.
Bohnen
, “
Exchange charge density at metallic surfaces
,”
Phys. Rev. B
29
,
1045
(
1984
).
67.
V.
Sahni
and
K.-P.
Bohnen
, “
Image charge at a metal surface
,”
Phys. Rev. B
31
,
7651
(
1985
).
68.
M. K.
Harbola
and
V.
Sahni
, “
Structure of the Fermi hole at surfaces
,”
Phys. Rev. B
37
,
745
(
1988
).
69.
P. A.
Serena
,
J. M.
Soler
, and
N.
García
, “
Self-consistent image potential in a metal surface
,”
Phys. Rev. B
34
,
6767
(
1986
).
70.
P. H.
Acioli
and
D. M.
Ceperley
, “
Diffusion Monte Carlo study of jellium surfaces: Electronic densities and pair correlation functions
,”
Phys. Rev. B
54
,
17199
(
1996
).
71.
C. R.
Hsing
,
M. Y.
Chou
, and
T. K.
Lee
, “
Exchange-correlation energy in molecules: A variational quantum Monte Carlo study
,”
Phys. Rev. A
74
,
032507
(
2006
).
72.
R. Q.
Hood
,
M. Y.
Chou
,
A. J.
Williamson
,
G.
Rajagopal
, and
R. J.
Needs
, “
Exchange and correlation in silicon
,”
Phys. Rev. B
57
,
8972
(
1998
).
73.
P. P.
Rushton
,
D. J.
Tozer
, and
S. J.
Clark
, “
Nonlocal density-functional description of exchange and correlation in silicon
,”
Phys. Rev. B
65
,
235203
(
2002
).
74.
P.
García-González
,
J. E.
Alvarellos
,
E.
Chacón
, and
P.
Tarazona
, “
Image potential and the exchange-correlation weighted density approximation functional
,”
Phys. Rev. B
62
,
16063
(
2000
).
75.
O.
Gunnarsson
,
M.
Jonson
, and
B. I.
Lundqvist
, “
Descriptions of exchange and correlation effects in inhomogeneous electron systems
,”
Phys. Rev. B
20
,
3136
(
1979
).
76.
D. B.
Jochym
and
S. J.
Clark
, “
Exchange-correlation holes in metal surfaces using nonlocal density-functional theory
,”
Phys. Rev. B
76
,
075411
(
2007
).
77.
M.
Nekovee
and
J.
Pitarke
, “
Recent progress in the computational many-body theory of metal surfaces
,”
Comput. Phys. Commun.
137
,
123
(
2001
).
78.
L. A.
Constantin
and
J. M.
Pitarke
, “
The many-body exchange-correlation hole at metal surfaces
,”
J. Chem. Theory Comput.
5
,
895
(
2009
).
79.
J. M.
Pitarke
and
A. G.
Eguiluz
, “
Surface energy of a bounded electron gas: Analysis of the accuracy of the local-density approximation via ab initio self-consistent-field calculations
,”
Phys. Rev. B
57
,
6329
(
1998
).
80.
J. M.
Pitarke
and
A. G.
Eguiluz
, “
Jellium surface energy beyond the local-density approximation: Self-consistent-field calculations
,”
Phys. Rev. B
63
,
045116
(
2001
).
81.
L. J.
Sham
, “
Exchange and correlation in density-functional theory
,”
Phys. Rev. B
32
,
3876
(
1985
).
82.
J. A.
Rudnick
, Ph.D. thesis,
University of California
, San Diego,
1970
.
83.
A. G.
Eguiluz
,
M.
Heinrichsmeier
,
A.
Fleszar
, and
W.
Hanke
, “
First-principles evaluation of the surface barrier for a Kohn–Sham electron at a metal surface
,”
Phys. Rev. Lett.
68
,
1359
(
1992
).
84.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
(
1980
).
85.
I. D.
White
,
R. W.
Godby
,
M. M.
Rieger
, and
R. J.
Needs
, “
Dynamic image potential at an Al(111) surface
,”
Phys. Rev. Lett.
80
,
4265
(
1998
).
86.
A. G.
Eguiluz
and
W.
Hanke
, “
Evaluation of the exchange-correlation potential at a metal surface from many-body perturbation theory
,”
Phys. Rev. B
39
,
10433
(
1989
).
87.
C.-O.
Almbladh
and
U.
von Barth
, “
Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues
,”
Phys. Rev. B
31
,
3231
(
1985
).
88.
M. K.
Harbola
and
V.
Sahni
, “
Quantum-mechanical interpretation of the exchange-correlation potential of Kohn–Sham density-functional theory
,”
Phys. Rev. Lett.
62
,
489
(
1989
).
89.
M. K.
Harbola
and
V.
Sahni
, “
Quantum-mechanical origin of the asymptotic effective potential at metal surfaces
,”
Phys. Rev. B
39
,
10437
(
1989
).
90.
A.
Solomatin
and
V.
Sahni
, “
Analytical asymptotic structure of the exchange and correlation potentials at a metal surface
,”
Phys. Lett. A
212
,
263
(
1996
).
91.
J. C.
Slater
, “
A simplification of the Hartree–Fock method
,”
Phys. Rev.
81
,
385
(
1951
).
92.
C. M.
Horowitz
,
C. R.
Proetto
, and
S.
Rigamonti
, “
Kohn–Sham exchange potential for a metallic surface
,”
Phys. Rev. Lett.
97
,
026802
(
2006
).
93.
C. M.
Horowitz
,
C. R.
Proetto
, and
J. M.
Pitarke
, “
Asymptotics of the metal-surface Kohn–Sham exact exchange potential revisited
,”
Phys. Rev. B
104
,
155108
(
2021
).
94.
W.
Kohn
and
A. E.
Mattsson
, “
Edge electron gas
,”
Phys. Rev. Lett.
81
,
3487
(
1998
).
95.
L.
Vitos
,
B.
Johansson
,
J.
Kollár
, and
H. L.
Skriver
, “
Exchange energy in the local airy gas approximation
,”
Phys. Rev. B
62
,
10046
(
2000
).
96.
L. A.
Constantin
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Exchange-correlation energy functional based on the airy-gas reference system
,”
Phys. Rev. B
80
,
035125
(
2009
).
97.
L. A.
Constantin
,
E.
Fabiano
,
J. M.
Pitarke
, and
F.
Della Sala
, “
Semilocal density functional theory with correct surface asymptotics
,”
Phys. Rev. B
93
,
115127
(
2016
).
98.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
, “
Tuned range-separated hybrids in density functional theory
,”
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
99.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
M.
Jain
,
R.
Baer
,
J. B.
Neaton
, and
L.
Kronik
, “
Gap renormalization of molecular crystals from density-functional theory
,”
Phys. Rev. B
88
,
081204(R)
(
2013
).
100.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
, “
Generalized Kohn–Sham schemes and the band-gap problem
,”
Phys. Rev. B
53
,
3764
(
1996
).
101.
W.
Yang
,
A. J.
Cohen
, and
P.
Mori-Sánchez
, “
Derivative discontinuity, bandgap and lowest unoccupied molecular orbital in density functional theory
,”
J. Chem. Phys.
136
,
204111
(
2012
).
102.
J. P.
Perdew
,
W.
Yang
,
K.
Burke
,
Z.
Yang
,
E. K. U.
Gross
,
M.
Scheffler
,
G. E.
Scuseria
,
T. M.
Henderson
,
I. Y.
Zhang
,
A.
Ruzsinszky
,
H.
Peng
,
J.
Sun
,
E.
Trushin
, and
A.
Goerling
, “
Understanding band gaps of solids in generalized Kohn–Sham theory
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
2801
(
2017
).
103.
J. P.
Perdew
and
A.
Ruzsinszky
, “
Density-functional energy gaps of solids demystified
,”
Eur. Phys. J. B
91
,
108
(
2018
).
104.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
105.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
, “
Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals
,”
J. Chem. Theory Comput.
8
,
1515
(
2012
).
106.
T.
Koerzdoerfer
and
J.-L.
Bredas
, “
Organic electronic materials: Recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals
,”
Acc. Chem. Res.
47
,
3284
(
2014
).
107.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
, “
Combining long-range configuration interaction with short-range density functionals
,”
Chem. Phys. Lett.
275
,
151
(
1997
).
108.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened coulomb potential
,”
J. Chem. Phys.
118
,
8207
(
2003
).
109.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
, “
Long-range-short-range separation of the electron–electron interaction in density-functional theory
,”
Phys. Rev. A
70
,
062505
(
2004
).
110.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
(
2004
).
111.
T.
Shimazaki
and
Y.
Asai
, “
Band structure calculations based on screened Fock exchange method
,”
Chem. Phys. Lett.
466
,
91
(
2008
).
112.
F.
Bechstedt
,
R.
Del Sole
,
G.
Cappellini
, and
L.
Reining
, “
An efficient method for calculating quasiparticle energies in semiconductors
,”
Solid State Commun.
84
,
765
(
1992
).
113.
G.
Cappellini
,
R.
Del Sole
,
L.
Reining
, and
F.
Bechstedt
, “
Model dielectric function for semiconductors
,”
Phys. Rev. B
47
,
9892
(
1993
).
114.
T.
Shimazaki
and
Y.
Asai
, “
First principles band structure calculations based on self-consistent screened Hartree–Fock exchange potential
,”
J. Chem. Phys.
130
,
164702
(
2009
).
115.
T.
Shimazaki
and
Y.
Asai
, “
Energy band structure calculations based on screened Hartree–Fock exchange method: Si, AlP, AlAs, GaP, and GaAs
,”
J. Chem. Phys.
132
,
224105
(
2010
).
116.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
N.
Govind
,
J.
Autschbach
,
J. B.
Neaton
,
R.
Baer
, and
L.
Kronik
, “
Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional
,”
Phys. Rev. Lett.
109
,
226405
(
2012
).
117.
M. A.
Rohrdanz
and
J. M.
Herbert
, “
Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory
,”
J. Chem. Phys.
129
,
034107
(
2008
).
118.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
, “
Localization and delocalization errors in density functional theory and implications for band-gap prediction
,”
Phys. Rev. Lett.
100
,
146401
(
2008
).
119.
E.
Kraisler
and
L.
Kronik
, “
Fundamental gaps with approximate density functionals: The derivative discontinuity revealed from ensemble considerations
,”
J. Chem. Phys.
140
,
18A540
(
2014
).
120.
V.
Vlček
,
H. R.
Eisenberg
,
G.
Steinle-Neumann
,
L.
Kronik
, and
R.
Baer
, “
Deviations from piecewise linearity in the solid-state limit with approximate density functionals
,”
J. Chem. Phys.
142
,
034107
(
2015
).
121.
Z.-F.
Liu
,
D. A.
Egger
,
S.
Refaely-Abramson
,
L.
Kronik
, and
J. B.
Neaton
, “
Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional
,”
J. Chem. Phys.
146
,
092326
(
2017
).
122.
A.
Biller
,
I.
Tamblyn
,
J. B.
Neaton
, and
L.
Kronik
, “
Electronic level alignment at a metal-molecule interface from a short-range hybrid functional
,”
J. Chem. Phys.
135
,
164706
(
2011
).
123.
Q.
Zhou
,
Z.-F.
Liu
,
T. J.
Marks
, and
P.
Darancet
, “
Range-separated hybrid functionals for mixed dimensional heterojunctions: Application to phthalocyanines/MoS2
,”
APL Mater.
9
,
121112
(
2021
).
124.
K.
Noori
,
N. L. Q.
Cheng
,
F.
Xuan
, and
S. Y.
Quek
, “
Dielectric screening by 2D substrates
,”
2D Mater.
6
,
035036
(
2019
).
125.
Y.
Cho
and
T. C.
Berkelbach
, “
Environmentally sensitive theory of electronic and optical transitions in atomically thin semiconductors
,”
Phys. Rev. B
97
,
041409
(
2018
).
126.
M. A. L.
Marques
,
J.
Vidal
,
M. J. T.
Oliveira
,
L.
Reining
, and
S.
Botti
, “
Density-based mixing parameter for hybrid functionals
,”
Phys. Rev. B
83
,
035119
(
2011
).
127.
D.
Koller
,
P.
Blaha
, and
F.
Tran
, “
Hybrid functionals for solids with an optimized Hartree–Fock mixing parameter
,”
J. Phys.: Condens. Matter
25
,
435503
(
2013
).
128.
T.
Shimazaki
and
T.
Nakajima
, “
Dielectric-dependent screened Hartree–Fock exchange potential and Slater-formula with Coulomb-hole interaction for energy band structure calculations
,”
J. Chem. Phys.
141
,
114109
(
2014
).
129.
J. H.
Skone
,
M.
Govoni
, and
G.
Galli
, “
Self-consistent hybrid functional for condensed systems
,”
Phys. Rev. B
89
,
195112
(
2014
).
130.
M.
Ferrero
,
M.
Rérat
,
R.
Orlando
,
R.
Dovesi
, and
I. J.
Bush
, “
Coupled perturbed Kohn–Sham calculation of static polarizabilities of periodic compounds
,”
J. Phys.: Conf. Ser.
117
,
012016
(
2008
).
131.
J. H.
Skone
,
M.
Govoni
, and
G.
Galli
, “
Nonempirical range-separated hybrid functionals for solids and molecules
,”
Phys. Rev. B
93
,
235106
(
2016
).
132.
H. F.
Wilson
,
F.
Gygi
, and
G.
Galli
, “
Efficient iterative method for calculations of dielectric matrices
,”
Phys. Rev. B
78
,
113303
(
2008
).
133.
N. P.
Brawand
,
M.
Vörös
,
M.
Govoni
, and
G.
Galli
, “
Generalization of dielectric-dependent hybrid functionals to finite systems
,”
Phys. Rev. X
6
,
041002
(
2016
).
134.
H.
Zheng
,
M.
Govoni
, and
G.
Galli
, “
Dielectric-dependent hybrid functionals for heterogeneous materials
,”
Phys. Rev. Mater.
3
,
073803
(
2019
).
135.
M.
Gerosa
,
C. E.
Bottani
,
L.
Caramella
,
G.
Onida
,
C.
Di Valentin
, and
G.
Pacchioni
, “
Electronic structure and phase stability of oxide semiconductors: Performance of dielectric-dependent hybrid functional DFT, benchmarked against GW band structure calculations and experiments
,”
Phys. Rev. B
91
,
155201
(
2015
).
136.
M.
Gerosa
,
C. E.
Bottani
,
C.
Di Valentin
,
G.
Onida
, and
G.
Pacchioni
, “
Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: A comprehensive comparison with many-body GW and experiments
,”
J. Phys.: Condens. Matter
30
,
044003
(
2018
).
137.
W.
Chen
,
G.
Miceli
,
G.-M.
Rignanese
, and
A.
Pasquarello
, “
Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators
,”
Phys. Rev. Mater.
2
,
073803
(
2018
).
138.
T.
Bischoff
,
J.
Wiktor
,
W.
Chen
, and
A.
Pasquarello
, “
Nonempirical hybrid functionals for band gaps of inorganic metal-halide perovskites
,”
Phys. Rev. Mater.
3
,
123802
(
2019
).
139.
S.
Jana
,
B.
Patra
,
S.
Śmiga
,
L. A.
Constantin
, and
P.
Samal
, “
Improved solid stability from a screened range-separated hybrid functional by satisfying semiclassical atom theory and local density linear response
,”
Phys. Rev. B
102
,
155107
(
2020
).
140.
P.
Liu
,
C.
Franchini
,
M.
Marsman
, and
G.
Kresse
, “
Assessing model-dielectric-dependent hybrid functionals on the antiferromagnetic transition-metal monoxides MnO, FeO, CoO, and NiO
,”
J. Phys.: Condens. Matter
32
,
015502
(
2020
).
141.
J. M.
Skelton
,
D. S. D.
Gunn
,
S.
Metz
, and
S. C.
Parker
, “
Accuracy of hybrid functionals with non-self-consistent Kohn–Sham orbitals for predicting the properties of semiconductors
,”
J. Chem. Theory Comput.
16
,
3543
(
2020
).
142.
M.
Gerosa
,
C. E.
Bottani
,
L.
Caramella
,
G.
Onida
,
C.
Di Valentin
, and
G.
Pacchioni
, “
Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: The case of oxygen vacancies in metal oxides
,”
J. Chem. Phys.
143
,
134702
(
2015
).
143.
T.
Das
,
G.
Di Liberto
,
S.
Tosoni
, and
G.
Pacchioni
, “
Band gap of 3D metal oxides and quasi-2D materials from hybrid density functional theory: Are dielectric-dependent functionals superior?
,”
J. Chem. Theory Comput.
15
,
6294
(
2019
).
144.
M.
Häfner
and
T.
Bredow
, “
F and M centers in alkali halides: A theoretical study applying self-consistent dielectric-dependent hybrid density functional theory
,”
Phys. Rev. B
102
,
184108
(
2020
).
145.
M.
Hochheim
and
T.
Bredow
, “
Band-edge levels of the NaCl(100) surface: Self-consistent hybrid density functional theory compared to many-body perturbation theory
,”
Phys. Rev. B
97
,
235447
(
2018
).
146.
Y.
Hinuma
,
Y.
Kumagai
,
I.
Tanaka
, and
F.
Oba
, “
Band alignment of semiconductors and insulators using dielectric-dependent hybrid functionals: Toward high-throughput evaluation
,”
Phys. Rev. B
95
,
075302
(
2017
).
147.
Y.
Hinuma
,
T.
Gake
, and
F.
Oba
, “
Band alignment at surfaces and heterointerfaces of Al2O3, Ga2O3, In2O3, and related group-III oxide polymorphs: A first-principles study
,”
Phys. Rev. Mater.
3
,
084605
(
2019
).
148.
J.
Ni
,
S.
Hu
,
M.
Li
,
F.
Jia
,
G.
Qin
,
Q.
Li
,
Z.
Zhou
,
F.
Zha
,
W.
Ren
, and
Y.
Wang
, “
Accurate band offset prediction of Sc2O3/GaN and θ–Al2O3/GaN heterojunctions using a dielectric-dependent hybrid functional
,”
ACS Appl. Electron. Mater.
4
,
2747
(
2022
).
149.
Z.-H.
Yang
,
F.
Sottile
, and
C. A.
Ullrich
, “
Simple screened exact-exchange approach for excitonic properties in solids
,”
Phys. Rev. B
92
,
035202
(
2015
).
150.
A. K.
Manna
,
S.
Refaely-Abramson
,
A. M.
Reilly
,
A.
Tkatchenko
,
J. B.
Neaton
, and
L.
Kronik
, “
Quantitative prediction of optical absorption in molecular solids from an optimally tuned screened range-separated hybrid functional
,”
J. Chem. Theory Comput.
14
,
2919
(
2018
).
151.
J.
Sun
,
J.
Yang
, and
C. A.
Ullrich
, “
Low-cost alternatives to the Bethe–Salpeter equation: Towards simple hybrid functionals for excitonic effects in solids
,”
Phys. Rev. Res.
2
,
013091
(
2020
).
152.
F. G.
Cruz
,
K.-C.
Lam
, and
K.
Burke
, “
Exchange-correlation energy density from virial theorem
,”
J. Phys. Chem. A
102
,
4911
(
1998
).
153.
J.
Jaramillo
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Local hybrid functionals
,”
J. Chem. Phys.
118
,
1068
(
2003
).
154.
K.
Burke
,
F. G.
Cruz
, and
K.-C.
Lam
, “
Unambiguous exchange-correlation energy density
,”
J. Chem. Phys.
109
,
8161
(
1998
).
155.
H.
Bahmann
,
A.
Rodenberg
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
A thermochemically competitive local hybrid functional without gradient corrections
,”
J. Chem. Phys.
126
,
011103
(
2007
).
156.
J. P.
Perdew
,
V. N.
Staroverov
,
J.
Tao
, and
G. E.
Scuseria
, “
Density functional with full exact exchange, balanced nonlocality of correlation, and constraint satisfaction
,”
Phys. Rev. A
78
,
052513
(
2008
).
157.
T.
Schmidt
,
E.
Kraisler
,
A.
Makmal
,
L.
Kronik
, and
S.
Kuemmel
, “
A self-interaction-free local hybrid functional: Accurate binding energies vis-a-vis accurate ionization potentials from Kohn–Sham eigenvalues
,”
J. Chem. Phys.
140
,
18A510
(
2014
).
158.
E. R.
Johnson
, “
Local-hybrid functional based on the correlation length
,”
J. Chem. Phys.
141
,
124120
(
2014
).
159.
C.
Holzer
and
Y. J.
Franzke
, “
A local hybrid exchange functional approximation from first principles
,”
J. Chem. Phys
157
,
034108
(
2022
).
160.
B. G.
Janesko
,
A. V.
Krukau
, and
G. E.
Scuseria
, “
Self-consistent generalized Kohn–Sham local hybrid functionals of screened exchange: Combining local and range-separated hybridization
,”
J. Chem. Phys.
129
,
124110
(
2008
).
161.
R.
Haunschild
and
G. E.
Scuseria
, “
Range-separated local hybrids
,”
J. Chem. Phys.
132
,
224106
(
2010
).
162.
S.
Fürst
,
M.
Haasler
,
R.
Grotjahn
, and
M.
Kaupp
, “
Full implementation, optimization, and evaluation of a range-separated local hybrid functional with wide accuracy for ground and excited states
,”
J. Chem. Theory Comput.
19
,
488
(
2023
).
163.
A. V.
Krukau
,
G. E.
Scuseria
,
J. P.
Perdew
, and
A.
Savin
, “
Hybrid functionals with local range separation
,”
J. Chem. Phys.
129
,
124103
(
2008
).
164.
S.
Klawohn
and
H.
Bahmann
, “
Self-consistent implementation of hybrid functionals with local range separation
,”
J. Chem. Theory Comput.
16
,
953
(
2020
).
165.
T. M.
Maier
,
A. V.
Arbuznikov
, and
M.
Kaupp
, “
Local hybrid functionals: Theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond
,”
WIREs Comput. Mol. Sci.
9
,
e1378
(
2019
).
166.
P.
Borlido
,
M. A. L.
Marques
, and
S.
Botti
, “
Local hybrid density functional for interfaces
,”
J. Chem. Theory Comput.
14
,
939
(
2018
).
167.
T.
Shimazaki
and
T.
Nakajima
, “
Theoretical study of a screened Hartree–Fock exchange potential using position-dependent atomic dielectric constants
,”
J. Chem. Phys.
142
,
074109
(
2015
).
168.
M.
Rohlfing
, “
Electronic excitations from a perturbative LDA+GdW approach
,”
Phys. Rev. B
82
,
205127
(
2010
).
169.
F.
Tran
and
P.
Blaha
, “
Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
,”
Phys. Rev. Lett.
102
,
226401
(
2009
).
170.
A.
Sorouri
,
W. M. C.
Foulkes
, and
N. D. M.
Hine
, “
Accurate and efficient method for the treatment of exchange in a plane-wave basis
,”
J. Chem. Phys.
124
,
064105
(
2006
).
171.
R. D.
King-Smith
and
D.
Vanderbilt
, “
Theory of polarization of crystalline solids
,”
Phys. Rev. B
47
,
1651
(
1993
).
172.
T.
Rauch
,
M. A. L.
Marques
, and
S.
Botti
, “
Local modified Becke–Johnson exchange-correlation potential for interfaces, surfaces, and two-dimensional materials
,”
J. Chem. Theory Comput.
16
,
2654
(
2020
).
173.
A. D.
Becke
and
M. R.
Roussel
, “
Exchange holes in inhomogeneous systems: A coordinate-space model
,”
Phys. Rev. A
39
,
3761
(
1989
).
174.
A. D.
Becke
and
E. R.
Johnson
, “
A simple effective potential for exchange
,”
J. Chem. Phys.
124
,
221101
(
2006
).
175.
A.
Ghosh
,
S.
Jana
,
T.
Rauch
,
F.
Tran
,
M. A. L.
Marques
,
S.
Botti
,
L. A.
Constantin
,
M. K.
Niranjan
, and
P.
Samal
, “
Efficient and improved prediction of the band offsets at semiconductor heterojunctions from meta-GGA density functionals: A benchmark study
,”
J. Chem. Phys.
157
,
124108
(
2022
).
176.
L.
Hedin
and
S.
Lundqvist
, “
Effects of electron–electron and electron–phonon interactions on the one-electron states of solids
,” in
Solid State Physics
, edited by
H.
Ehrenreich
,
D.
Turnbull
, and
F.
Seitz
(
Academic
,
New York
,
1969
), Vol.
23
, p.
1
.
177.
M.
Casida
, “
Generalization of the optimized-effective-potential model to include electron correlation: A variational derivation of the Sham–Schlüter equation for the exact exchange-correlation potential
,”
Phys. Rev. A
51
,
2005
(
1995
).
You do not currently have access to this content.