Relativistic effects are usually taken into account in heavy-element-containing species, bringing to the scientific community stimulating cases of study. Scalar and spin–orbit effects are required to properly evaluate both the geometrical and electronic structures of such species, where, generally, scalar corrections are included. In order to take into account the spin–orbit term resulting from the interaction between the spatial and spin coordinates, double-valued point groups of symmetry are required, leading to total angular momenta (j) functions and atomic or molecular spinors, instead of pure orbital-angular momenta (l) and atomic or molecular orbitals. Here, we reviewed the role of spin–orbit coupling in bare and ligand-protected metallic clusters, from early to current works, leading to a more comprehensive relativistic quantum chemistry framework. As a result, the electronic structure is modified, leading to a variation in the calculated molecular properties, which usually improves the agreement between theory and experiment, allowing furthering rationalize of experimental results unexpected from a classical inorganic chemistry point of view. This review summarizes part of the modern application of spin–orbit coupling in heavy-elements cluster chemistry, where further treatment on an equal footing basis along with the periodic table is encouraged in order to incorporate such term in the general use vocabulary of both experimental and theoretical chemist and material scientist.

1.
H.
Kragh
, “
The fine structure of hydrogen and the gross structure of the physics community, 1916–26
,”
Hist. Stud. Phys. Sci
15
(
2
),
67
125
(
1985
).
2.
L. Y.
Xie
,
J. G.
Wang
, and
R. K.
Janev
, “
Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction
,”
Phys. Plasmas
21
(
6
),
063304
(
2014
).
3.
P.
Pyykko
, “
Relativistic effects in structural chemistry
,”
Chem. Rev.
88
(
3
),
563
594
(
1988
).
4.
P.
Pyykkö
, “
Strong closed-shell interactions in inorganic chemistry
,”
Chem. Rev.
97
(
3
),
597
636
(
1997
).
5.
P.
Schwerdtfeger
, “
Relativistic effects in properties of gold
,”
Heteroat. Chem.
13
(
6
),
578
584
(
2002
).
6.
H.
Schmidbaur
, “
The fascinating implications of new results in gold chemistry
,”
Gold Bull.
23
(
1
),
11
21
(
1990
).
7.
F.
Scherbaum
,
A.
Grohmann
,
B.
Huber
,
C.
Krüger
, and
H.
Schmidbaur
, “
‘Aurophilicity’ as a consequence of relativistic effects: The Hexakis(triphenylphosphaneaurio)methane dication [(Ph3PAu)6C]2⊕
,”
Angew. Chem., Int. Ed. Engl.
27
(
11
),
1544
1546
(
1988
).
8.
H.
Schmidbaur
and
A.
Schier
, “
Aurophilic interactions as a subject of current research: An up-date
,”
Chem. Soc. Rev.
41
(
1
),
370
412
(
2012
).
9.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
,
2009
).
10.
M.
Iliaš
,
V.
Kellö
, and
M.
Urban
, “
Relativistic effects in atomic and molecular properties
,”
Acta Phys. Slovaca
60
(
3
),
259
(
2010
).
11.
P.
Schwerdtfeger
,
Relativistic Electronic Structure Theory
(
Elsevier Science
,
New York
,
2004
).
12.
J.
Autschbach
, “
Perspective: Relativistic effects
,”
J. Chem. Phys.
136
(
15
),
150902
(
2012
).
13.
P.
Pyykkö
, “
The RTAM electronic bibliography, version 17.0, on relativistic theory of atoms and molecules
,”
J. Comput. Chem.
34
(
31
),
2667
2667
(
2013
).
14.
P.
Pyykkö
, “
Relativistic quantum chemistry
,”
Adv. Quantum Chem.
11
,
353
409
(
1978
).
15.
P.
Pyykko
and
J. P.
Desclaux
, “
Relativity and the periodic system of elements
,”
Acc. Chem. Res.
12
(
8
),
276
281
(
1979
).
16.
G.
Malli
and
J.
Oreg
, “
Relativistic self‐consistent‐field (RSCF) theory for closed‐shell molecules
,”
J. Chem. Phys.
63
(
2
),
830
841
(
1975
).
17.
I. P.
Grant
, “
Relativistic self-consistent fields
,”
Proc. R. Soc. A.
262
,
555
576
(
1961
).
18.
I. P.
Grant
, “
Relativistic self-consistent fields
,”
Proc. Phys. Soc.
86
(
3
),
523
527
(
1965
).
19.
Relativistic Quantum Theory of Atoms and Molecules
, Springer Series on Atomic, Optical, and Plasma Physics Vol.
40
, edited by
I. P.
Grant
(
Springer
,
New York, NY
,
2007
).
20.
K.
Faegri
, Jr.
and
K. G.
Dyall
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
21.
Y. J.
Franzke
and
F.
Weigend
, “
NMR shielding tensors and chemical shifts in scalar-relativistic local exact two-component theory
,”
J. Chem. Theory Comput.
15
(
2
),
1028
1043
(
2019
).
22.
A. J. S.
Valentine
and
X.
Li
, “
Intersystem crossings in late-row elements: A perspective
,”
J. Phys. Chem. Lett.
13
(
13
),
3039
3046
(
2022
).
23.
S.
Moncho
and
J.
Autschbach
, “
Molecular orbital analysis of the inverse halogen dependence of nuclear magnetic shielding in LaX3, X = F, Cl, Br, I
,”
Magn. Reson. Chem.
48
(
S1
),
S76
S85
(
2010
).
24.
P. R.
Batista
,
L. C.
Ducati
, and
J.
Autschbach
, “
Solvent effect on the 195Pt NMR properties in pyridonate-bridged PtIII dinuclear complex derivatives investigated by ab initio molecular dynamics and localized orbital analysis
,”
Phys. Chem. Chem. Phys.
23
(
22
),
12864
12880
(
2021
).
25.
M.
Straka
,
P.
Lantto
, and
J.
Vaara
, “
Toward calculations of the 129Xe chemical shift in Xe@C60 at experimental conditions: Relativity, correlation, and dynamics
,”
J. Phys. Chem. A
112
(
12
),
2658
2668
(
2008
).
26.
J.
Autschbach
and
E.
Zurek
, “
Relativistic density-functional computations of the chemical shift of 129Xe in Xe@C60
,”
J. Phys. Chem. A
107
(
24
),
4967
4972
(
2003
).
27.
S.
Standara
,
P.
Kulhánek
,
R.
Marek
, and
M.
Straka
, “
129Xe NMR chemical shift in Xe@C60 calculated at experimental conditions: Essential role of the relativity, dynamics, and explicit solvent
,”
J. Comput. Chem.
34
(
22
),
1890
1898
(
2013
).
28.
J. M.
Kasper
,
X.
Li
,
S. A.
Kozimor
,
E. R.
Batista
, and
P.
Yang
, “
Relativistic effects in modeling the ligand K-edge X-ray absorption near-edge structure of uranium complexes
,”
J. Chem. Theory Comput.
18
(
4
),
2171
2179
(
2022
).
29.
H. D.
Ludowieg
,
M.
Srebro‐Hooper
,
J.
Crassous
, and
J.
Autschbach
, “
Optical activity of spin‐forbidden electronic transitions in metal complexes from time‐dependent density functional theory with spin‐orbit coupling
,”
ChemistryOpen
11
(
5
),
e202200020
(
2022
).
30.
A. H.
Greif
,
P.
Hrobárik
,
V.
Hrobáriková
,
A. V.
Arbuznikov
,
J.
Autschbach
, and
M.
Kaupp
, “
A relativistic quantum-chemical analysis of the trans influence on 1H NMR hydride shifts in square-planar platinum(II) complexes
,”
Inorg. Chem.
54
(
15
),
7199
7208
(
2015
).
31.
L. A.
Truflandier
,
K.
Sutter
, and
J.
Autschbach
, “
Solvent effects and dynamic averaging of 195Pt NMR shielding in cisplatin derivatives
,”
Inorg. Chem.
50
(
5
),
1723
1732
(
2011
).
32.
R.
Feng
,
X.
Yu
, and
J.
Autschbach
, “
Spin–orbit natural transition orbitals and spin-forbidden transitions
,”
J. Chem. Theory Comput
17
(
12
),
7531
7544
(
2021
).
33.
A. C.
Castro
,
D.
Balcells
,
M.
Repisky
,
T.
Helgaker
, and
M.
Cascella
, “
First-principles calculation of 1H NMR chemical shifts of complex metal polyhydrides: The essential inclusion of relativity and dynamics
,”
Inorg. Chem.
59
(
23
),
17509
17518
(
2020
).
34.
A. C.
Castro
,
H.
Fliegl
,
M.
Cascella
,
T.
Helgaker
,
M.
Repisky
,
S.
Komorovsky
,
M. Á.
Medrano
,
A. G.
Quiroga
, and
M.
Swart
, “
Four-component relativistic 31P NMR calculations for trans-platinum (II) complexes: Importance of the solvent and dynamics in spectral simulations
,”
Dalt. Trans.
48
(
23
),
8076
8083
(
2019
).
35.
F.
Aquino
,
N.
Govind
, and
J.
Autschbach
, “
Electric field gradients calculated from two-component hybrid density functional theory including spin−orbit coupling
,”
J. Chem. Theory Comput.
6
(
9
),
2669
2686
(
2010
).
36.
S.
Sun
,
T. F.
Stetina
,
T.
Zhang
,
H.
Hu
,
E. F.
Valeev
,
Q.
Sun
, and
X.
Li
, “
Efficient four-component Dirac–Coulomb–Gaunt Hartree–Fock in the Pauli spinor representation
,”
J. Chem. Theory Comput.
17
(
6
),
3388
3402
(
2021
).
37.
S.
Sun
,
J.
Ehrman
,
Q.
Sun
, and
X.
Li
, “
Efficient evaluation of the Breit operator in the Pauli spinor basis
,”
J. Chem. Phys.
157
(
6
),
064112
(
2022
).
38.
F.
Neese
, “
Software update: The ORCA program system—Version 5.0
,”
Wires Comput. Mol. Sci.
12
(
5
),
e1606
(
2022
).
39.
M.
Repisky
,
S.
Komorovsky
,
M.
Kadek
,
L.
Konecny
,
U.
Ekström
,
E.
Malkin
,
M.
Kaupp
,
K.
Ruud
,
O. L.
Malkina
, and
V. G.
Malkin
, “
ReSpect: Relativistic spectroscopy DFT program package
,”
J. Chem. Phys.
152
(
18
),
184101
(
2020
).
40.
D.
Peng
,
N.
Middendorf
,
F.
Weigend
, and
M.
Reiher
, “
An efficient implementation of two-component relativistic exact-decoupling methods for large molecules
,”
J. Chem. Phys.
138
(
18
),
184105
(
2013
).
41.
A.
Grofe
,
J.
Gao
, and
X.
Li
, “
Exact-two-component block-localized wave function: A simple scheme for the automatic computation of relativistic ΔSCF
,”
J. Chem. Phys.
155
(
1
),
014103
(
2021
).
42.
H.
Hu
,
A. J.
Jenkins
,
H.
Liu
,
J. M.
Kasper
,
M. J.
Frisch
, and
X.
Li
, “
Relativistic two-component multireference configuration interaction method with tunable correlation space
,”
J. Chem. Theory Comput.
16
(
5
),
2975
2984
(
2020
).
43.
G.
Te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
,
T.
Ziegler
,
G. T. E.
Velde
,
C. F.
Guerra
, and
S. J. A.
Gisbergen
, “
Chemistry with ADF
,”
J. Comput. Chem.
22
(
9
),
931
967
(
2001
).
44.
C. E.
Hoyer
,
H.
Hu
,
L.
Lu
,
S.
Knecht
, and
X.
Li
, “
Relativistic Kramers-unrestricted exact-two-component density matrix renormalization group
,”
J. Phys. Chem. A
126
(
30
),
5011
5020
(
2022
).
45.
Q.
Zhou
and
B.
Suo
, “
New implementation of spin‐orbit coupling calculation on multi‐configuration electron correlation theory
,”
Int. J. Quantum Chem.
121
(
20
),
e26772
(
2021
).
46.
L.
Lu
,
H.
Hu
,
A. J.
Jenkins
, and
X.
Li
, “
Exact-two-component relativistic multireference second-order perturbation theory
,”
J. Chem. Theory Comput.
18
(
5
),
2983
2992
(
2022
).
47.
T.
Shiozaki
and
W.
Mizukami
, “
Relativistic internally contracted multireference electron correlation methods
,”
J. Chem. Theory Comput.
11
(
10
),
4733
4739
(
2015
).
48.
P.
Sharma
,
A. J.
Jenkins
,
G.
Scalmani
,
M. J.
Frisch
,
D. G.
Truhlar
,
L.
Gagliardi
, and
X.
Li
, “
Exact-two-component multiconfiguration pair-density functional theory
,”
J. Chem. Theory Comput.
18
(
5
),
2947
2954
(
2022
).
49.
Y. J.
Franzke
,
N.
Middendorf
, and
F.
Weigend
, “
Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory
,”
J. Chem. Phys.
148
(
10
),
104110
(
2018
).
50.
D.
Peng
and
M.
Reiher
, “
Local relativistic exact decoupling
,”
J. Chem. Phys.
136
(
24
),
244108
(
2012
).
51.
T.
Saue
,
R.
Bast
,
A. S. P.
Gomes
,
H. J. A.
Jensen
,
L.
Visscher
,
I. A.
Aucar
,
R.
Di Remigio
,
K. G.
Dyall
,
E.
Eliav
,
E.
Fasshauer
,
T.
Fleig
,
L.
Halbert
,
E. D.
Hedegård
,
B.
Helmich-Paris
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
J. K.
Laerdahl
,
M. L.
Vidal
,
M. K.
Nayak
,
M.
Olejniczak
,
J. M. H.
Olsen
,
M.
Pernpointner
,
B.
Senjean
,
A.
Shee
,
A.
Sunaga
, and
J. N. P.
van Stralen
, “
The DIRAC code for relativistic molecular calculations
,”
J. Chem. Phys.
152
(
20
),
204104
(
2020
).
52.
G.
Jha
and
T.
Heine
, “
Spin–orbit coupling corrections for the GFN-xTB method
,”
J. Chem. Phys.
158
(
4
),
044120
(
2023
).
53.
R.
Jin
, “
Atomically precise metal nanoclusters: Stable sizes and optical properties
,”
Nanoscale
7
(
5
),
1549
1565
(
2015
).
54.
M.
Zhu
,
C. M.
Aikens
,
F. J.
Hollander
,
G. C.
Schatz
, and
R.
Jin
, “
Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties
,”
J. Am. Chem. Soc.
130
(
18
),
5883
5885
(
2008
).
55.
I.
Chakraborty
and
T.
Pradeep
, “
Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles
,”
Chem. Rev.
117
(
12
),
8208
8271
(
2017
).
56.
Y.
Levi-Kalisman
,
P. D.
Jadzinsky
,
N.
Kalisman
,
H.
Tsunoyama
,
T.
Tsukuda
,
D. A.
Bushnell
, and
R. D.
Kornberg
, “
Synthesis and characterization of Au102(p-MBA)44 nanoparticles
,”
J. Am. Chem. Soc.
133
(
9
),
2976
2982
(
2011
).
57.
T.
Tsukuda
,
H.
Tsunoyama
, and
H.
Sakurai
, “
Aerobic oxidations catalyzed by colloidal nanogold
,”
Chem. Asian J.
6
(
3
),
736
748
(
2011
).
58.
Y.
Zhu
,
H.
Qian
, and
R.
Jin
, “
Catalysis opportunities of atomically precise gold nanoclusters
,”
J. Mater. Chem.
21
(
19
),
6793
6799
(
2011
).
59.
K.
Kwak
,
S. S.
Kumar
, and
D.
Lee
, “
Selective determination of dopamine using quantum-sized gold nanoparticles protected with charge selective ligands
,”
Nanoscale
4
(
14
),
4240
4246
(
2012
).
60.
N.
Sakai
and
T.
Tatsuma
, “
Photovoltaic properties of glutathione-protected gold clusters adsorbed on TiO2 electrodes
,”
Adv. Mater.
22
(
29
),
3185
3188
(
2010
).
61.
Z.
Wu
,
M.
Wang
,
J.
Yang
,
X.
Zheng
,
W.
Cai
,
G.
Meng
,
H.
Qian
,
H.
Wang
, and
R.
Jin
, “
Well-defined nanoclusters as fluorescent nanosensors: A case study on Au25(SG)18
,”
Small
8
(
13
),
2028
2035
(
2012
).
62.
R. W.
Murray
, “
Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores
,”
Chem. Rev.
108
(
7
),
2688
2720
(
2008
).
63.
J. M.
Galloway
,
J. P.
Bramble
,
A. E.
Rawlings
,
G.
Burnell
,
S. D.
Evans
, and
S. S.
Staniland
, “
Biotemplated magnetic nanoparticle arrays
,”
Small
8
(
2
),
204
208
(
2012
).
64.
Y.-C.
Shiang
,
C.-C.
Huang
,
W.-Y.
Chen
,
P.-C.
Chen
, and
H.-T.
Chang
, “
Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging
,”
J. Mater. Chem.
22
(
26
),
12972
(
2012
).
65.
J.
Sun
and
Y.
Jin
, “
Fluorescent Au nanoclusters: Recent progress and sensing applications
,”
J. Mater. Chem. C
2
(
38
),
8000
8011
(
2014
).
66.
Z.
Wu
and
R.
Jin
, “
On the ligand's role in the fluorescence of gold nanoclusters
,”
Nano Lett.
10
(
7
),
2568
2573
(
2010
).
67.
L.
Li
,
H.
Liu
,
Y.
Shen
,
J.
Zhang
, and
J.-J.
Zhu
, “
Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine
,”
Anal. Chem.
83
(
3
),
661
665
(
2011
).
68.
H.
Qian
,
Y.
Zhu
, and
R.
Jin
, “
Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters
,”
ACS Nano
3
(
11
),
3795
3803
(
2009
).
69.
R. L.
Whetten
,
J. T.
Khoury
,
M. M.
Alvarez
,
S.
Murthy
,
I.
Vezmar
,
Z. L.
Wang
,
P. W.
Stephens
,
C. L.
Cleveland
,
W. D.
Luedtke
, and
U.
Landman
, “
Nanocrystal gold molecules
,”
Adv. Mater.
8
(
5
),
428
433
(
1996
).
70.
L. A.
Oro
,
P.
Braunstein
, and
P. R.
Raithby
,
Metal Clusters in Chemistry
(
Wiley-VCH, Weinheim
,
Germany
,
1999
), Vol.
3
.
71.
M.-C.
Daniel
and
D.
Astruc
, “
Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology
,”
Chem. Rev.
104
(
1
),
293
346
(
2004
).
72.
M. W.
Heaven
,
A.
Dass
,
P. S.
White
,
K. M.
Holt
, and
R. W.
Murray
, “
Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]
,”
J. Am. Chem. Soc.
130
(
12
),
3754
3755
(
2008
).
73.
M.
Walter
,
J.
Akola
,
O.
Lopez-Acevedo
,
P. D.
Jadzinsky
,
G.
Calero
,
C. J.
Ackerson
,
R. L.
Whetten
,
H.
Grönbeck
, and
H.
Häkkinen
, “
A unified view of ligand-protected gold clusters as superatom complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
105
(
27
),
9157
9162
(
2008
).
74.
P.
Jena
, “
Beyond the periodic table of elements: The role of superatoms
,”
J. Phys. Chem. Lett.
4
(
9
),
1432
1442
(
2013
).
75.
S.
Knoppe
,
I.
Dolamic
, and
T.
Bürgi
, “
Racemization of a chiral nanoparticle evidences the flexibility of the gold-thiolate interface
,”
J. Am. Chem. Soc.
134
(
31
),
13114
13120
(
2012
).
76.
H.
Qian
,
M.
Zhu
,
Z.
Wu
, and
R.
Jin
, “
Quantum sized gold nanoclusters with atomic precision
,”
Acc. Chem. Res.
45
(
9
),
1470
1479
(
2012
).
77.
A. W.
Castleman
and
S. N.
Khanna
, “
Clusters, superatoms, and building blocks of new materials
,”
J. Phys. Chem. C
113
(
7
),
2664
2675
(
2009
).
78.
D. M. P.
Mingos
, “
Molecular-orbital calculations on cluster compounds of gold
,”
J. Chem. Soc. Dalt. Trans.
1976
(
13
),
1163
1169
.
79.
D. M. P.
Mingos
,
J.
Lewis
, and
M. L. H.
Green
, “
Some theoretical and structural aspects of gold cluster chemistry
,”
Philos. Trans. R. Soc., A
308
(
1501
),
75
83
(
1982
).
80.
R. H.
Adnan
,
J. M. L.
Madridejos
,
A. S.
Alotabi
,
G. F.
Metha
, and
G. G.
Andersson
, “
A review of state of the art in phosphine ligated gold clusters and application in catalysis
,”
Adv. Sci.
9
(
15
),
2105692
(
2022
).
81.
W.
Weltner
and
R. J.
Van Zee
, “
Transition metal molecules
,”
Annu. Rev. Phys. Chem.
35
(
1
),
291
327
(
1984
).
82.
J. A.
Howard
and
B.
Mile
, “
Study of the genesis, structure, and reactions of small metal clusters using a rotating cryostat
,”
Acc. Chem. Res.
20
(
5
),
173
179
(
1987
).
83.
S.
Ogawa
and
S.
Ino
, “
Formation of multiply-twinned particles on alkali halide crystals by vacuum evaporation and their structures
,”
J. Cryst. Growth
13–14
,
48
56
(
1972
).
84.
S.
Iijima
and
T.
Ichihashi
, “
Structural instability of ultrafine particles of metals
,”
Phys. Rev. Lett.
56
(
6
),
616
619
(
1986
).
85.
H.
Hofmeister
, “
Forty years study of fivefold twinned structures in small particles and thin films
,”
Cryst. Res. Technol.
33
(
1
),
3
25
(
1998
).
86.
H.
Yang
,
Y.
Wang
,
X.
Chen
,
X.
Zhao
,
L.
Gu
,
H.
Huang
,
J.
Yan
,
C.
Xu
,
G.
Li
,
J.
Wu
,
A. J.
Edwards
,
B.
Dittrich
,
Z.
Tang
,
D.
Wang
,
L.
Lehtovaara
,
H.
Häkkinen
, and
N.
Zheng
, “
Plasmonic twinned silver nanoparticles with molecular precision
,”
Nat. Commun.
7
(
1
),
12809
(
2016
).
87.
Y.-M.
Su
,
Z.
Wang
,
S.
Schein
,
C.-H.
Tung
, and
D.
Sun
, “
A Keplerian Ag90 nest of Platonic and Archimedean polyhedra in different symmetry groups
,”
Nat. Commun.
11
(
1
),
3316
(
2020
).
88.
Y.-M.
Su
,
B.-Q.
Ji
,
Z.
Wang
,
S.-S.
Zhang
,
L.
Feng
,
Z.-Y.
Gao
,
Y.-W.
Li
,
C.-H.
Tung
,
D.
Sun
, and
L.-S.
Zheng
, “
Anionic passivation layer-assisted trapping of an icosahedral Ag13 kernel in a truncated tetrahedral Ag89 nanocluster
,”
Sci. China Chem.
64
(
9
),
1482
1486
(
2021
).
89.
B. A.
Collings
,
K.
Athanassenas
,
D.
Lacombe
,
D. M.
Rayner
, and
P. A.
Hackett
, “
Optical absorption spectra of Au7, Au9, Au11, and Au13, and their cations: Gold clusters with 6, 7, 8, 9, 10, 11, 12, and 13 s‐electrons
,”
J. Chem. Phys
101
(
5
),
3506
3513
(
1994
).
90.
K. J.
Taylor
,
C. L.
Pettiette‐Hall
,
O.
Cheshnovsky
, and
R. E.
Smalley
, “
Ultraviolet photoelectron spectra of coinage metal clusters
,”
J. Chem. Phys.
96
(
4
),
3319
3329
(
1992
).
91.
H.
Roulet
,
J.-M.
Mariot
,
G.
Dufour
, and
C. F.
Hague
, “
Size dependence of the valence bands in gold clusters
,”
J. Phys.
10
(
5
),
1025
1030
(
1980
).
92.
S.-T.
Lee
,
G.
Apai
,
M. G.
Mason
,
R.
Benbow
, and
Z.
Hurych
, “
Evolution of band structure in gold clusters as studied by photoemission
,”
Phys. Rev. B
23
(
2
),
505
508
(
1981
).
93.
P.
Sudraud
,
C.
Colliex
, and
J.
van de Walle
, “
Energy distribution of EHD emitted gold ions
,”
J. Phys. Lett.
40
(
9
),
207
211
(
1979
).
94.
D. A.
Shirley
, “
High-resolution x-ray photoemission spectrum of the valence bands of gold
,”
Phys. Rev. B
5
(
12
),
4709
4714
(
1972
).
95.
R.
Arratia‐Perez
and
D. A.
Case
, “
Relativistic effects on molecular hyperfine interactions: Application to XeF and CsO
,”
J. Chem. Phys.
79
(
10
),
4939
4949
(
1983
).
96.
R.
Arratia-Pérez
and
L.
Hernández-Acevedo
, “
Relativistic electronic structure of an icosahedral Au12Pd cluster
,”
Chem. Phys. Lett.
303
(
5–6
),
641
648
(
1999
).
97.
R.
Arratia-Perez
,
A. F.
Ramos
, and
G. L.
Malli
, “
Calculated electronic structure of Au13 clusters
,”
Phys. Rev. B
39
(
5
),
3005
3009
(
1989
).
98.
K. G.
Dyall
and
E.
van Lenthe
, “
Relativistic regular approximations revisited: An infinite-order relativistic approximation
,”
J. Chem. Phys.
111
(
4
),
1366
1372
(
1999
).
99.
E.
van Lenthe
,
E.-J.
Baerends
, and
J. G.
Snijders
, “
Relativistic total energy using regular approximations
,”
J. Chem. Phys.
101
(
11
),
9783
9792
(
1994
).
100.
W.
Liu
and
D.
Peng
, “
Exact two-component Hamiltonians revisited
,”
J. Chem. Phys.
131
(
3
),
031104
(
2009
).
101.
D.
Peng
and
M.
Reiher
, “
Exact decoupling of the relativistic Fock operator
,”
Theor. Chem. Acc.
131
(
1
),
1081
(
2012
).
102.
S.
Varga
,
B.
Fricke
,
H.
Nakamatsu
,
T.
Mukoyama
,
J.
Anton
,
D.
Geschke
,
A.
Heitmann
,
E.
Engel
, and
T.
Baştuǧ
, “
Four-component relativistic density functional calculations of heavy diatomic molecules
,”
J. Chem. Phys.
112
(
8
),
3499
3506
(
2000
).
103.
T.
Saue
, “
Relativistic Hamiltonians for chemistry: A primer
,”
ChemPhysChem
12
(
17
),
3077
3094
(
2011
).
104.
K.
Balasubramanian
, “
Relativistic double group spinor representations of nonrigid molecules
,”
J. Chem. Phys.
120
(
12
),
5524
5535
(
2004
).
105.
F.
Cotton
,
Chemical Applications of Group Theory
(
Wiley-Interscience
,
Michigan
,
1990
).
106.
H.
Bethe
, “
Termaufspaltung in Kristallen
,”
Ann. Phys.
395
(
2
),
133
208
(
1929
).
107.
A.
Le Paillier-Malécot
and
L.
Couture
, “
Properties of the single and double D4d groups and their isomorphisms with D8 and C8v groups
,”
J. Phys.
42
(
11
),
1545
1552
(
1981
).
108.
R. L.
Flurry
, Jr.
,
Applications of Symmetry and Group Theory
(
Prentice-Hall Inc
.,
New Jersey
,
1980
).
109.
G. F.
Koster
,
J. O.
Dimmock
,
R. G.
Wheeler
, and
H.
Statz
,
The Properties of the Thirty-Two Point Groups
(
The MIT Press
,
1963
).
110.
H. T.
Toivonen
and
P.
Pyykkö
, “
Relativistic molecular orbitals for the double group D3h
,”
Int. J. Quantum Chem.
11
(
4
),
695
700
(
1977
).
111.
L.
Visscher
, “
On the construction of double group molecular symmetry functions
,”
Chem. Phys. Lett.
253
(
1–2
),
20
26
(
1996
).
112.
S. L.
Altmann
, “
Improper double groups and the bases for the representations of O(3)
,”
J. Phys. A.
20
(
14
),
4587
4593
(
1987
).
113.
Y.
Onodera
and
M.
Okazaki
, “
Tables of basis functions for double point groups
,”
J. Phys. Soc. Jpn.
21
(
11
),
2400
2408
(
1966
).
114.
G. K.
Woodgate
,
Elementary Atomic Structure
(
Oxford University Press
,
New York
,
1999
).
115.
D.
Jiang
,
M.
Kühn
,
Q.
Tang
, and
F.
Weigend
, “
Superatomic orbitals under spin-orbit coupling
,”
J. Phys. Chem. Lett.
5
(
19
),
3286
3289
(
2014
).
116.
C.
Liao
,
M.
Zhu
,
D.
Jiang
, and
X.
Li
, “
Manifestation of the interplay between spin–orbit and Jahn–Teller effects in Au25 superatom UV-Vis fingerprint spectra
,”
Chem. Sci.
14
,
4666
4671
(
2023
).
117.
S.
Koseki
,
N.
Matsunaga
,
T.
Asada
,
M. W.
Schmidt
, and
M. S.
Gordon
, “
Spin–orbit coupling constants in atoms and ions of transition elements: Comparison of effective core potentials, model core potentials, and all-electron methods
,”
J. Phys. Chem. A
123
(
12
),
2325
2339
(
2019
).
118.
S. R.
Sahoo
and
S.-C.
Ke
, “
Spin-orbit coupling effects in Au 4f core-level electronic structures in supported low-dimensional gold nanoparticles
,”
Nanomaterials
11
(
2
),
554
(
2021
).
119.
H.
Ramanantoanina
,
W.
Urland
,
F.
Cimpoesu
, and
C.
Daul
, “
Ligand field density functional theory calculation of the 4f2 → 4f15d1 transitions in the quantum cutter Cs2KYF6:Pr3+
,”
Phys. Chem. Chem. Phys.
15
(
33
),
13902
(
2013
).
120.
A. A.
Rusakov
,
E.
Rykova
,
G. E.
Scuseria
, and
A.
Zaitsevskii
, “
Importance of spin-orbit effects on the isomerism profile of Au3: An ab initio study
,”
J. Chem. Phys.
127
(
16
),
164322
(
2007
).
121.
R.
Arratia-Pérez
,
L.
Hernández-Acevedo
, and
J. S.
Gómez-Jeria
, “
Calculated paramagnetic properties of matrix isolated Au3 cluster
,”
Chem. Phys. Lett.
236
(
1–2
),
37
42
(
1995
).
122.
G. A.
Bishea
and
M. D.
Morse
, “
Resonant two‐photon ionization spectroscopy of jet‐cooled Au3
,”
J. Chem. Phys.
95
(
12
),
8779
8792
(
1991
).
123.
A.
Baldes
,
R.
Gulde
, and
F.
Weigend
, “
Jahn–Teller distortion versus spin–orbit splitting: Symmetry of small heavy-metal atom clusters
,”
J. Clust. Sci.
22
(
3
),
355
363
(
2011
).
124.
K.
Balasubramanian
and
D.
Majumdar
, “
Spectroscopic properties of lead trimer (Pb3 and Pb3+): Potential energy surfaces, spin–orbit and Jahn–Teller effects
,”
J. Chem. Phys.
115
(
19
),
8795
8809
(
2001
).
125.
R.
Craciun
,
D.
Picone
,
R. T.
Long
,
S.
Li
,
D. A.
Dixon
,
K. A.
Peterson
, and
K. O.
Christe
, “
Third row transition metal hexafluorides, extraordinary oxidizers, and lewis acids: Electron affinities, fluoride affinities, and heats of formation of WF6, ReF6, OsF6, IrF6, PtF6, and AuF6
,”
Inorg. Chem.
49
(
3
),
1056
1070
(
2010
).
126.
T.
Drews
,
J.
Supeł
,
A.
Hagenbach
, and
K.
Seppelt
, “
Solid state molecular structures of transition metal hexafluorides
,”
Inorg. Chem.
45
(
9
),
3782
3788
(
2006
).
127.
L.
Alvarez-Thon
,
J.
David
,
R.
Arratia-Pérez
, and
K.
Seppelt
, “
Ground state of octahedral platinum hexafluoride
,”
Phys. Rev. A
77
(
3
),
034502
(
2008
).
128.
C. Y.
Yang
,
R.
Arratia-Perez
, and
J. P.
Lopez
, “
Electronic structure of tungsten hexacarbonyl
,”
Chem. Phys. Lett.
107
(
2
),
112
116
(
1984
).
129.
R.
Arratia-Perez
and
D. A.
Case
, “
Electronic structure of octachloroditungstate(II)
,”
Inorg. Chem.
23
(
20
),
3271
3273
(
1984
).
130.
W. W.
Lukens
,
M.
Speldrich
,
P.
Yang
,
T. J.
Duignan
,
J.
Autschbach
, and
P.
Kögerler
, “
The roles of 4f- and 5f-orbitals in bonding: A magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study
,”
Dalt. Trans.
45
(
28
),
11508
11521
(
2016
).
131.
N.
Moreno
,
F.
Ferraro
,
E.
Flórez
,
C. Z.
Hadad
, and
A.
Restrepo
, “
Spin-orbit coupling effects in AumPtn clusters (m + n = 4)
,”
J. Phys. Chem. A
120
(
10
),
1698
1705
(
2016
).
132.
P.
Błoński
,
S.
Dennler
, and
J.
Hafner
, “
Strong spin–orbit effects in small Pt clusters: Geometric structure, magnetic isomers and anisotropy
,”
J. Chem. Phys.
134
(
3
),
034107
(
2011
).
133.
H. K.
Yuan
,
H.
Chen
,
A. L.
Kuang
, and
B.
Wu
, “
Spin–orbit effect and magnetic anisotropy in Pt clusters
,”
J. Magn. Magn. Mater.
331
,
7
16
(
2013
).
134.
M. N.
Huda
,
M. K.
Niranjan
,
B. R.
Sahu
, and
L.
Kleinman
, “
Effect of spin-orbit coupling on small platinum nanoclusters
,”
Phys. Rev. A
73
(
5
),
053201
(
2006
).
135.
A.
Castro
,
M. A. L.
Marques
,
A. H.
Romero
,
M. J. T.
Oliveira
, and
A.
Rubio
, “
The role of dimensionality on the quenching of spin-orbit effects in the optics of gold nanostructures
,”
J. Chem. Phys.
129
(
14
),
144110
(
2008
).
136.
A.
Shayeghi
,
L. F.
Pašteka
,
D. A.
Götz
,
P.
Schwerdtfeger
, and
R.
Schäfer
, “
Spin–orbit effects in optical spectra of gold–silver trimers
,”
Phys. Chem. Chem. Phys.
20
(
14
),
9108
9114
(
2018
).
137.
L.
Xiao
and
L.
Wang
, “
From planar to three-dimensional structural transition in gold clusters and the spin–orbit coupling effect
,”
Chem. Phys. Lett.
392
,
452
455
(
2004
).
138.
M. A.
Flores
and
E.
Menéndez-Proupin
, “
Spin-orbit coupling effects in gold clusters: The case of Au13
,”
J. Phys.
720
,
012034
(
2016
).
139.
M. H.
Khodabandeh
,
N.
Asadi-Aghbolaghi
, and
Z.
Jamshidi
, “
Influence of scalar-relativistic and spin–orbit terms on the plasmonic properties of pure and silver-doped gold chains
,”
J. Phys. Chem. C
123
(
14
),
9331
9342
(
2019
).
140.
Y.-R.
Liu
,
T.
Huang
,
Y.-B.
Gai
,
Y.
Zhang
,
Y.-J.
Feng
, and
W.
Huang
, “
Three-dimensional assignment of the structures of atomic clusters: An example of Au8M (M=Si, Ge, Sn) anion clusters
,”
Sci. Rep.
5
(
1
),
17738
(
2016
).
141.
B.
Anak
,
M.
Bencharif
, and
F.
Rabilloud
, “
Time-dependent density functional study of UV-visible absorption spectra of small noble metal clusters (Cun, Agn, Aun, n = 2–9, 20)
,”
RSC Adv.
4
(
25
),
13001
(
2014
).
142.
J.
Li
,
X.
Li
,
H.-J.
Zhai
, and
L.-S.
Wang
, “
Au20: A tetrahedral cluster
,”
Science
299
(
5608
),
864
867
(
2003
).
143.
X.
Yang
,
J.
Zhou
,
H.
Weng
, and
J.
Dong
, “
Spin-orbit interaction in au structures of various dimensionalities
,”
Appl. Phys. Lett.
92
(
2
),
023115
(
2008
).
144.
Q.
Zeng
,
X.
Chu
,
M.
Yang
, and
D.-Y.
Wu
, “
Spin–orbit coupling effect on Au–C60 interaction: A density functional theory study
,”
Chem. Phys.
395
,
82
86
(
2012
).
145.
A.
Muñoz-Castro
,
D.
Paez-Hernandez
, and
R.
Arratia-Perez
, “
Spin-orbit effect into isomerization barrier of small gold clusters. Oh ↔ D2h Fluxionality of the Au62+ cluster investigated by relativistic methods
,”
Chem. Phys. Lett.
683
,
404
407
(
2017
).
146.
M.
Iliaš
and
T.
Saue
, “
An infinite-order two-component relativistic hamiltonian by a simple one-step transformation
,”
J. Chem. Phys.
126
(
6
),
064102
(
2007
).
147.
J.
Autschbach
,
B. A.
Hess
,
M. P.
Johansson
,
J.
Neugebauer
,
M.
Patzschke
,
P.
Pyykkö
,
M.
Reiher
, and
D.
Sundholm
, “
Properties of WAu12
,”
Phys. Chem. Chem. Phys.
6
(
1
),
11
22
(
2004
).
148.
P.
Pyykkö
and
N.
Runeberg
, “
Icosahedral WAu12: A predicted closed-shell species, stabilized by aurophilic attraction and relativity and in accord with the 18-electron rule
,”
Angew. Chem., Int. Ed.
41
(
12
),
2174
2176
(
2002
).
149.
X.
Li
,
B.
Kiran
,
J.
Li
,
H.-J.
Zhai
, and
L.-S.
Wang
, “
Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules
,”
Angew. Chem., Int. Ed. Engl.
41
(
24
),
4786
4789
(
2002
).
150.
H.
Häkkinen
, “
Electronic structure: Shell structure and the superatom concept
,” in
Protected Metal Clusters: From Fundamentals to Applications
, edited by
H.
Hakkinen
and
T.
Tsukuda
(
Elsevier Science
,
2015
), pp
189
222
.
151.
P.
Jena
,
Superatoms: Principles, Synthesis and Applications
, edited by
Q.
Sun
(
Wiley
,
2022
).
152.
A.
Muñoz-Castro
and
R.
Arratia-Perez
, “
Spin-orbit effects on a gold-based superatom: A relativistic jellium model
,”
Phys. Chem. Chem. Phys.
14
(
4
),
1408
1411
(
2012
).
153.
G.-J.
Cao
,
W. H. E.
Schwarz
, and
J.
Li
, “
An 18-electron system containing a superheavy element: Theoretical studies of Sg@Au12
,”
Inorg. Chem.
54
(
7
),
3695
3701
(
2015
).
154.
P.
Pyykkö
,
C.
Clavaguéra
, and
J.-P.
Dognon
, “
The 32-Electron principle
,” in
Computational Methods in Lanthanide and Actinide Chemistry
, edited by
M.
Dolg
(
John Wiley & Sons Ltd
:
Chichester, UK
,
2015
), pp
401
424
.
155.
J.-P.
Dognon
,
C.
Clavaguéra
, and
P.
Pyykkö
, “
Towards a 32-electron principle: Pu@Pb12 and related systems
,”
Angew. Chem., Int. Ed.
46
(
9
),
1427
1430
(
2007
).
156.
J.-P.
Dognon
,
C.
Clavaguéra
, and
P.
Pyykkö
, “
Chemical properties of the predicted 32-electron systems Pu@Sn12 and Pu@Pb12
,”
C. R. Chim.
13
(
6–7
),
884
888
(
2010
).
157.
L.-F.
Cui
,
X.
Huang
,
L.-M.
Wang
,
J.
Li
, and
L.-S.
Wang
, “
Pb122–: Plumbaspherene
,”
J. Phys. Chem. A
110
(
34
),
10169
10172
(
2006
).
158.
A.
Muñoz-Castro
,
D.
Mac-Leod Carey
, and
R.
Arratia-Pérez
, “
Inside a superatom: The M7q (M=Cu, Ag, Q=1+, 0, 1–) case
,”
ChemPhysChem
11
(
3
),
646
650
(
2010
).
159.
T.
Li
,
Z.
Feng
,
C.
Jing
,
F.
Hong
,
S.
Cao
, and
J.
Zhang
, “
Importance of spin–orbit coupling in M@Pb12 clusters (M=3d and 4d atoms)
,”
Chem. Phys. Lett.
543
,
106
110
(
2012
).
160.
L.
Visscher
, “
Four-component relativistic electronic structure theory
,” in
Encyclopedia of Computational Chemistry
(
John Wiley & Sons, Ltd
,
Chichester, UK
,
2004
).
161.
T.
Tsukuda
and
H.
Häkkinen
,
Protected Metal Clusters: From Fundamentals to Applications
(
Elsevier
,
2015
).
162.
X.
Kang
,
H.
Chong
, and
M.
Zhu
, “
Au25(SR)18: The captain of the great nanocluster ship
,”
Nanoscale
10
(
23
),
10758
10834
(
2018
).
163.
M. S.
Devadas
,
S.
Bairu
,
H.
Qian
,
E.
Sinn
,
R.
Jin
, and
G.
Ramakrishna
, “
Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters
,”
J. Phys. Chem. Lett.
2
(
21
),
2752
2758
(
2011
).
164.
O.
Toikkanen
,
V.
Ruiz
,
G.
Rönnholm
,
N.
Kalkkinen
,
P.
Liljeroth
, and
B. M.
Quinn
, “
Synthesis and stability of monolayer-protected Au38 clusters
,”
J. Am. Chem. Soc.
130
(
33
),
11049
11055
(
2008
).
165.
L.
Cheng
,
C.
Ren
,
X.
Zhang
, and
J.
Yang
, “
New insight into the electronic shell of Au38(SR)24: A superatomic molecule
,”
Nanoscale
5
(
4
),
1475
(
2013
).
166.
L.
Liu
,
P.
Li
,
L.-F.
Yuan
,
L.
Cheng
, and
J.
Yang
, “
From isosuperatoms to isosupermolecules: New concepts in cluster science
,”
Nanoscale
8
(
25
),
12787
12792
(
2016
).
167.
A.
Muñoz-Castro
, “
Single, double, and triple intercluster bonds: Analyses of M2Au36(SR)24 (M = Au, Pd, Pt) as 14-, 12- and 10-ve superatomic molecules
,”
Chem. Commun.
55
(
51
),
7307
7310
(
2019
).
168.
G. L.
Malli
, “
Thirty years of relativistic self-consistent field theory for molecules: Relativistic and electron correlation effects for atomic and molecular systems of transactinide superheavy elements up to ekaplutonium E126 with g-atomic spinors in the ground state
,”
Theor. Chem. Acc.
118
(
3
),
473
482
(
2007
).
169.
A.
Muñoz-Castro
, “
A superatomic molecule under the spin-orbit coupling: Insights from the electronic properties in the thiolate-protected Au38(SR)24 cluster
,”
Int. J. Quantum Chem.
118
(
6
),
e25508
(
2018
).
170.
R.
Arratia-Pérez
,
L.
Hernández-Acevedo
, and
L.
Alvarez-Thon
, “
Calculated paramagnetic hyperfine structure of pentagonal bipyramid Ag7 cluster
,”
J. Chem. Phys.
108
(
14
),
5795
5798
(
1998
).
171.
R. J.
Van Zee
and
W.
Weltner
, “
Cu7 cluster: Pentagonal bipyramid
,”
J. Chem. Phys.
92
(
11
),
6976
6977
(
1990
).
172.
R.
Arratia‐Perez
and
G. L.
Malli
, “
Dirac scattered‐wave calculations for Ag2+3, Auq+3, and Auq+4 (q = 1, 2) clusters
,”
J. Chem. Phys.
84
(
10
),
5891
5897
(
1986
).
173.
R.
Arratia-Perez
and
G. L.
Malli
, “
Bonding, optical, and magnetic properties of paramagnetic Ag41+ and Ag43+ clusters
,”
J. Magn. Reson.
73
(
1
),
134
142
(
1987
).
174.
C. E.
Forbes
and
M. C. R.
Symons
, “
An electron spin resonance study of dimeric, trimeric, and tetrameric paramagnetic silver atom clusters
,”
Mol. Phys.
27
(
2
),
467
471
(
1974
).
175.
R. S.
Eachus
and
M. C. R.
Symons
, “
Unstable intermediates. Part LXX. An electron spin resonance study of silver radicals trapped in frozen aqueous sulphuric acid
,”
J. Chem. Soc.
1970
,
1329
.
176.
A. V.
Arbuznikov
,
J.
Vaara
, and
M.
Kaupp
, “
Relativistic spin-orbit effects on hyperfine coupling tensors by density-functional theory
,”
J. Chem. Phys.
120
(
5
),
2127
2139
(
2004
).
177.
J. A.
Howard
,
R.
Sutcliffe
, and
B.
Mile
, “
Cryochemical studies. 6. Electron spin resonance spectrum of silver cluster (Ag5)
,”
J. Phys. Chem.
87
(
13
),
2268
2271
(
1983
).
178.
J. A.
Howard
,
R.
Sutcliffe
, and
B.
Mile
, “
The geometric and electronic structures of small metal clusters of group 1B metals
,”
Surf. Sci.
156
,
214
227
(
1985
).
179.
A.
Van Der Pol
,
E. J.
Reijersen
,
E.
De Boer
,
T.
Wasowicz
, and
J.
Michalik
, “
The electron paramagnetic resonance spectrum of Ag2+3
,”
Mol. Phys.
75
(
1
),
37
42
(
1992
).
180.
L.
Alvarado-Soto
,
R.
Ramírez-Tagle
, and
R.
Arratia-Pérez
, “
Spin–orbit effects on the aromaticity of the Re3Cl9 and Re3Br9 clusters
,”
Chem. Phys. Lett.
467
(
1–3
),
94
96
(
2008
).
181.
L.
Alvarado-Soto
,
R.
Ramírez-Tagle
, and
R.
Arratia-Pérez
, “
Spin−orbit effects on the aromaticity of the Re3 X92− (X = Cl, Br) cluster ions
,”
J. Phys. Chem. A
113
(
9
),
1671
1673
(
2009
).
182.
A.
Vásquez-Espinal
,
R.
Pino-Rios
,
L.
Alvarez-Thon
,
W. A.
Rabanal-León
,
J. J.
Torres-Vega
,
R.
Arratia-Perez
, and
W.
Tiznado
, “
New insights into Re3(μ-Cl)3 Cl6 aromaticity. Evidence of σ- and π-diatropicity
,”
J. Phys. Chem. Lett.
6
(
21
),
4326
4330
(
2015
).
183.
W. A.
Rabanal‐León
,
A.
Vásquez‐Espinal
,
O.
Yañez
,
R.
Pino‐Rios
,
R.
Arratia‐Pérez
,
L.
Alvarez‐Thon
,
J. J.
Torres‐Vega
, and
W.
Tiznado
, “
Aromaticity of [M3(μ‐X)3X6]0/2– (M = Re and Tc, X = Cl, Br, I) clusters confirmed by ring current analysis and induced magnetic field
,”
Eur. J. Inorg. Chem.
2018
(
28
),
3312
3319
.
184.
L.
Alvarez-Thon
and
W.
Caimanque-Aguilar
, “
Spin-orbit effects on magnetically induced current densities in the M42− (M=B, Al, Ga, In, Tl) clusters
,”
Chem. Phys. Lett.
671
,
118
123
(
2017
).
185.
L.
Alvarez-Thon
and
N.
Inostroza-Pino
, “
Spin-orbit effects on magnetically induced current densities in the M5 (M = N, P, As, Sb, Bi, Mc) clusters
,”
J. Comput. Chem.
39
(
14
),
862
868
(
2018
).
186.
X.
Bai
,
J.
Lv
,
F.-Q.
Zhang
,
J.-F.
Jia
, and
H.-S.
Wu
, “
Spin-orbit coupling effect on structural and magnetic properties of Con Rh13−n (n = 0–13) clusters
,”
J. Magn. Magn. Mater.
451
,
360
367
(
2018
).
187.
B.
Le Guennic
and
J.
Autschbach
, “
[Pt@Pb12]2− − A challenging system for relativistic density functional theory calculations of 195Pt and 207Pb NMR parameters
,”
Can. J. Chem.
89
(
7
),
814
821
(
2011
).
188.
E. N.
Esenturk
,
J.
Fettinger
, and
B.
Eichhorn
, “
The Pb122− and Pb102− Zintl ions and the M@Pb122− and M@Pb102− cluster series where M = Ni, Pd, Pt
,”
J. Am. Chem. Soc.
128
(
28
),
9178
9186
(
2006
).
189.
A.
Li
,
Y.
Wang
,
D. O.
Downing
,
F.
Chen
,
P.
Zavalij
,
A.
Muñoz‐Castro
, and
B. W.
Eichhorn
, “
Endohedral plumbaspherenes of the group 9 metals: Synthesis, structure and properties of the [M@Pb12]3− (M=Co, Rh, Ir) ions
,”
Chem. - Eur. J.
26
(
26
),
5824
5833
(
2020
).
190.
A. C.
Castro
,
E.
Osorio
,
J. O. C.
Jiménez-Halla
,
E.
Matito
,
W.
Tiznado
, and
G.
Merino
, “
Scalar and spin−orbit relativistic corrections to the NICS and the induced magnetic field: The case of the E122− spherenes (E = Ge, Sn, Pb)
,”
J. Chem. Theory Comput.
6
(
9
),
2701
2705
(
2010
).
191.
D.
Smith
, “
The ‘anomalous’ ionization potential of bismuth
,”
J. Chem. Educ.
52
(
9
),
576
(
1975
).
192.
J. A.
Chamizo
, “
The ‘anomalous’ electron affinity of lead: An example of isoelectronic behavior
,”
J. Chem. Educ.
61
(
10
),
874
(
1984
).
193.
W.-K.
Li
and
S. M.
Blinder
, “
Introducing relativity into quantum chemistry
,”
J. Chem. Educ.
88
(
1
),
71
73
(
2011
).
194.
H. G.
Raubenheimer
and
H.
Schmidbaur
, “
The late start and amazing upswing in gold chemistry
,”
J. Chem. Educ.
91
(
12
),
2024
2036
(
2014
).
195.
D. W.
Smith
, “
Effects of exchange energy and spin-orbit coupling on bond energies
,”
J. Chem. Educ.
81
(
6
),
886
(
2004
).
196.
J.
Even
,
L.
Pedesseau
,
J.-M.
Jancu
, and
C.
Katan
, “
Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications
,”
J. Phys. Chem. Lett.
4
(
17
),
2999
3005
(
2013
).
197.
W. P.
Carbery
,
A.
Verma
, and
D. B.
Turner
, “
Spin–orbit coupling drives femtosecond nonadiabatic dynamics in a transition metal compound
,”
J. Phys. Chem. Lett.
8
(
6
),
1315
1322
(
2017
).
198.
S.
Manna
and
S.
Mishra
, “
The role of spin–orbit coupling in the double-ionization photoelectron spectra of XCN2+ (X = Cl, Br, and I)
,”
J. Phys. Chem. A
120
(
9
),
1554
1561
(
2016
).
199.
E.
Ronca
,
F.
De Angelis
, and
S.
Fantacci
, “
Time-dependent density functional theory modeling of spin–orbit coupling in ruthenium and osmium solar cell sensitizers
,”
J. Phys. Chem. C
118
(
30
),
17067
17078
(
2014
).
You do not currently have access to this content.