Ultrafast spectroscopy is a valuable tool for monitoring the timescales of interactions between systems and their environments, resulting in pure dephasing. The superposition of ground and excited states of a molecule in a condensed phase, created by field–matter interactions, loses its coherence due to fluctuations from surrounding molecules that interact differently with the ground and excited states. Recently, quantum decoherence has become an intense area of research due to its relevance to the quantum-to-classical transition and its critical role in developing quantum technologies, such as quantum computers and cryptography. Although both pure dephasing and quantum decoherence result from the same process of environmental monitoring of systems through quantum entanglement between the system and its environment, they have been studied and discussed in very different contexts with seemingly disparate terminologies. In this work, we present a detailed theoretical description of pure dephasing and quantum decoherence in bosonic environments coupled to a two-level system, compare them directly, and demonstrate their connections to the wave–particle duality of isolated systems and the wave-particle-entanglement triality of composite systems consisting of systems and their environments. It is believed that the present review will be helpful for gaining a deeper understanding of ultrafast spectroscopy from a quantum mechanical perspective and the wave–particle duality of quantum objects interacting with their surrounding environments.

1.
G. R.
Fleming
and
M.
Cho
,
Annu. Rev. Phys. Chem.
47
,
109
134
(
1996
).
2.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
Oxford
,
1995
).
3.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
Boca Raton
,
2009
).
4.
L.
Allen
and
J. H.
Eberly
,
Optical Resonance and Two-Level Atoms
(
Dover Publications
,
1987
).
5.
Y.
Toyozawa
,
Optical Processes in Solids
(
Cambridge University Press
,
Cambridge, UK
,
2003
).
6.
H.
Rhee
,
Y.-G.
June
,
J.-S.
Lee
,
K.-K.
Lee
,
J.-H.
Ha
,
Z. H.
Kim
,
S.-J.
Jeon
, and
M.
Cho
,
Nature
458
,
310
313
(
2009
).
7.
H.
Rhee
,
I.
Eom
,
S.-H.
Ahn
, and
M.
Cho
,
Chem. Soc. Rev.
41
,
4457
4466
(
2012
).
8.
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Annu. Rev. Phys. Chem.
49
,
99
123
(
1998
).
9.
M.
Cho
,
Chem. Rev.
108
,
1331
1418
(
2008
).
10.
P.
Hamm
and
M. T.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge/New York
,
2011
).
11.
M. D.
Fayer
,
Ultrafast Infrared Vibrational Spectroscopy
(
CRC Press
,
Boca Raton
,
2013
).
12.
M.
Cho
,
Coherent Multidimensional Spectroscopy
(
Springer Nature
,
Singapore
,
2019
).
13.
Z.
Ganim
,
H. S.
Chung
,
A. W.
Smith
,
L. P.
DeFlores
,
K. C.
Jones
, and
A.
Tokmakoff
,
Acc. Chem. Res.
41
,
432
441
(
2008
).
14.
J. D.
Hybl
,
A. W.
Albrecht
,
S. M.
Gallagher Faeder
, and
D. M.
Jonas
,
Chem. Phys. Lett.
297
,
307
313
(
1998
).
15.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
102
,
6123
6138
(
1998
).
16.
M.
Cho
,
J. Phys. Chem. Lett.
12
,
10284
10294
(
2021
).
17.
M.
Schlosshauer
,
Decoherence and the Quantum-To-Classical Transition
(
Springer
,
2007
).
18.
K.
Hornberger
,
Lect. Notes Phys.
768
,
221
276
(
2009
).
19.
J.
Kim
,
J.
Jeon
,
T. H.
Yoon
, and
M.
Cho
,
Chem. Phys.
520
,
122
137
(
2019
).
20.
J. A.
Cina
,
Getting Started on Time-Resolved Molecular Spectroscopy
(
Oxford University Press
,
Oxford
,
2022
).
21.
W. H.
Zurek
,
Phys. Today
44
(
10
),
36
44
(
1991
).
22.
W. H.
Zurek
,
Rev. Mod. Phys.
75
,
715
775
(
2003
).
23.
A.
Buchleitner
,
C.
Viviescas
, and
M.
Tiersch
,
Entanglement and Decoherence: Foundations and Modern Trends
(
Springer
,
Berlin
,
2009
).
24.
E.
Joos
,
H. D.
Zeh
,
C.
Kiefer
,
D.
Giulini
,
J.
Kupsch
, and
I.-O.
Stamatescu
,
Decoherence and the Appearance of a Classical World in Quantum Theory
,
2nd ed
. (
Springer
,
Berlin/New York
,
2003
).
25.
H.
Lee
,
Y.-C.
Cheng
, and
G. R.
Fleming
,
Science
316
,
1462
1465
(
2007
).
26.
27.
T. H.
Yoon
and
M.
Cho
,
Sci. Adv.
7
,
eabi9268
(
2021
).
28.
S. K.
Lee
,
N. S.
Han
,
T. H.
Yoon
, and
M.
Cho
,
Commun. Phys.
1
,
51
(
2018
).
29.
B.
Bagchi
,
D. W.
Oxtoby
, and
G. R.
Fleming
,
Chem. Phys.
86
,
257
267
(
1984
).
30.
M.
Cho
,
S. J.
Rosenthal
,
N. F.
Scherer
,
L. D.
Ziegler
, and
G. R.
Fleming
,
J. Chem. Phys.
96
,
5033
5038
(
1992
).
31.
C. P.
Lawrence
and
J. L.
Skinner
,
J. Chem. Phys.
117
,
8847
8854
(
2002
).
32.
J. L.
Skinner
and
D.
Hsu
,
J. Phys. Chem.
90
,
4931
4938
(
1986
).
33.
M.
Cho
and
G. R.
Fleming
,
Adv. Chem. Phys.
107
,
311
370
(
1999
).
34.
L. M.
Duan
and
G. C.
Guo
,
Phys. Rev. A
57
,
737
741
(
1998
).
35.
36.
G. R.
Fleming
,
Chemical Applications of Ultrafast Spectroscopy
(
Oxford University Press
,
New York/Oxford
,
1986
).
37.
W.
Liptay
,
Angew. Chem., Int. Ed.
8
,
177
188
(
1969
).
38.
W.
Liptay
, edited by
E. C.
Lim
, Excited States (
Academic
,
New York
,
1974
), Vol.
1
, pp.
129
159
.
39.
K.
Huang
and
A.
Rhys
,
Proc. R. Soc. A
204
,
406
(
1950
).
40.
S.
Permogorov
,
Excitons
(
North-Holland Publishing Company
,
1982
).
41.
M.
de Jong
,
L.
Seijo
,
A.
Meijerink
, and
F. T.
Rabouw
,
Phys. Chem. Chem. Phys.
17
,
16959
16969
(
2017
).
42.
M.
Cardona
,
Light Scattering in Solids II
(
Springer
,
Berlin
,
Heidelberg
,
1982
).
43.
D. F.
Walls
and
G. J.
Milburn
,
Quantum Optics
,
2nd ed
. (
Springer
,
Berlin
,
2008
).
44.
P.
Busch
,
P.
Lahti
, and
P.
Mittelstaedt
,
The Quantum Theory of Measurement
(
Springer-Verlag
,
Berlin/New York
,
1991
).
45.
W. H.
Zurek
,
Phys. Rev. D
24
,
1516
1525
(
1981
).
46.
R. A.
Marcus
,
Annu. Rev. Phys. Chem.
15
,
155
(
1964
).
47.
R.
Jimenez
,
G. R.
Fleming
,
P. V.
Kumar
, and
M.
Maroncelli
,
Nature
369
,
471
473
(
1994
).
48.
H. L.
Tavernier
,
A. V.
Barzykin
,
M.
Tachiya
, and
M. D.
Fayer
,
J. Phys. Chem. B
102
,
6078
6088
(
1998
).
49.
T.
Okamura
,
M.
Sumitani
, and
K.
Yoshihara
,
Chem. Phys. Lett.
94
,
339
343
(
1983
).
50.
E. W.
Castner
and
M.
Maroncelli
,
J. Mol. Liq.
77
,
1
36
(
1998
).
51.
U.
Weiss
,
Quantum Dissipative Systems
,
5th ed
. (
World Scientific Publishing
,
New Jersey
,
2022
).
52.
M.
Schlosshauer
,
Phys. Rep.
831
,
1
57
(
2019
).
53.
S.
Mukamel
and
R. F.
Loring
,
J. Opt. Soc. Am. B
3
,
595
(
1986
).
54.
S.
Mukamel
,
Annu. Rev. Phys. Chem.
51
,
691
729
(
2000
).
55.
T. L. C.
Jansen
,
S.
Saito
,
J.
Jeon
, and
M.
Cho
,
J. Chem. Phys.
150
,
100901
(
2019
).
56.
R.
Fritzsch
,
S.
Hume
,
L.
Minnes
,
M. J.
Baker
,
G. A.
Burley
, and
N. T.
Hunt
,
Analyst
145
,
2014
2024
(
2020
).
57.
M.
Reppert
and
A.
Tokmakoff
,
Annu. Rev. Phys. Chem.
67
,
359
386
(
2016
).
58.
C. R.
Baiz
,
B.
Blasiak
,
J.
Bredenbeck
,
M.
Cho
,
J. H.
Choi
,
S. A.
Corcelli
,
A. G.
Dijkstra
,
C. J.
Feng
,
S.
Garrett-Roe
,
N. H.
Ge
,
M. W. D.
Hanson-Heine
,
J. D.
Hirst
,
T. L. C.
Jansen
,
K.
Kwac
,
K. J.
Kubarych
,
C. H.
Londergan
,
H.
Maekawa
,
M.
Reppert
,
S.
Saito
,
S.
Roy
,
J. L.
Skinner
,
G.
Stock
,
J. E.
Straub
,
M. C.
Thielges
,
K.
Tominaga
,
A.
Tokmakoff
,
H.
Torii
,
L.
Wang
,
L. J.
Webb
, and
M. T.
Zanni
,
Chem. Rev.
120
,
7152
7218
(
2020
).
59.
M.
Cho
,
J.-Y.
Yu
,
T.
Joo
,
Y.
Nagasawa
,
S. A.
Passino
, and
G. R.
Fleming
,
J. Phys. Chem.
100
,
11944
11953
(
1996
).
60.
E.
Joos
and
H. D.
Zeh
,
Z. Phys. B
59
,
223
243
(
1985
).
61.
W. G.
Unruh
and
W. H.
Zurek
,
Phys. Rev. D
40
,
1071
1094
(
1989
).
62.
W. H.
Zurek
,
S.
Habib
, and
J. P.
Paz
,
Phys. Rev. Lett.
70
,
1187
1190
(
1993
).
63.
J. P.
Paz
and
W. H.
Zurek
, in
Fundamentals of Quantum Information
, Lecture Notes in Physics Vol.
587
, edited by
D.
Heiss
(
Springer
,
Berlin
,
2001
).
64.
H. D.
Zeh
,
Found. Phys.
1
(
1
),
69
76
(
1970
).
65.
O.
Kubler
and
H. D.
Zeh
,
Ann. Phys.
76
,
405
418
(
1973
).
66.
H. D.
Zeh
,
Found. Phys.
3
,
109
116
(
1973
).
67.
W. H.
Zurek
,
Phys. Rev. D
26
,
1862
1880
(
1982
).
68.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
85
(
1987
).
69.
M.
Schlosshauer
,
Rev. Mod. Phys.
76
,
1267
1305
(
2004
).
70.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
,
374
456
(
1983
).
71.
M.
Cho
,
G. R.
Fleming
,
S.
Saito
,
I.
Ohmine
, and
R. M.
Stratt
,
J. Chem. Phys.
100
,
6672
6683
(
1994
).
72.
R. M.
Stratt
and
M.
Cho
,
J. Chem. Phys.
100
,
6700
6708
(
1994
).
73.
R. M.
Stratt
,
Acc. Chem. Res.
28
,
201
(
1995
).
74.
M.
Cho
,
J. Chem. Phys.
118
,
3480
3490
(
2003
).
75.
P.
Madden
and
D.
Kivelson
,
Adv. Chem. Phys.
56
,
467
566
(
1984
).
76.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Clarendon Press
,
Oxford
,
1961
).
77.
W. K.
Wootters
and
W. H.
Zurek
,
Phys. Rev. D
19
,
473
484
(
1979
).
78.
D. M.
Greenberger
and
A.
Yasin
,
Phys. Lett. A
128
,
391
394
(
1988
).
79.
G.
Jaeger
,
M. A.
Horne
, and
A.
Shimony
,
Phys. Rev. A
48
,
1023
1027
(
1993
).
80.
B. G.
Englert
,
Phys. Rev. Lett.
77
,
2154
2157
(
1996
).
81.
M.
Jakob
and
J. A.
Bergou
,
Phys. Rev. A
76
,
052107
(
2007
).
82.
B. G.
Englert
,
D.
Kaszlikowski
,
L. C.
Kwek
, and
W. H.
Chee
,
Int. J. Quantum Inf.
6
,
129
157
(
2008
).
83.
M. N.
Bera
,
T.
Qureshi
,
M. A.
Siddiqui
, and
A. K.
Pati
,
Phys. Rev. A
92
,
012118
(
2015
).
84.
T.
Qureshi
,
Opt. Lett.
46
(
3
),
492
495
(
2021
).
85.
T. E.
Tessier
,
Found. Phys. Lett.
18
,
107
121
(
2005
).
86.
C.
Brukner
,
M.
Aspelmeyer
, and
A.
Zeilinger
,
Found. Phys.
35
,
1909
1919
(
2005
).
87.
S.
Durr
,
T.
Nonn
, and
G.
Rempe
,
Nature
395
,
33
37
(
1998
).
88.
X. F.
Qian
,
K.
Konthasinghe
,
S. K.
Manikandan
,
D.
Spiecker
,
A. N.
Vamivakas
, and
J. H.
Eberly
,
Phys. Rev. Res.
2
,
012016
(
2020
).
89.
G.
Badurek
,
H.
Rauch
, and
D.
Tuppinger
,
Phys. Rev. A
34
,
2600
2608
(
1986
).
90.
X. F.
Qian
,
A. N.
Vamivakas
, and
J. H.
Eberly
,
Optica
5
,
942
947
(
2018
).
91.
M.
Nielsen
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2010
).
92.
U.
Eichmann
,
J. C.
Bergquist
,
J. J.
Bollinger
,
J. M.
Gilligan
,
W. M.
Itano
,
D. J.
Wineland
, and
M. G.
Raizen
,
Phys. Rev. Lett.
70
,
2359
2362
(
1993
).
93.
W. M.
Itano
,
J. C.
Bergquist
,
J. J.
Bollinger
,
D. J.
Wineland
,
U.
Eichmann
, and
M. G.
Raizen
,
Phys. Rev. A
57
,
4176
4187
(
1998
).
94.
G.
Araneda
,
D. B.
Higginbottom
,
L.
Slodicka
,
Y.
Colombe
, and
R.
Blatt
,
Phys. Rev. Lett.
120
,
193603
(
2018
).
95.
X. F.
Qian
and
G. S.
Agarwal
,
Phys. Rev. Res.
2
,
012031
(
2020
).
96.
F.
De Zela
,
Opt. Lett.
43
,
2603
2606
(
2018
).
97.
T.
Baumgratz
,
M.
Cramer
, and
M. B.
Plenio
,
Phys. Rev. Lett.
113
,
140401
(
2014
).
98.
J. H.
Reina
,
L.
Quiroga
, and
N. F.
Johnson
,
Phys. Rev. A
65
,
032326
(
2002
).
99.
G. D.
Scholes
,
G. R.
Fleming
,
L. X.
Chen
,
A.
Aspuru-Guzik
,
A.
Buchleitner
,
D. F.
Coker
,
G. S.
Engel
,
R.
van Grondelle
,
A.
Ishizaki
,
D. M.
Jonas
,
J. S.
Lundeen
,
J. K.
McCusker
,
S.
Mukamel
,
J. P.
Ogilvie
,
A.
Olaya-Castro
,
M. A.
Ratner
,
F. C.
Spano
,
K. B.
Whaley
, and
X. Y.
Zhu
,
Nature
543
,
647
656
(
2017
).
100.
D.
Zigmantas
,
T.
Polivka
,
P.
Persson
, and
V.
Sundstrom
,
Chem. Phys. Rev.
3
,
041303
(
2022
).
101.
I. D.
Abella
,
N. A.
Kurnit
, and
S. R.
Hartmann
,
Phys. Rev.
14
,
391
406
(
1966
).
102.
E. L.
Hahn
,
Phys. Rev.
80
,
580
594
(
1950
).
You do not currently have access to this content.