Metal-organic frameworks (MOFs) are a class of crystalline porous coordination materials, which are assembled from inorganic nodes and organic linkers. Numerous applications, such as gas storage, molecule separation, catalysis, optical sensing, and charge transport, benefit from the outstanding properties of MOF materials. More advanced applications, e.g., in the electronics and optoelectronics area, demand homogeneous and monolithic MOF thin films. Recent studies demonstrated that surface-mounted MOFs (SURMOFs) are well suited to fulfill the requirements for the integration of MOFs into devices. As a crystalline thin-film material with tunable thickness, SURMOFs have been widely used in the optimization of chromophore stacking, electrical transport, stimuli-response, etc. The fabrication of SURMOFs is carried out employing a layer-by-layer (LbL) assembly technique, and it can yield MOF thin films with a well-defined orientation, tunable thickness, and editable crystalline heterostructure. We summarize the LbL assembly methods for SURMOF fabrication and the realization of advanced SURMOF architectures, including optical and electronic applications as well as the integration of photoactive SURMOFs and SURMOF-derived materials in technical devices. We conclude with a discussion of the challenges and prediction of the future of SURMOF materials.

1.
O. M.
Yaghi
,
G.
Li
, and
H.
Li
, “
Selective binding and removal of guests in a microporous metal–organic framework
,”
Nature
378
,
703
(
1995
).
2.
X.
Zhang
,
Z.
Chen
,
X.
Liu
,
S. L.
Hanna
,
X.
Wang
,
R.
Taheri-Ledari
,
A.
Maleki
,
P.
Li
, and
O. K.
Farha
, “
A historical overview of the activation and porosity of metal–organic frameworks
,”
Chem. Soc. Rev.
49
,
7406
(
2020
).
3.
T. L.
Easun
,
F.
Moreau
,
Y.
Yan
,
S.
Yang
, and
M.
Schröder
, “
Structural and dynamic studies of substrate binding in porous metal–organic frameworks
,”
Chem. Soc. Rev.
46
,
239
(
2017
).
4.
H. K.
Chae
,
D. Y.
Siberio-Pérez
,
J.
Kim
,
Y.
Go
,
M.
Eddaoudi
,
A. J.
Matzger
,
M.
O'Keeffe
, and
O. M.
Yaghi
, “
A route to high surface area, porosity and inclusion of large molecules in crystals
,”
Nature
427
,
523
(
2004
).
5.
T.
Jia
,
Y.
Gu
, and
F.
Li
, “
Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: A review
,”
J. Environ. Chem. Eng.
10
,
108300
(
2022
).
6.
K.
Kuruvinashetti
,
J.
Li
,
Y.
Zhang
,
H.
Bemana
,
M.
McKee
, and
N.
Kornienko
, “
Emerging opportunities with metal-organic framework electrosynthetic platforms
,”
Chem. Phys. Rev.
3
,
021306
(
2022
).
7.
K. A.
Forrest
,
G.
Verma
,
Y.
Ye
,
J.
Ren
,
S.
Ma
,
T.
Pham
, and
B.
Space
, “
Methane storage in flexible and dynamical metal–organic frameworks
,”
Chem. Phys. Rev.
3
,
021308
(
2022
).
8.
D.-H.
Chen
,
C.
Zhuo
,
Y.-H.
Wen
,
L.
Lin
,
Y.-X.
Zhang
,
S.-M.
Hu
,
R.-B.
Fu
, and
X.-T.
Wu
, “
Porous metal–organic frameworks based on 3, 6-bis (4-benzoic acid)-N-(4-benzoic acid) carbazole for HPLC separation of small organic molecules
,”
Mater. Chem. Front.
2
,
1508
(
2018
).
9.
D.
Zacher
,
O.
Shekhah
,
C.
Wöll
, and
R. A.
Fischer
, “
Thin films of metal–organic frameworks
,”
Chem. Soc. Rev.
38
,
1418
(
2009
).
10.
D.
Bradshaw
,
A.
Garai
, and
J.
Huo
, “
Metal–organic framework growth at functional interfaces: Thin films and composites for diverse applications
,”
Chem. Soc. Rev.
41
,
2344
(
2012
).
11.
Y.
Cheng
,
S. J.
Datta
,
S.
Zhou
,
J.
Jia
,
O.
Shekhah
, and
M.
Eddaoudi
, “
Advances in metal–organic framework-based membranes
,”
Chem. Soc. Rev.
51
,
8300
(
2022
).
12.
E.
Virmani
,
J. M.
Rotter
,
A.
Mähringer
,
T. V.
Zons
,
A.
Godt
,
T.
Bein
,
S.
Wuttke
, and
D. D.
Medina
, “
On-surface synthesis of highly oriented thin metal–organic framework films through vapor-assisted conversion
,”
J. Am. Chem. Soc.
140
,
4812
(
2018
).
13.
H.
Tian
,
H.
Fan
,
M.
Li
, and
L.
Ma
, “
Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor
,”
ACS Sens.
1
,
243
(
2016
).
14.
Y.
Zhao
,
N.
Kornienko
,
Z.
Liu
,
C.
Zhu
,
S.
Asahina
,
T.-R.
Kuo
,
W.
Bao
,
C.
Xie
,
A.
Hexemer
,
O.
Terasaki
,
P.
Yang
, and
O. M.
Yaghi
, “
Mesoscopic constructs of ordered and oriented metal–organic frameworks on plasmonic silver nanocrystals
,”
J. Am. Chem. Soc.
137
,
2199
(
2015
).
15.
J.
Liu
and
C.
Wöll
, “
Metal–organic framework thin films: Electrochemical fabrication techniques and corresponding applications and perspectives
,”
Chem. Soc. Rev.
46
,
5730
(
2017
).
16.
W.-J.
Li
,
M.
Tu
,
R.
Cao
, and
R. A.
Fischer
, “
Elaboration of metal organic framework hybrid materials with hierarchical porosity by electrochemical deposition–dissolution
,”
J. Mater. Chem. A
4
,
12356
(
2016
).
17.
C.
Warakulwit
,
S.
Yadnum
,
C.
Boonyuen
,
C.
Wattanakit
,
A.
Karajic
,
P.
Garrigue
,
N.
Mano
,
D.
Bradshaw
,
J.
Limtrakul
, and
A.
Kuhn
, “
On the electrochemical deposition of metal–organic frameworks
,”
CrystEngComm
18
,
5095
(
2016
).
18.
N.
Campagnol
,
T. R.
Van Assche
,
M.
Li
,
L.
Stappers
,
M.
Dincă
,
J. F.
Denayer
,
K.
Binnemans
,
D. E.
De Vos
, and
J.
Fransaer
, “
Surface-supported metal–organic framework thin films: Fabrication methods, applications, and challenges
,”
J. Mater. Chem. A
4
,
3914
(
2016
).
19.
K. B.
Blodgett
, “
Properties of built-up films of barium stearate
,”
J. Phys. Chem.
41
,
975
(
1937
).
20.
L.
Wågberg
and
J.
Erlandsson
, “
The use of layer‐by‐layer self‐assembly and nanocellulose to prepare advanced functional materials
,”
Adv. Mater.
33
,
2001474
(
2021
).
21.
J.
Lipton
,
G.-M.
Weng
,
J. A.
Röhr
,
H.
Wang
, and
A. D.
Taylor
, “
Layer-by-layer assembly of two-dimensional materials: Meticulous control on the nanoscale
,”
Matter
2
,
1148
(
2020
).
22.
G.
Decher
and
J.
Hong
, “
Buildup of ultrathin multilayer films by a self‐assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces
,”
Makromol. Chem. Macromol. Symp.
46
,
321
(
1991
).
23.
H.
Agarwal
,
W. M.
Breining
, and
D. M.
Lynn
, “
Continuous fabrication of slippery liquid-infused coatings on rolls of flexible materials
,”
ACS Appl. Polym. Mater.
4
,
787
(
2022
).
24.
M.
Morita
,
S.
Toyoda
,
H.
Kiuchi
,
T.
Abe
,
K.
Kumagai
,
T.
Saida
, and
K.
Fukuda
, “
Chromogenic amorphous MoO3–x nanosheets and their nanostructured films for smart window applications
,”
ACS Appl. Nano Mater.
4
,
8781
(
2021
).
25.
J.
Wu
,
H.
Zeng
,
X.
Li
,
X.
Xiang
,
Y.
Liao
,
Z.
Xue
,
Y.
Ye
, and
X.
Xie
, “
Ultralight layer‐by‐layer self‐assembled MoS2‐polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites
,”
Adv. Energy Mater.
8
,
1802430
(
2018
).
26.
M. D.
Ward
, “
Bulk crystals to surfaces: Combining x-ray diffraction and atomic force microscopy to probe the structure and formation of crystal interfaces
,”
Chem. Rev.
101
,
1697
(
2001
).
27.
R. K.
Smith
,
P. A.
Lewis
, and
P. S.
Weiss
, “
Patterning self-assembled monolayers
,”
Prog. Surf. Sci.
75
,
1
(
2004
).
28.
O.
Shekhah
,
H.
Wang
,
S.
Kowarik
,
F.
Schreiber
,
M.
Paulus
,
M.
Tolan
,
C.
Sternemann
,
F.
Evers
,
D.
Zacher
,
R. A.
Fischer
, and
C.
Wöll
, “
Step-by-step route for the synthesis of metal-organic frameworks
,”
J. Am. Chem. Soc.
129
,
15118
(
2007
).
29.
L.
Messe
,
S. M.
Clarke
,
T.
Arnold
,
C.
Dong
,
R. K.
Thomas
, and
A.
Inaba
, “
Mixing behavior at the solid/liquid interface: Binary monolayers of linear alcohols adsorbed on graphite
,”
Langmuir
18
,
4010
(
2002
).
30.
Y.-F.
Liu
and
Y.-L.
Lee
, “
Adsorption characteristics of OH-terminated alkanethiol and arenethiol on Au (111) surfaces
,”
Nanoscale
4
,
2093
(
2012
).
31.
N.
Stock
and
S.
Biswas
, “
Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites
,”
Chem. Rev.
112
,
933
(
2012
).
32.
H. K.
Arslan
,
O.
Shekhah
,
D. F.
Wieland
,
M.
Paulus
,
C.
Sternemann
,
M. A.
Schroer
,
S.
Tiemeyer
,
M.
Tolan
,
R. A.
Fischer
, and
C.
Wöll
, “
Intercalation in layered metal–organic frameworks: Reversible inclusion of an extended π-system
,”
J. Am. Chem. Soc.
133
,
8158
(
2011
).
33.
H. K.
Arslan
,
O.
Shekhah
,
J.
Wohlgemuth
,
M.
Franzreb
,
R. A.
Fischer
, and
C.
Wöll
, “
High‐throughput fabrication of uniform and homogenous MOF coatings
,”
Adv. Funct. Mater.
21
,
4228
(
2011
).
34.
V.
Chernikova
,
O.
Shekhah
, and
M.
Eddaoudi
, “
Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method
,”
ACS Appl. Mater. Interfaces
8
,
20459
(
2016
).
35.
K.
Müller
,
J. S.
Malhi
,
J.
Wohlgemuth
,
R. A.
Fischer
,
C.
Wöll
,
H.
Gliemann
, and
L.
Heinke
, “
Water as a modulator in the synthesis of surface-mounted metal–organic framework films of type HKUST-1
,”
Dalton Trans.
47
,
16474
(
2018
).
36.
Z.-G.
Gu
,
A.
Pfriem
,
S.
Hamsch
,
H.
Breitwieser
,
J.
Wohlgemuth
,
L.
Heinke
,
H.
Gliemann
, and
C.
Wöll
, “
Transparent films of metal-organic frameworks for optical applications
,”
Microporous Mesoporous Mater.
211
,
82
(
2015
).
37.
O.
Zybaylo
,
O.
Shekhah
,
H.
Wang
,
M.
Tafipolsky
,
R.
Schmid
,
D.
Johannsmann
, and
C.
Wöll
, “
A novel method to measure diffusion coefficients in porous metal–organic frameworks
,”
Phys. Chem. Chem. Phys.
12
,
8093
(
2010
).
38.
L.
Heinke
and
C.
Wöll
, “
Adsorption and diffusion in thin films of nanoporous metal–organic frameworks: Ferrocene in SURMOF Cu2(ndc)2(dabco)
,”
Phys. Chem. Chem. Phys.
15
,
9295
(
2013
).
39.
Z.
Wang
,
J.
Liu
,
B.
Lukose
,
Z.
Gu
,
P. G.
Weidler
,
H.
Gliemann
,
T.
Heine
, and
C.
Wöll
, “
Nanoporous designer solids with huge lattice constant gradients: Multiheteroepitaxy of metal–organic frameworks
,”
Nano Lett.
14
,
1526
(
2014
).
40.
J.
Wang
,
W.
Wang
,
Z.
Fan
,
S.
Chen
,
A.
Nefedov
,
S.
Heißler
,
R. A.
Fischer
,
C.
Wöll
, and
Y.
Wang
, “
Defect-engineered metal–organic frameworks: A thorough characterization of active sites using CO as a probe molecule
,”
J. Phys. Chem. C
125
,
593
(
2021
).
41.
X.
Liu
,
M.
Kozlowska
,
T.
Okkali
,
D.
Wagner
,
T.
Higashino
,
G.
Brenner‐Weiß
,
S. M.
Marschner
,
Z.
Fu
,
Q.
Zhang
,
H.
Imahori
,
S.
Bräse
,
W.
Wenzel
,
C.
Wöll
, and
L.
Heinke
, “
Photoconductivity in metal–organic framework (MOF) thin films
,”
Angew. Chem. Int. Ed.
58
,
9590
(
2019
).
42.
R.
Haldar
,
Z.
Fu
,
R.
Joseph
,
D.
Herrero
,
L.
Martín-Gomis
,
B. S.
Richards
,
I. A.
Howard
,
A.
Sastre-Santos
, and
C.
Wöll
, “
Guest-responsive polaritons in a porous framework: Chromophoric sponges in optical QED cavities
,”
Chem. Sci.
11
,
7972
(
2020
).
43.
Y.
Ma
,
Z.
Dong
,
M.
You
,
Y.
Zhang
,
X.
Feng
,
X.
Ma
, and
J.
Meng
, “
Formation of a thin and continuous MOF membrane with 2-D MOF nanosheets as seeds via layer-by-layer growth
,”
Chem. Commun.
55
,
10146
(
2019
).
44.
M.-H.
Li
,
Z.
Yang
,
Z.
Li
,
J.-R.
Wu
,
B.
Yang
, and
Y.-W.
Yang
, “
Construction of hydrazone-linked macrocycle-enriched covalent organic frameworks for highly efficient photocatalysis
,”
Chem. Mater.
34
,
5726
(
2022
).
45.
J.
Gao
,
W.
Wei
,
Y.
Yin
,
M.
Liu
,
C.
Zheng
,
Y.
Zhang
, and
P.
Deng
, “
Continuous ultrathin UiO-66-NH2 coatings on a polymeric substrate synthesized by a layer-by-layer method: A kind of promising membrane for oil–water separation
,”
Nanoscale
12
,
6658
(
2020
).
46.
J.
Zhuang
,
J.
Friedel
, and
A.
Terfort
, “
The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces
,”
Beilstein J. Nanotechnol.
3
,
570
(
2012
).
47.
J.
Zhuang
,
D.
Ceglarek
,
S.
Pethuraj
, and
A.
Terfort
, “
Rapid room‐temperature synthesis of metal–organic framework HKUST‐1 crystals in bulk and as oriented and patterned thin films
,”
Adv. Funct. Mater.
21
,
1442
(
2011
).
48.
T.
Ladnorg
,
A.
Welle
,
S.
Heißler
,
C.
Wöll
, and
H.
Gliemann
, “
Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting
,”
Beilstein J. Nanotechnol.
4
,
638
(
2013
).
49.
J.
Ou
,
J.
Xiang
,
J.
Liu
, and
L.
Sun
, “
Surface-supported metal–organic framework thin-film-derived transparent CoS1.097 at N-doped carbon film as an efficient counter electrode for bifacial dye-sensitized solar cells
,”
ACS Appl. Mater. Interfaces
11
,
14862
(
2019
).
50.
C.
Gu
,
H.
Zhang
,
P.
You
,
Q.
Zhang
,
G.
Luo
,
Q.
Shen
,
Z.
Wang
, and
J.
Hu
, “
Giant and multistage nonlinear optical response in porphyrin-based surface-supported metal–organic framework nanofilms
,”
Nano Lett.
19
,
9095
(
2019
).
51.
S.
Klyatskaya
,
A. B.
Kanj
,
C.
Molina-Jirón
,
S.
Heidrich
,
L.
Velasco
,
C.
Natzeck
,
H.
Gliemann
,
S.
Heissler
,
P.
Weidler
,
W.
Wenzel
,
C. C. B.
Bufon
,
L.
Heinke
,
C.
Wöll
, and
M.
Ruben
, “
Conductive metal–organic framework thin film hybrids by electropolymerization of monosubstituted acetylenes
,”
ACS Appl. Mater. Interfaces
12
,
30972
(
2020
).
52.
S.
Kumar
,
Y.
Pramudya
,
K.
Müller
,
A.
Chandresh
,
S.
Dehm
,
S.
Heidrich
,
A.
Fediai
,
D.
Parmar
,
D.
Perera
,
M.
Rommel
,
L.
Heinke
,
W.
Wenzel
,
C.
Wöll
, and
R.
Krupke
, “
Sensing molecules with metal–organic framework functionalized graphene transistors
,”
Adv. Mater.
33
,
2103316
(
2021
).
53.
M. P.
Arpa Sancet
,
M.
Hanke
,
Z.
Wang
,
S.
Bauer
,
C.
Azucena
,
H. K.
Arslan
,
M.
Heinle
,
H.
Gliemann
,
C.
Wöll
, and
A.
Rosenhahn
, “
Surface anchored metal-organic frameworks as stimulus responsive antifouling coatings
,”
Biointerphases
8
,
29
(
2013
).
54.
M.
Hanke
,
H. K.
Arslan
,
S.
Bauer
,
O.
Zybaylo
,
C.
Christophis
,
H.
Gliemann
,
A.
Rosenhahn
, and
C.
Wöll
, “
The biocompatibility of metal–organic framework coatings: An investigation on the stability of SURMOFs with regard to water and selected cell culture media
,”
Langmuir
28
,
6877
(
2012
).
55.
S.
Friedländer
,
J.
Liu
,
M.
Addicoat
,
P.
Petkov
,
N.
Vankova
,
R.
Rüger
,
A.
Kuc
,
W.
Guo
,
W.
Zhou
,
B.
Lukose
,
Z.
Wang
,
P. G.
Weidler
,
A.
Pöppl
,
M.
Ziese
,
T.
Heine
, and
C.
Wöll
, “
Linear chains of magnetic ions stacked with variable distance: Ferromagnetic ordering with a Curie temperature above 20 K
,”
Angew. Chem. Int. Ed.
55
,
12683
(
2016
).
56.
E.
Frederick
,
T. W.
Shaw
,
M. G.
Frith
, and
S. L.
Bernasek
, “
Synthesis of a surface mounted metal–organic framework on gold using a Au–carbene self-assembled monolayer linkage
,”
Mater. Chem. Front.
3
,
636
(
2019
).
57.
M.
Tsotsalas
,
J.
Liu
,
B.
Tettmann
,
S.
Grosjean
,
A.
Shahnas
,
Z.
Wang
,
C.
Azucena
,
M.
Addicoat
,
T.
Heine
,
J.
Lahann
,
J.
Overhage
,
S.
Bräse
,
H.
Gliemann
, and
C.
Wöll
, “
Fabrication of highly uniform gel coatings by the conversion of surface-anchored metal–organic frameworks
,”
J. Am. Chem. Soc.
136
,
8
(
2014
).
58.
S.
Schmitt
,
J.
Hümmer
,
S.
Kraus
,
A.
Welle
,
S.
Grosjean
,
M.
Hanke‐Roos
,
A.
Rosenhahn
,
S.
Bräse
,
C.
Wöll
,
C.
Lee‐Thedieck
, and
M.
Tsotsalas
, “
Tuning the cell adhesion on biofunctionalized nanoporous organic frameworks
,”
Adv. Funct. Mater.
26
,
8455
(
2016
).
59.
S.
Schmitt
,
S.
Shishatskiy
,
P.
Krolla
,
Q.
An
,
S.
Begum
,
A.
Welle
,
T.
Hashem
,
S.
Grosjean
,
V.
Abetz
,
S.
Bräse
,
C.
Wöll
, and
M.
Tsotsalas
, “
Synthesis, transfer, and gas separation characteristics of MOF-templated polymer membranes
,”
Membranes
9
,
124
(
2019
).
60.
J.
Liu
,
S.
Heidrich
,
J.
Liu
,
B.
Guo
,
M.
Zharnikov
,
U.
Simon
,
W.
Wenzel
, and
C.
Wöll
, “
Encapsulation of Au55 clusters within surface-supported metal–organic frameworks for catalytic reduction of 4-nitrophenol
,”
ACS Appl. Nano Mater.
4
,
522
(
2021
).
61.
S.
Rana
,
R.
Rajendra
,
B.
Dhara
,
P. K.
Jha
, and
N.
Ballav
, “
Highly hydrophobic and chemically rectifiable surface-anchored metal-organic framework thin-film devices
,”
Adv. Mater. Interfaces
3
,
1500738
(
2016
).
62.
S.
Lei
,
L.-M.
Chang
,
Z.-G.
Gu
, and
J.
Zhang
, “
A metal-porphyrinic framework film as an efficient optical limiting layer in an electro-optical switchable device
,”
Chem. Commun.
57
,
10166
(
2021
).
63.
L.
Heinke
,
M.
Cakici
,
M.
Dommaschk
,
S.
Grosjean
,
R.
Herges
,
S.
Bräse
, and
C.
Wöll
, “
Photoswitching in two-component surface-mounted metal–organic frameworks: Optically triggered release from a molecular container
,”
ACS Nano
8
,
1463
(
2014
).
64.
W.
Guo
,
M.
Zha
,
Z.
Wang
,
E.
Redel
,
Z.
Xu
, and
C.
Wöll
, “
Improving the loading capacity of metal–organic framework thin films using optimized linkers
,”
ACS Appl. Mater. Interfaces
8
,
24699
(
2016
).
65.
K.
Müller
,
A.
Knebel
,
F.
Zhao
,
D.
Bléger
,
J.
Caro
, and
L.
Heinke
, “
Switching thin films of azobenzene-containing metal–organic frameworks with visible light
,”
Chem. Eur. J.
23
,
5434
(
2017
).
66.
Z.
Wang
,
A.
Knebel
,
S.
Grosjean
,
D.
Wagner
,
S.
Bräse
,
C.
Wöll
,
J.
Caro
, and
L.
Heinke
, “
Tunable molecular separation by nanoporous membranes
,”
Nat. Commun.
7
(
1
),
13872
(
2016
).
67.
X.
Yu
,
Z.
Wang
,
M.
Buchholz
,
N.
Füllgrabe
,
S.
Grosjean
,
F.
Bebensee
,
S.
Bräse
,
C.
Wöll
, and
L.
Heinke
, “
cis-to-trans isomerization of azobenzene investigated by using thin films of metal–organic frameworks
,”
Phys. Chem. Chem. Phys.
17
,
22721
(
2015
).
68.
B. D.
McCarthy
,
T.
Liseev
,
A. M.
Beiler
,
K. L.
Materna
, and
S.
Ott
, “
Facile orientational control of M2L2P SURMOFs on ⟨100⟩ silicon substrates and growth mechanism insights for defective MOFs
,”
ACS Appl. Mater. Interfaces
11
,
38294
(
2019
).
69.
X.-J.
Yu
,
Y.-M.
Xian
,
C.
Wang
,
H.-L.
Mao
,
M.
Kind
,
T.
Abu-Husein
,
Z.
Chen
,
S.-B.
Zhu
,
B.
Ren
,
A.
Terfort
, and
J.-L.
Zhuang
, “
Liquid-phase epitaxial growth of highly oriented and multivariate surface-attached metal–organic frameworks
,”
J. Am. Chem. Soc.
141
,
18984
(
2019
).
70.
A.
Chandresh
,
X.
Liu
,
C.
Wöll
, and
L.
Heinke
, “
Programmed molecular assembly of abrupt crystalline organic/organic heterointerfaces yielding metal‐organic framework diodes with large on‐off ratios
,”
Adv. Sci.
8
,
2001884
(
2021
).
71.
X.
Li
,
C.
Jiang
,
Y.
Yao
,
Q.
Zhang
,
S.
Dai
,
Y.
Ying
, and
J.
Ping
, “
Growth‐controllable triboelectric nanogenerator based on surface‐attached metal‐organic framework layer on living leaf
,”
Small
17
,
2103430
(
2021
).
72.
J.
Liu
,
B.
Lukose
,
O.
Shekhah
,
H. K.
Arslan
,
P.
Weidler
,
H.
Gliemann
,
S.
Bräse
,
S.
Grosjean
,
A.
Godt
,
X.
Feng
,
K.
Mullen
,
I.-B.
Magdau
,
T.
Heine
, and
C.
Wöll
, “
A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy
,”
Sci. Rep.
2
,
921
(
2012
).
73.
R.
Haldar
,
B.
Sen
,
S.
Hurrle
,
T.
Kitao
,
R.
Sankhla
,
B.
Kühl
,
A.
Welle
,
S.
Heissler
,
G.
Brenner-Weiß
,
P.
Thissen
,
T.
Uemura
,
H.
Gliemann
,
C.
Barner-Kowollik
, and
C.
Wöll
, “
Oxidative polymerization of terthiophene and a substituted thiophene monomer in metal-organic framework thin films
,”
Eur. Polym. J.
109
,
162
(
2018
).
74.
A. B.
Kanj
,
J.
Bürck
,
S.
Grosjean
,
S.
Bräse
, and
L.
Heinke
, “
Switching the enantioselectivity of nanoporous host materials by light
,”
Chem. Commun.
55
,
8776
(
2019
).
75.
S.
Okur
,
P.
Qin
,
A.
Chandresh
,
C.
Li
,
Z.
Zhang
,
U.
Lemmer
, and
L.
Heinke
, “
An enantioselective e‐nose: An array of nanoporous homochiral MOF films for stereospecific sensing of chiral odors
,”
Angew. Chem. Int. Ed.
60
,
3566
(
2021
).
76.
Z.
Gu
,
J.
Bürck
,
A.
Bihlmeier
,
J.
Liu
,
O.
Shekhah
,
P. G.
Weidler
,
C.
Azucena
,
Z.
Wang
,
S.
Heissler
,
H.
Gliemann
,
W.
Klopper
,
A. S.
Ulrich
, and
C.
Wöll
, “
Oriented circular dichroism analysis of chiral surface-anchored metal–organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds
,”
Chem. Eur. J.
20
,
9879
(
2014
).
77.
Z.
Wang
,
K.
Müller
,
M.
Valášek
,
S.
Grosjean
,
S.
Bräse
,
C.
Wöll
,
M.
Mayor
, and
L.
Heinke
, “
Series of photoswitchable azobenzene-containing metal–organic frameworks with variable adsorption switching effect
,”
J. Phys. Chem. C
122
,
19044
(
2018
).
78.
A. B.
Kanj
,
A.
Chandresh
,
A.
Gerwien
,
S.
Grosjean
,
S.
Bräse
,
Y.
Wang
,
H.
Dube
, and
L.
Heinke
, “
Proton-conduction photomodulation in spiropyran-functionalized MOFs with large on–off ratio
,”
Chem. Sci.
11
,
1404
(
2020
).
79.
K.
Müller
,
J.
Helfferich
,
F.
Zhao
,
R.
Verma
,
A. B.
Kanj
,
V.
Meded
,
D.
Bléger
,
W.
Wenzel
, and
L.
Heinke
, “
Switching the proton conduction in nanoporous, crystalline materials by light
,”
Adv. Mater.
30
,
1706551
(
2018
).
80.
Z.
Zhang
,
K.
Müller
,
S.
Heidrich
,
M.
Koenig
,
T.
Hashem
,
T.
Schlöder
,
D.
Bleger
,
W.
Wenzel
, and
L.
Heinke
, “
Light-switchable one-dimensional photonic crystals based on MOFs with photomodulatable refractive index
,”
J. Phys. Chem. Lett.
10
,
6626
(
2019
).
81.
P.
Qin
,
S.
Okur
,
C.
Li
,
A.
Chandresh
,
D.
Mutruc
,
S.
Hecht
, and
L.
Heinke
, “
A photoprogrammable electronic nose with switchable selectivity for VOCs using MOF films
,”
Chem. Sci.
12
,
15700
(
2021
).
82.
J.-L.
Zhuang
,
M.
Kind
,
C. M.
Grytz
,
F.
Farr
,
M.
Diefenbach
,
S.
Tussupbayev
,
M. C.
Holthausen
, and
A.
Terfort
, “
Insight into the oriented growth of surface-attached metal–organic frameworks: Surface functionality, deposition temperature, and first layer order
,”
J. Am. Chem. Soc.
137
,
8237
(
2015
).
83.
Q.
Li
,
J.
Gies
,
X.
Yu
,
Y.
Gu
,
A.
Terfort
, and
M.
Kind
, “
Concentration‐dependent seeding as a strategy for fabrication of densely packed surface‐mounted metal–organic frameworks (SURMOF) layers
,”
Chem. Eur. J.
26
,
5185
(
2020
).
84.
O.
Lugier
,
U.
Pokharel
, and
S.
Castellanos
, “
Impact of synthetic conditions on the morphology and crystallinity of FDMOF-1 (Cu) thin films
,”
Cryst. Growth Des.
20
,
5302
(
2020
).
85.
J.
Liu
,
O.
Shekhah
,
X.
Stammer
,
H. K.
Arslan
,
B.
Liu
,
B.
Schüpbach
,
A.
Terfort
, and
C.
Wöll
, “
Deposition of metal-organic frameworks by liquid-phase epitaxy: The influence of substrate functional group density on film orientation
,”
Materials
5
,
1581
(
2012
).
86.
B.
Liu
,
M.
Tu
,
D.
Zacher
, and
R. A.
Fischer
, “
Multi variant surface mounted metal–organic frameworks
,”
Adv. Funct. Mater.
23
,
3790
(
2013
).
87.
M.
Tu
,
S.
Wannapaiboon
, and
R. A.
Fischer
, “
Programmed functionalization of SURMOFs via liquid phase heteroepitaxial growth and post-synthetic modification
,”
Dalton Trans.
42
,
16029
(
2013
).
88.
M.
Yao
,
X.
Lv
,
Z.
Fu
,
W.
Li
,
W.
Deng
,
G.
Wu
, and
G.
Xu
, “
Layer‐by‐layer assembled conductive metal–organic framework nanofilms for room‐temperature chemiresistive sensing
,”
Angew. Chem. Int. Ed.
56
,
16510
(
2017
).
89.
Y.
Lin
,
W.
Li
,
Y.
Wen
,
G.
Wang
,
X.
Ye
, and
G.
Xu
, “
Layer‐by‐layer growth of preferred‐oriented MOF thin film on nanowire array for high‐performance chemiresistive sensing
,”
Angew. Chem. Int. Ed.
60
,
25758
(
2021
).
90.
R.
Zheng
,
Z.
Fu
,
W.
Deng
,
Y.
Wen
,
A.
Wu
,
X.
Ye
, and
G.
Xu
, “
The growth mechanism of a conductive MOF thin film in spray‐based layer‐by‐layer liquid phase epitaxy
,”
Angew. Chem. Int. Ed.
61
,
e202212797
(
2022
).
91.
S.
Schmitt
,
M.
Silvestre
,
M.
Tsotsalas
,
A.-L.
Winkler
,
A.
Shahnas
,
S.
Grosjean
,
F.
Laye
,
H.
Gliemann
,
J.
Lahann
,
S.
Bräse
,
M.
Franzreb
, and
C.
Wöll
, “
Hierarchically functionalized magnetic core/multishell particles and their postsynthetic conversion to polymer capsules
,”
ACS Nano
9
,
4219
(
2015
).
92.
O.
Shekhah
,
H.
Wang
,
M.
Paradinas
,
C.
Ocal
,
B.
Schüpbach
,
A.
Terfort
,
D.
Zacher
,
R. A.
Fischer
, and
C.
Wöll
, “
Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy
,”
Nat. Mater.
8
,
481
(
2009
).
93.
O.
Shekhah
, “
Layer-by-layer method for the synthesis and growth of surface mounted metal-organic frameworks (SURMOFs)
,”
Materials
3
,
1302
(
2010
).
94.
A.
Dragässer
,
O.
Shekhah
,
O.
Zybaylo
,
C.
Shen
,
M.
Buck
,
C.
Wöll
, and
D.
Schlettwein
, “
Redox mediation enabled by immobilised centres in the pores of a metal–organic framework grown by liquid phase epitaxy
,”
Chem. Commun.
48
,
663
(
2012
).
95.
H. C.
Streit
,
M.
Adlung
,
O.
Shekhah
,
X.
Stammer
,
H. K.
Arslan
,
O.
Zybaylo
,
T.
Ladnorg
,
H.
Gliemann
,
M.
Franzreb
,
C.
Wöll
, and
C.
Wickleder
, “
Surface‐anchored MOF‐based photonic antennae
,”
ChemPhysChem
13
,
2699
(
2012
).
96.
P.
St. Petkov
,
G. N.
Vayssilov
,
J.
Liu
,
O.
Shekhah
,
Y.
Wang
,
C.
Wöll
, and
T.
Heine
, “
Defects in MOFs: A thorough characterization
,”
ChemPhysChem
13
,
2025
(
2012
).
97.
W.
Guo
,
J.
Liu
,
P. G.
Weidler
,
J.
Liu
,
T.
Neumann
,
D.
Danilov
,
W.
Wenzel
,
C.
Feldmann
, and
C.
Wöll
, “
Loading of ionic compounds into metal–organic frameworks: A joint theoretical and experimental study for the case of La3+
,”
Phys. Chem. Chem. Phys.
16
,
17918
(
2014
).
98.
J. P.
Best
,
J.
Michler
,
J.
Liu
,
Z.
Wang
,
M.
Tsotsalas
,
X.
Maeder
,
S.
Röse
,
V.
Oberst
,
J.
Liu
,
S.
Walheim
,
H.
Gliemann
,
P. G.
Weidler
,
E.
Redel
, and
C.
Wöll
, “
Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers
,”
Appl. Phys. Lett.
107
,
101902
(
2015
).
99.
J.
Liu
,
E.
Redel
,
S.
Walheim
,
Z.
Wang
,
V.
Oberst
,
J.
Liu
,
S.
Heissler
,
A.
Welle
,
M.
Moosmann
,
T.
Scherer
,
M.
Bruns
,
H.
Gliemann
, and
C.
Wöll
, “
Monolithic high performance surface anchored metal-organic framework Bragg reflector for optical sensing
,”
Chem. Mater.
27
,
1991
(
2015
).
100.
J.
Liu
,
T.
Wächter
,
A.
Irmler
,
P. G.
Weidler
,
H.
Gliemann
,
F.
Pauly
,
V.
Mugnaini
,
M.
Zharnikov
, and
C.
Wöll
, “
Electric transport properties of surface-anchored metal–organic frameworks and the effect of ferrocene loading
,”
ACS Appl. Mater. Interfaces
7
,
9824
(
2015
).
101.
Z.
Wang
,
P. G.
Weidler
,
C.
Azucena
,
L.
Heinke
, and
C.
Wöll
, “
Negative, anisotropic thermal expansion in monolithic thin films of crystalline metal-organic frameworks
,”
Microporous Mesoporous Mater.
222
,
241
(
2016
).
102.
Z.
Wang
,
D.
Nminibapiel
,
P.
Shrestha
,
J.
Liu
,
W.
Guo
,
P. G.
Weidler
,
H.
Baumgart
,
C.
Wöll
, and
E.
Redel
, “
Resistive switching nanodevices based on metal–organic frameworks
,”
ChemNanoMat
2
,
67
(
2016
).
103.
W.
Guo
,
Z.
Chen
,
C.
Yang
,
T.
Neumann
,
C.
Kübel
,
W.
Wenzel
,
A.
Welle
,
W.
Pfleging
,
O.
Shekhah
,
C.
Wöll
, and
E.
Redel
, “
Bi2O3 nanoparticles encapsulated in surface mounted metal–organic framework thin films
,”
Nanoscale
8
,
6468
(
2016
).
104.
K.
Müller
,
K.
Fink
,
L.
Schöttner
,
M.
Koenig
,
L.
Heinke
, and
C.
Wöll
, “
Defects as color centers: The apparent color of metal–organic frameworks containing Cu2+-based paddle-wheel units
,”
ACS Appl. Mater. Interfaces
9
,
37463
(
2017
).
105.
L. J.
Brower
,
L. K.
Gentry
,
A. L.
Napier
, and
M. E.
Anderson
, “
Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth
,”
Beilstein J. Nanotechnol.
8
,
2307
(
2017
).
106.
Z.-G.
Gu
,
S.-C.
Chen
,
W.-Q.
Fu
,
Q.
Zheng
, and
J.
Zhang
, “
Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field-effect transistors
,”
ACS Appl. Mater. Interfaces
9
,
7259
(
2017
).
107.
Z.-G.
Gu
,
D.-X.
Zhang
,
W.-Q.
Fu
,
Z.-H.
Fu
,
M. I.
Vohra
,
L.
Zhang
,
C.
Wöll
, and
J.
Zhang
, “
Facile synthesis of metal-loaded porous carbon thin films via carbonization of surface-mounted metal–organic frameworks
,”
Inorg. Chem.
56
,
3526
(
2017
).
108.
K.
Müller
,
J.
Wadhwa
,
J. S.
Malhi
,
L.
Schöttner
,
A.
Welle
,
H.
Schwartz
,
D.
Hermann
,
U.
Ruschewitz
, and
L.
Heinke
, “
Photoswitchable nanoporous films by loading azobenzene in metal–organic frameworks of type HKUST-1
,”
Chem. Commun.
53
,
8070
(
2017
).
109.
X.
Chen
,
Z.
Wang
,
Z. M.
Hassan
,
P.
Lin
,
K.
Zhang
,
H.
Baumgart
, and
E.
Redel
, “
Seebeck coefficient measurements of polycrystalline and highly ordered metal-organic framework thin films
,”
ECS J. Solid State Sci. Technol.
6
,
150
(
2017
).
110.
H.
Yoo
,
A.
Welle
,
W.
Guo
,
J.
Choi
, and
E.
Redel
, “
Electrodeposition of WO3 nanoparticles into surface mounted metal–organic framework HKUST-1 thin films
,”
Nanotechnology
28
,
115605
(
2017
).
111.
S.
Hurrle
,
S.
Friebe
,
J.
Wohlgemuth
,
C.
Wöll
,
J.
Caro
, and
L.
Heinke
, “
Sprayable, large‐area metal–organic framework films and membranes of varying thickness
,”
Chem. Eur. J.
23
,
2294
(
2017
).
112.
M.
Saghanejhadtehrani
,
E. K.
Schneider
, and
L.
Heinke
, “
Multi‐component uptake of dye molecules by films of nanoporous metal–organic frameworks
,”
ChemPhysChem
18
,
3548
(
2017
).
113.
Z.-G.
Gu
,
W.-Q.
Fu
,
M.
Liu
, and
J.
Zhang
, “
Surface-mounted MOF templated fabrication of homochiral polymer thin film for enantioselective adsorption of drugs
,”
Chem. Commun.
53
,
1470
(
2017
).
114.
B. H.
Bowser
,
L. J.
Brower
,
M. L.
Ohnsorg
,
L. K.
Gentry
,
C. K.
Beaudoin
, and
M. E.
Anderson
, “
Comparison of surface-bound and free-standing variations of HKUST-1 MOFs: Effect of activation and ammonia exposure on morphology, crystallinity, and composition
,”
Nanomaterials
8
,
650
(
2018
).
115.
G.
Delen
,
Z.
Ristanović
,
L. D.
Mandemaker
, and
B. M.
Weckhuysen
, “
Mechanistic insights into growth of surface‐mounted metal‐organic framework films resolved by infrared (nano‐) spectroscopy
,”
Chem. Eur. J.
24
,
187
(
2018
).
116.
R. P.
Brand
,
L. D.
Mandemaker
,
G.
Delen
,
N.
Rijnveld
, and
B. M.
Weckhuysen
, “
Behavior of a metal organic framework thin‐film at elevated temperature and pressure as studied with an autoclave‐inserted atomic force microscope
,”
ChemPhysChem
19
,
2397
(
2018
).
117.
H.
Chen
,
Z.-G.
Gu
,
S.
Mirza
,
S.-H.
Zhang
, and
J.
Zhang
, “
Hollow Cu–TiO2/C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution
,”
J. Mater. Chem. A
6
,
7175
(
2018
).
118.
G.
Bolla
and
A. S.
Myerson
, “
SURMOF induced morphological crystal engineering of substituted benzamides
,”
Cryst. Growth Des.
18
,
7048
(
2018
).
119.
G.
Bolla
and
A. S.
Myerson
, “
SURMOF induced polymorphism and crystal morphological engineering of acetaminophen polymorphs: Advantage of heterogeneous nucleation
,”
CrystEngComm
20
,
2084
(
2018
).
120.
Q.
Zhao
,
Y.
Fan
,
Y.
Zhang
,
J.
Liu
,
W.
Li
, and
Y.
Weng
, “
Copper-based SURMOFs for nitric oxide generation: Hemocompatibility, vascular cell growth, and tissue response
,”
ACS Appl. Mater. Interfaces
11
,
7872
(
2019
).
121.
A. B.
Kanj
,
R.
Verma
,
M.
Liu
,
J.
Helfferich
,
W.
Wenzel
, and
L.
Heinke
, “
Bunching and immobilization of ionic liquids in nanoporous metal–organic framework
,”
Nano Lett.
19
,
2114
(
2019
).
122.
T. P.
Vello
,
M.
Strauss
,
C. A. R.
Costa
,
C. C.
Corrêa
, and
C. C. B.
Bufon
, “
Deterministic control of surface mounted metal–organic framework growth orientation on metallic and insulating surfaces
,”
Phys. Chem. Chem. Phys.
22
,
5839
(
2020
).
123.
L. D.
Mandemaker
,
M.
Rivera‐Torrente
,
G.
Delen
,
J. P.
Hofmann
,
M.
Lorenz
,
A.
Belianinov
, and
B. M.
Weckhuysen
, “
Nanoweb surface‐mounted metal–organic framework films with tunable amounts of acid sites as tailored catalysts
,”
Chem. Eur. J.
26
,
691
(
2020
).
124.
X.-J.
Yu
,
H.
Zhong
,
Y.-M.
Xian
,
Z.-P.
Wang
,
S.
Schneider
,
J.
Scherr
,
T.
Abu-Husein
,
Z.
Zhang
, and
A.
Terfort
, “
Highly oriented and polyoxometalate-incorporating surface-attached metal–organic frameworks for efficient dye adsorption and water oxidation
,”
Dalton Trans.
49
,
16627
(
2020
).
125.
L. G.
Albano
,
T. P.
Vello
,
D. H.
de Camargo
,
R. M.
da Silva
,
A. C.
Padilha
,
A.
Fazzio
, and
C. C.
Bufon
, “
Ambipolar resistive switching in an ultrathin surface-supported metal–organic framework vertical heterojunction
,”
Nano Lett.
20
,
1080
(
2020
).
126.
H.
Ohara
,
S.
Yamamoto
,
D.
Kuzuhara
,
T.
Koganezawa
,
H.
Oikawa
, and
M.
Mitsuishi
, “
Layer-by-layer growth control of metal–organic framework thin films assembled on polymer films
,”
ACS Appl. Mater. Interfaces
12
,
50784
(
2020
).
127.
L. D.
Mandemaker
,
M.
Rivera‐Torrente
,
R.
Geitner
,
C. M.
Vis
, and
B. M.
Weckhuysen
, “
In situ spectroscopy of calcium fluoride anchored metal–organic framework thin films during gas sorption
,”
Angew. Chem. Int. Ed.
59
,
19545
(
2020
).
128.
Z.
Wang
,
S.
Henke
,
M.
Paulus
,
A.
Welle
,
Z.
Fan
,
K.
Rodewald
,
B.
Rieger
, and
R. A.
Fischer
, “
Defect creation in surface-mounted metal–organic framework thin films
,”
ACS Appl. Mater. Interfaces
12
,
2655
(
2020
).
129.
O.
Lugier
,
N.
Thakur
,
L.
Wu
,
M.
Vockenhuber
,
Y.
Ekinci
, and
S.
Castellanos
, “
Bottom-up nanofabrication with extreme-ultraviolet light: Metal–organic frameworks on patterned monolayers
,”
ACS Appl. Mater. Interfaces
13
,
43777
(
2021
).
130.
L. G.
Albano
,
D. H.
de Camargo
,
G. R.
Schleder
,
S. G.
Deeke
,
T. P.
Vello
,
L. D.
Palermo
,
C. C.
Corrêa
,
A.
Fazzio
,
C.
Wöll
, and
C. C.
Bufon
, “
Room‐temperature negative differential resistance in surface‐supported metal‐organic framework vertical heterojunctions
,”
Small
17
,
2101475
(
2021
).
131.
A.
Oliveira
,
J.
Ribeiro
,
D.
Vasconcelos
,
P.
Weidler
, and
W.
Vasconcelos
, “
Room temperature and ambient pressure deposition of Cu-BTC MOF on SBA-15 functionalized silica supports by simple spray layer-by-layer method
,”
Mater. Today Commun.
27
,
102388
(
2021
).
132.
T.
Koehler
,
I.
Strauss
,
A.
Mundstock
,
J.
Caro
, and
F.
Marlow
, “
Reversible photoalignment of azobenzene in the SURMOF HKUST-1
,”
J. Phys. Chem. Lett.
12
,
8903
(
2021
).
133.
W.
Li
,
G.
Yang
,
A.
Terzis
,
S.
Mukherjee
,
C.
He
,
X.
An
,
J.
Wu
,
B.
Weigand
, and
R. A.
Fischer
, “
In situ tracking of wetting‐front transient heat release on a surface‐mounted metal–organic framework
,”
Adv. Mater.
33
,
2006980
(
2021
).
134.
R. M.
da Silva
,
L. G.
Albano
,
T. P.
Vello
,
W. W.
de Araújo
,
D. H.
de Camargo
,
L. D.
Palermo
,
C. C.
Corrêa
,
C.
Wöll
, and
C. C.
Bufon
, “
Surface-supported metal-organic framework as low-dielectric-constant thin films for novel hybrid electronics
,”
Adv. Electron. Mater.
8
,
2200175
(
2022
).
135.
(a) A. Z.
Li
,
J.
Liu
,
L.
Feng
,
Y.
Pan
,
J.
Tang
,
H.
Li
,
G.
Cheng
,
Z.
Li
,
J.
Shi
,
Y.
Xu
, and
W.
Liu
, “
Monolithic MOF-based metal-insulator-metal resonator for filtering and sensing
,”
Nano Lett.
23
,
637
(
2023
);
[PubMed]
(b) Z.
Li
,
J.
Liu
,
X.
Yi
,
W.
Wu
,
F.
Liu
,
Z.
Zhu
,
H.
Li
,
J.
Shi
,
Y.
Xu
,
F.
Zhou
, and
W.
Liu
, “
Metal-organic frameworks-based Fabry—Pérot cavity encapsulated TiO2 nanoparticles for selective chemical sensing
,”
Adv. Funct. Mater.
32
,
2109541
(
2022
);
(c) Z.
Li
,
J.
Liu
,
H.
Wu
,
J.
Tang
,
Z.
Li
,
Y.
Xu
,
F.
Zhou
, and
W.
Liu
, “
Photonic crystals constructed by isostructural metal-organic framework films
,”
Nano Res.
(published online, 2023).
136.
X.
Chen
,
K.
Zhang
,
Z. M.
Hassan
,
E.
Redel
, and
H.
Baumgart
, “
Charge. Transport, conductivity and Seebeck coefficient in pristine and TCNQ loaded preferentially grown metal-organic framework films
,”
J. Phys.: Condens. Matter
34
,
404001
(
2022
).
137.
M.
Tu
and
R. A.
Fischer
, “
Heteroepitaxial growth of surface mounted metal–organic framework thin films with hybrid adsorption functionality
,”
J. Mater. Chem. A
2
,
2018
(
2014
).
138.
Z.
Wang
,
S.
Wannapaiboon
,
K.
Rodewald
,
M.
Tu
,
B.
Rieger
, and
R. A.
Fischer
, “
Directing the hetero-growth of lattice-mismatched surface-mounted metal–organic frameworks by functionalizing the interface
,”
J. Mater. Chem. A
6
,
21295
(
2018
).
139.
E.
Redel
,
Z.
Wang
,
S.
Walheim
,
J.
Liu
,
H.
Gliemann
, and
C.
Wöll
, “
On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films
,”
Appl. Phys. Lett.
103
,
091903
(
2013
).
140.
Z.
Wang
,
S.
Wannapaiboon
,
S.
Henke
,
M.
Paulus
,
K.
Rodewald
,
B.
Rieger
, and
R. A.
Fischer
, “
The synergistic effect of heterostructured dissimilar metal–organic framework thin films on adsorption properties
,”
J. Mater. Chem. A
8
,
12990
(
2020
).
141.
S.
Okur
,
C.
Li
,
Z.
Zhang
,
S.
Vaidurya Pratap
,
M.
Sarheed
,
A.
Kanbar
,
L.
Franke
,
F.
Geislhöringer
,
L.
Heinke
,
U.
Lemmer
,
P.
Nick
, and
C.
Wöll
, “
Sniff species: SURMOF-based sensor array discriminates aromatic plants beyond the genus level
,”
Chemosensors
9
,
171
(
2021
).
142.
S.
Okur
,
Z.
Zhang
,
M.
Sarheed
,
P.
Nick
,
U.
Lemmer
, and
L.
Heinke
, “
Towards a MOF e-Nose: A SURMOF sensor array for detection and discrimination of plant oil scents and their mixtures
,”
Sens. Actuators, B
306
,
127502
(
2020
).
143.
B.
Sen
,
J. C.
Santos
,
R.
Haldar
,
Q.
Zhang
,
T.
Hashem
,
P.
Qin
,
Y.
Li
,
F.
Kirschhöfer
,
G.
Brenner-Weiss
,
H.
Gliemann
,
L.
Heinke
,
C.
Barner-Kowollik
,
A.
Knebel
, and
C.
Wöll
, “
Introducing electrical conductivity to metal–organic framework thin films by templated polymerization of methyl propiolate
,”
Nanoscale
12
,
24419
(
2020
).
144.
Z.
Wang
,
K.
Rodewald
,
R.
Medishetty
,
B.
Rieger
, and
R. A.
Fischer
, “
Control of water content for enhancing the quality of copper paddle-wheel-based metal–organic framework thin films grown by layer-by-layer liquid-phase epitaxy
,”
Cryst. Growth Des.
18
,
7451
(
2018
).
145.
W.
Guo
,
Z. M.
Hassan
,
C.
Kübel
,
R.
Haldar
,
P. G.
Weidler
,
S.
Heissler
,
K.
Peikert
,
M.
Fröba
,
E.
Redel
, and
C.
Wöll
, “
MOF-templated synthesis of 3D Bi2O3 supracrystals with bcc packing
,”
Nanoscale
10
,
17099
(
2018
).
146.
M.
Drost
,
F.
Tu
,
L.
Berger
,
C.
Preischl
,
W.
Zhou
,
H.
Gliemann
,
C.
Wöll
, and
H.
Marbach
, “
Surface-anchored metal–organic frameworks as versatile resists for gas-assisted e-beam lithography: Fabrication of sub-10 nanometer structures
,”
ACS Nano
12
,
3825
(
2018
).
147.
G.
Delen
,
M.
Monai
,
F.
Meirer
, and
B. M.
Weckhuysen
, “
In situ nanoscale infrared spectroscopy of water adsorption on nanoislands of surface‐anchored metal‐organic frameworks
,”
Angew. Chem. Int. Ed.
60
,
1620
(
2021
).
148.
L.-M.
Chang
,
Q.
Li
,
P.
Weidler
,
Z.-G.
Gu
,
C.
Wöll
, and
J.
Zhang
, “
Surface-oriented assembly of cyclodextrin metal–organic framework film for enhanced peptide-enantiomers sensing
,”
CCS Chem.
4
,
3472
(
2022
).
149.
J. C.
Santos
,
Y.
Pramudya
,
M.
Krstic
,
D.-H.
Chen
,
B. L.
Neumeier
,
C.
Feldmann
,
W.
Wenzel
, and
E.
Redel
, “
Halogenated terephthalic acid ‘antenna effects’ in lanthanide-SURMOF thin films
,”
ACS Appl. Mater. Interfaces
12
,
52166
(
2020
).
150.
D.
Chen
,
R.
Haldar
,
B. L.
Neumeier
,
Z.
Fu
,
C.
Feldmann
,
C.
Wöll
, and
E.
Redel
, “
Tunable emission in heteroepitaxial Ln‐SURMOFs
,”
Adv. Funct. Mater.
29
,
1903086
(
2019
).
151.
D.
Chen
,
A. E.
Sedykh
,
G. E.
Gomez
,
B. L.
Neumeier
,
J. C.
Santos
,
V.
Gvilava
,
R.
Maile
,
C.
Feldmann
,
C.
Wöll
,
C.
Janiak
,
K.
Müller-Buschbaum
, and
E.
Redel
, “
SURMOF devices based on heteroepitaxial architectures with white‐light emission and luminescent thermal‐dependent performance
,”
Adv. Mater. Interfaces
7
,
2000929
(
2020
).
152.
B. H.
Monjezi
,
S.
Okur
,
R.
Limbach
,
A.
Chandresh
,
K.
Sen
,
T.
Hashem
,
M.
Schwotzer
,
L.
Wondraczek
,
C.
Wöll
, and
A.
Knebel
, “
Fast dynamic synthesis of MIL-68(In) thin films in high optical quality for optical cavity sensing
,” ChemRxiv
153.
W.
Li
,
S.
Watzele
,
H. A.
El-Sayed
,
Y.
Liang
,
G.
Kieslich
,
A. S.
Bandarenka
,
K.
Rodewald
,
B.
Rieger
, and
R. A.
Fischer
, “
Unprecedented high oxygen evolution activity of electrocatalysts derived from surface-mounted metal–organic frameworks
,”
J. Am. Chem. Soc.
141
,
5926
(
2019
).
154.
W.
Li
,
S.
Xue
,
S.
Watzele
,
S.
Hou
,
J.
Fichtner
,
A. L.
Semrau
,
L.
Zhou
,
A.
Welle
,
A. S.
Bandarenka
, and
R. A.
Fischer
, “
Advanced bifunctional oxygen reduction and evolution electrocatalyst derived from surface-mounted metal–organic frameworks
,”
Angew. Chem. Int. Ed.
59
,
5837
(
2020
).
155.
S.
Hou
,
L.
Xu
,
X.
Ding
,
R. M.
Kluge
,
T. K.
Sarpey
,
R. W.
Haid
,
B.
Garlyyev
,
S.
Mukherjee
,
J.
Warnan
,
M.
Koch
,
S.
Zhang
,
W.
Li
,
A. S.
Bandarenka
, and
R. A.
Fischer
, “
Dual in situ laser techniques underpin the role of cations in impacting electrocatalysts
,”
Angew. Chem. Int. Ed.
61
,
e202201610
(
2022
).
156.
S.
Hou
,
W.
Li
,
S.
Watzele
,
R. M.
Kluge
,
S.
Xue
,
S.
Yin
,
X.
Jiang
,
M.
Döblinger
,
A.
Welle
,
B.
Garlyyev
,
M.
Koch
,
P.
Müller-Buschbaum
,
C.
Wöll
,
A. S.
Bandarenka
, and
R. A.
Fischer
, “
Metamorphosis of heterostructured surface‐mounted metal–organic frameworks yielding record oxygen evolution mass activities
,”
Adv. Mater.
33
,
2103218
(
2021
).
157.
Y.
Xiao
,
P.
Weidler
,
S.
Lin
,
C.
Wöll
,
Z.
Gu
, and
J.
Zhang
, “
Chiral metal–organic cluster induced high circularly polarized luminescence of metal–organic framework thin film
,”
Adv. Funct. Mater.
32
,
2204289
(
2022
).
158.
T.
Hashem
,
E. P.
Valadez Sánchez
,
P. G.
Weidler
,
H.
Gliemann
,
M. H.
Alkordi
, and
C.
Wöll
, “
Liquid‐phase quasi‐epitaxial growth of highly stable, monolithic UiO‐66‐NH2 MOF thin films on solid substrates
,”
ChemistryOpen
9
,
524
(
2020
).
159.
T.
Hashem
,
E. P. V.
Sanchez
,
E.
Bogdanova
,
A.
Ugodchikova
,
A.
Mohamed
,
M.
Schwotzer
,
M. H.
Alkordi
, and
C.
Wöll
, “
Stability of monolithic mof thin films in acidic and alkaline aqueous media
,”
Membranes
11
,
207
(
2021
).
160.
A.
Micero
,
T.
Hashem
,
H.
Gliemann
, and
A.
Léon
, “
Hydrogen separation performance of UiO-66-NH2 membranes grown via liquid-phase epitaxy layer-by-layer deposition and one-pot synthesis
,”
Membranes
11
,
735
(
2021
).
161.
A. L.
Semrau
and
R. A.
Fischer
, “
High‐quality thin films of UiO‐66‐NH2 by coordination modulated layer‐by‐layer liquid phase epitaxy
,”
Chem. Eur. J.
27
,
8509
(
2021
).
162.
A. L.
Semrau
,
S.
Wannapaiboon
,
S. P.
Pujari
,
P.
Vervoorts
,
B.
Albada
,
H.
Zuilhof
, and
R. A.
Fischer
, “
Highly porous nanocrystalline UiO-66 thin films via coordination modulation controlled step-by-step liquid-phase growth
,”
Cryst. Growth Des.
19
,
1738
(
2019
).
163.
E. P.
Valadez Sánchez
,
H.
Gliemann
,
K.
Haas‐Santo
,
C.
Wöll
, and
R.
Dittmeyer
, “
ZIF‐8 SURMOF membranes synthesized by Au‐assisted liquid phase epitaxy for application in gas separation
,”
Chem. Ing. Tech.
88
,
1798
(
2016
).
164.
E. P. V.
Sanchez
,
H.
Gliemann
,
K.
Haas-Santo
,
W.
Ding
,
E.
Hansjosten
,
J.
Wohlgemuth
,
C.
Wöll
, and
R.
Dittmeyer
, “
α-Al2O3-supported ZIF-8 SURMOF membranes: Diffusion mechanism of ethene/ethane mixtures and gas separation performance
,”
J. Membr. Sci.
594
,
117421
(
2020
).
165.
B. M.
Weckhuysen
,
Z.
Öztürk
,
R. P.
Brand
,
J. M.
Boereboom
, and
F.
Meirer
, “
Vibrational fingerprinting of defects sites in thin films of zeolitic imidazolate frameworks
,”
Chem. Eur. J.
25
,
8070
(
2019
).
166.
E. P.
Valadez Sánchez
,
A.
Knebel
,
L.
Izquierdo Sánchez
,
M.
Klumpp
,
C.
Wöll
, and
R.
Dittmeyer
, “
Studying ZIF-8 SURMOF thin films with a langatate crystal microbalance: Single-component gas adsorption isotherms measured at elevated temperatures and pressures
,”
Langmuir
36
,
8444
(
2020
).
167.
L.
Ye
,
J.
Liu
,
Y.
Gao
,
C.
Gong
,
M.
Addicoat
,
T.
Heine
,
C.
Wöll
, and
L.
Sun
, “
Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency
,”
J. Mater. Chem. A
4
,
15320
(
2016
).
168.
S.
Ahmad
,
J.
Liu
,
C.
Gong
,
J.
Zhao
, and
L.
Sun
, “
Photon up-conversion via epitaxial surface-supported metal–organic framework thin films with enhanced photocurrent
,”
ACS Appl. Energy Mater.
1
,
249
(
2018
).
169.
S.
Ahmad
,
J.
Liu
,
W.
Ji
, and
L.
Sun
, “
Metal–organic framework thin film-based dye sensitized solar cells with enhanced photocurrent
,”
Materials
11
,
1868
(
2018
).
170.
M.
Kozlowska
,
Y.
Pramudya
,
M.
Jakoby
,
S.
Heidrich
,
L.
Pan
,
B. S.
Richards
,
I. A.
Howard
,
C.
Wöll
,
R.
Haldar
, and
W.
Wenzel
, “
Crystalline assembly of perylene in metal–organic framework thin film: J-aggregate or excimer? Insight into the electronic structure
,”
J. Phys.: Condens. Matter
33
,
034001
(
2021
).
171.
W.
Zhou
,
S.
Begum
,
Z.
Wang
,
P.
Krolla
,
D.
Wagner
,
S.
Bräse
,
C.
Wöll
, and
M.
Tsotsalas
, “
High antimicrobial activity of metal–organic framework-templated porphyrin polymer thin films
,”
ACS Appl. Mater. Interfaces
10
,
1528
(
2018
).
172.
S.
Begum
,
T.
Hashem
,
M.
Tsotsalas
,
C.
Wöll
, and
M. H.
Alkordi
, “
Electrolytic conversion of sacrificial metal–organic framework thin films into an electrocatalytically active monolithic oxide coating for the oxygen-evolution reaction
,”
Energy Technol.
7
,
1900967
(
2019
).
173.
M.
Oldenburg
,
A.
Turshatov
,
D.
Busko
,
M.
Jakoby
,
R.
Haldar
,
K.
Chen
,
G.
Emandi
,
M.
Senge
,
C.
Wöll
,
J.
Hodgkiss
,
B. S.
Richards
, and
I. A.
Howard
, “
Enhancing the photoluminescence of surface anchored metal–organic frameworks: Mixed linkers and efficient acceptors
,”
Phys. Chem. Chem. Phys.
20
,
11564
(
2018
).
174.
A.
Windischbacher
,
L.
Steiner
,
R.
Haldar
,
C.
Wöll
,
E.
Zojer
, and
A.-M.
Kelterer
, “
Exciton coupling and conformational changes impacting the excited state properties of metal organic frameworks
,”
Molecules
25
,
4230
(
2020
).
175.
M.
Oldenburg
,
A.
Turshatov
,
D.
Busko
,
S.
Wollgarten
,
M.
Adams
,
N.
Baroni
,
A.
Welle
,
E.
Redel
,
C.
Wöll
,
B. S.
Richards
, and
I. A.
Howard
, “
Photon upconversion at crystalline organic–organic heterojunctions
,”
Adv. Mater.
28
,
8477
(
2016
).
176.
Z.
Wang
,
A.
Błaszczyk
,
O.
Fuhr
,
S.
Heissler
,
C.
Wöll
, and
M.
Mayor
, “
Molecular weaving via surface-templated epitaxy of crystalline coordination networks
,”
Nat. Commun.
8
,
14442
(
2017
).
177.
S.
Schmitt
,
S.
Diring
,
P. G.
Weidler
,
S.
Begum
,
S.
Heißler
,
S.
Kitagawa
,
C.
Wöll
,
S.
Furukawa
, and
M.
Tsotsalas
, “
Localized conversion of metal–organic frameworks into polymer gels via light-induced click chemistry
,”
Chem. Mater.
29
,
5982
(
2017
).
178.
Z. M.
Hassan
,
P. G.
Weidler
,
A.
Nefedov
,
Y.
Luo
,
S.
Heißler
,
M.
Tsotsalas
,
R.
Haldar
, and
C.
Wöll
, “
Spectroscopic investigation of bianthryl‐based metal–organic framework thin films and their photoinduced topotactic transformation
,”
Adv. Mater. Interfaces
9
,
2102441
(
2022
).
179.
R.
Haldar
,
A.
Mazel
,
R.
Joseph
,
M.
Adams
,
I. A.
Howard
,
B. S.
Richards
,
M.
Tsotsalas
,
E.
Redel
,
S.
Diring
,
F.
Odobel
, and
C.
Wöll
, “
Excitonically coupled states in crystalline coordination networks
,”
Chem. Eur. J.
23
,
14316
(
2017
).
180.
R.
Haldar
,
A.
Mazel
,
M.
Krstić
,
Q.
Zhang
,
M.
Jakoby
,
I. A.
Howard
,
B. S.
Richards
,
N.
Jung
,
D.
Jacquemin
,
S.
Diring
,
W.
Wenzel
,
F.
Odobel
, and
C.
Wöll
, “
A de novo strategy for predictive crystal engineering to tune excitonic coupling
,”
Nat. Commun.
10
,
2048
(
2019
).
181.
R.
Haldar
,
H.
Chen
,
A.
Mazel
,
D.
Chen
,
G.
Gupta
,
N.
Dua
,
S.
Diring
,
F.
Odobel
, and
C.
Wöll
, “
Antenna doping: The key for achieving efficient optical wavelength conversion in crystalline chromophoric heterolayers
,”
Adv. Mater. Interfaces
8
,
2100262
(
2021
).
182.
X.
Liu
,
A.
Mazel
,
S.
Marschner
,
Z.
Fu
,
M.
Muth
,
F.
Kirschhöfer
,
G.
Brenner-Weiss
,
S.
Bräse
,
S.
Diring
,
F.
Odobel
,
R.
Haldar
, and
C.
Wöll
, “
Photoinduced delamination of metal–organic framework thin films by spatioselective generation of reactive oxygen species
,”
ACS Appl. Mater. Interfaces
13
,
57768
(
2021
).
183.
R.
Haldar
,
M.
Jakoby
,
M.
Kozlowska
,
M.
Rahman Khan
,
H.
Chen
,
Y.
Pramudya
,
B. S.
Richards
,
L.
Heinke
,
W.
Wenzel
,
F.
Odobel
,
S.
Diring
,
I. A.
Howard
,
U.
Lemmer
, and
C.
Wöll
, “
Tuning optical properties by controlled aggregation: Electroluminescence assisted by thermally-activated delayed fluorescence from thin films of crystalline chromophores
,”
Chem. Eur. J.
26
,
17016
(
2020
).
184.
Z.
Wang
,
J.
Liu
,
S.
Grosjean
,
D.
Wagner
,
W.
Guo
,
Z.
Gu
,
L.
Heinke
,
H.
Gliemann
,
S.
Bräse
, and
C.
Wöll
, “
Monolithic, crystalline MOF coating: An excellent patterning and photoresist material
,”
ChemNanoMat
1
,
338
(
2015
).
185.
R.
Haldar
,
K.
Batra
,
S. M.
Marschner
,
A. B.
Kuc
,
S.
Zahn
,
R. A.
Fischer
,
S.
Bräse
,
T.
Heine
, and
C.
Wöll
, “
Bridging the green gap: Metal–organic framework heteromultilayers assembled from porphyrinic linkers identified by using computational screening
,”
Chem. Eur. J.
25
,
7847
(
2019
).
186.
I. N.
Meshkov
,
A. I.
Zvyagina
,
A. A.
Shiryaev
,
M. S.
Nickolsky
,
A. E.
Baranchikov
,
A. A.
Ezhov
,
A. G.
Nugmanova
,
Y. Y.
Enakieva
,
Y. G.
Gorbunova
,
V. V.
Arslanov
, and
M. A.
Kalinina
, “
Understanding self-assembly of porphyrin-based SURMOFs: How layered minerals can be useful
,”
Langmuir
34
,
5184
(
2018
).
187.
S.
Goswami
,
M.
Chen
,
M. R.
Wasielewski
,
O. K.
Farha
, and
J. T.
Hupp
, “
Boosting transport distances for molecular excitons within photoexcited metal–organic framework films
,”
ACS Appl. Mater. Interfaces
10
,
34409
(
2018
).
188.
Y.
Wang
,
S.
Chen
,
R.
Haldar
,
C.
Wöll
,
Z.
Gu
, and
J.
Zhang
, “
van der Waals epitaxial growth of 2D metal–porphyrin framework derived thin films for dye‐sensitized solar cells
,”
Adv. Mater. Interfaces
5
,
1800985
(
2018
).
189.
A.
Kutenina
,
A.
Zvyagina
,
O.
Raitman
,
Y.
Enakieva
, and
M.
Kalinina
, “
Layer-by-layer assembly of SAM-supported porphyrin-based metal organic frameworks for molecular recognition
,”
Colloid J.
81
,
401
(
2019
).
190.
R.
Haldar
,
S.
Diring
,
P. K.
Samanta
,
M.
Muth
,
W.
Clancy
,
A.
Mazel
,
S.
Schlabach
,
F.
Kirschhöfer
,
G.
Brenner‐Weiß
,
S. K.
Pati
,
F.
Odobel
, and
C.
Wöll
, “
Enhancing selectivity and kinetics in oxidative photocyclization by supramolecular control
,”
Angew. Chem. Int. Ed.
57
,
13662
(
2018
).
191.
M.
Adams
,
N.
Baroni
,
M.
Oldenburg
,
F.
Kraffert
,
J.
Behrends
,
R. W.
MacQueen
,
R.
Haldar
,
D.
Busko
,
A.
Turshatov
,
G.
Emandi
,
M. O.
Senge
,
C.
Wöll
,
K.
Lips
,
B. S.
Richards
, and
I. A.
Howard
, “
Reaction of porphyrin-based surface-anchored metal–organic frameworks caused by prolonged illumination
,”
Phys. Chem. Chem. Phys.
20
,
29142
(
2018
).
192.
M.
Adams
,
M.
Kozlowska
,
N.
Baroni
,
M.
Oldenburg
,
R.
Ma
,
D.
Busko
,
A.
Turshatov
,
G.
Emandi
,
M. O.
Senge
,
R.
Haldar
,
C.
Wöll
,
G. U.
Nienhaus
,
B. S.
Richards
, and
I. A.
Howard
, “
Highly efficient one-dimensional triplet exciton transport in a palladium–porphyrin-based surface-anchored metal–organic framework
,”
ACS Appl. Mater. Interfaces
11
,
15688
(
2019
).
193.
X.
Li
,
C.
Gong
,
G. G.
Gurzadyan
,
M. F.
Gelin
,
J.
Liu
, and
L.
Sun
, “
Ultrafast relaxation dynamics in zinc tetraphenylporphyrin surface-mounted metal organic framework
,”
J. Phys. Chem. C
122
,
50
(
2018
).
194.
X.
Li
,
G. G.
Gurzadyan
,
M. F.
Gelin
,
W.
Domcke
,
C.
Gong
,
J.
Liu
, and
L.
Sun
, “
Enhanced S2 fluorescence from a free-base tetraphenylporphyrin surface-mounted metal organic framework
,”
J. Phys. Chem. C
122
,
23321
(
2018
).
195.
B.
Liu
,
O.
Shekhah
,
H. K.
Arslan
,
J.
Liu
,
C.
Wöll
, and
R. A.
Fischer
, “
Enantiopure metal–organic framework thin films: Oriented SURMOF growth and enantioselective adsorption
,”
Angew. Chem. Int. Ed.
51
,
807
(
2012
).
196.
N.
Baroni
,
A.
Turshatov
,
M.
Oldenburg
,
D.
Busko
,
M.
Adams
,
R.
Haldar
,
A.
Welle
,
E.
Redel
,
C.
Wöll
,
B. S.
Richards
, and
I. A.
Howard
, “
Facile loading of thin-film surface-anchored metal-organic frameworks with Lewis-base guest molecules
,”
Mater. Chem. Front.
1
,
1888
(
2017
).
197.
N.
Baroni
,
A.
Turshatov
,
M.
Adams
,
E. A.
Dolgopolova
,
S.
Schlisske
,
G.
Hernandez-Sosa
,
C.
Wöll
,
N. B.
Shustova
,
B. S.
Richards
, and
I. A.
Howard
, “
Inkjet-printed photoluminescent patterns of aggregation-induced-emission chromophores on surface-anchored metal–organic frameworks
,”
ACS Appl. Mater. Interfaces
10
,
25754
(
2018
).
198.
S.-M.
Chen
,
L.-M.
Chang
,
X.-K.
Yang
,
T.
Luo
,
H.
Xu
,
Z.-G.
Gu
, and
J.
Zhang
, “
Liquid-phase epitaxial growth of azapyrene-based chiral metal–organic framework thin films for circularly polarized luminescence
,”
ACS Appl. Mater. Interfaces
11
,
31421
(
2019
).
199.
Z.
Wang
,
J.
Liu
,
H. K.
Arslan
,
S.
Grosjean
,
T.
Hagendorn
,
H.
Gliemann
,
S.
Bräse
, and
C.
Wöll
, “
Post-synthetic modification of metal–organic framework thin films using click chemistry: The importance of strained C–C triple bonds
,”
Langmuir
29
,
15958
(
2013
).
200.
A. I.
Zvyagina
,
A. A.
Shiryaev
,
A. E.
Baranchikov
,
V. V.
Chernyshev
,
Y. Y.
Enakieva
,
O. A.
Raitman
,
A. A.
Ezhov
,
IN.
Meshkov
,
D. A.
Grishanov
,
O. S.
Ivanova
,
Y. G.
Gorbunova
,
V. V.
Arslanov
, and
M. A.
Kalinina
, “
Layer-by-layer assembly of porphyrin-based metal–organic frameworks on solids decorated with graphene oxide
,”
New J. Chem.
41
,
948
(
2017
).
201.
S.
Wannapaiboon
,
M.
Tu
, and
R. A.
Fischer
, “
Liquid phase heteroepitaxial growth of moisture-tolerant MOF-5 isotype thin films and assessment of the sorption properties by quartz crystal microbalance
,”
Adv. Funct. Mater.
24
,
2696
(
2014
).
202.
H.
Kuhn
, “
Present status and future prospects of Langmuir-Blodgett film research
,”
Thin Solid Films
178
,
1
(
1989
).
203.
H.
Kaur
,
S.
Sundriyal
,
V.
Pachauri
,
S.
Ingebrandt
,
K.-H.
Kim
,
A. L.
Sharma
, and
A.
Deep
, “
Luminescent metal-organic frameworks and their composites: Potential future materials for organic light emitting displays
,”
Coord. Chem. Rev.
401
,
213077
(
2019
).
204.
C.
Peng
,
X.
Song
,
J.
Yin
,
G.
Zhang
, and
H.
Fei
, “
Intrinsic white‐light‐emitting metal–organic frameworks with structurally deformable secondary building units
,”
Angew. Chem. Int. Ed.
58
,
7818
(
2019
).
205.
H.
Yoon
,
M.
Park
,
J.
Kim
,
T. G.
Novak
,
S.
Lee
, and
S.
Jeon
, “
Toward highly efficient luminescence in graphene quantum dots for optoelectronic applications
,”
Chem. Phys. Rev.
2
,
031303
(
2021
).
206.
Y.
Zheng
,
F.
Sun
,
X.
Han
,
J.
Xu
, and
X.
Bu
, “
Recent progress in 2D metal‐organic frameworks for optical applications
,”
Adv. Opt. Mater.
8
,
2000110
(
2020
).
207.
T. N.
Nguyen
,
F. M.
Ebrahim
, and
K. C.
Stylianou
, “
Photoluminescent, upconversion luminescent and nonlinear optical metal-organic frameworks: From fundamental photophysics to potential applications
,”
Coord. Chem. Rev.
377
,
259
(
2018
).
208.
K. C.
Stylianou
,
R.
Heck
,
S. Y.
Chong
,
J.
Bacsa
,
J. T.
Jones
,
Y. Z.
Khimyak
,
D.
Bradshaw
, and
M. J.
Rosseinsky
, “
A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core
,”
J. Am. Chem. Soc.
132
,
4119
(
2010
).
209.
D.-H.
Chen
,
L.
Lin
,
T.-L.
Sheng
,
Y.-H.
Wen
,
S.-M.
Hu
,
R.-B.
Fu
,
C.
Zhuo
,
H.-R.
Li
, and
X.-T.
Wu
, “
Syntheses, structures and luminescence properties of five coordination polymers based on designed 2,7-bis (4-benzoic acid)-N-(4-benzoic acid) carbazole
,”
CrystEngComm
19
,
2632
(
2017
).
210.
H.-Q.
Yin
,
X.-Y.
Wang
, and
X.-B.
Yin
, “
Rotation restricted emission and antenna effect in single metal–organic frameworks
,”
J. Am. Chem. Soc.
141
,
15166
(
2019
).
211.
D.-H.
Chen
,
L.
Lin
,
T.-L.
Sheng
,
Y.-H.
Wen
,
X.-Q.
Zhu
,
L.-T.
Zhang
,
S.-M.
Hu
,
R.-B.
Fu
, and
X.-T.
Wu
, “
Syntheses, structures, luminescence and magnetic properties of seven isomorphous metal–organic frameworks based on 2,7-bis(4-benzoic acid)-N-(4-benzoic acid)carbazole
,”
New J. Chem.
42
,
2830
(
2018
).
212.
J.
Dong
,
P.
Shen
,
S.
Ying
,
Z.-J.
Li
,
Y. D.
Yuan
,
Y.
Wang
,
X.
Zheng
,
S.