The time-dependent exchange–correlation potential has the unusual task of directing fictitious non-interacting electrons to move with exactly the same probability density as true interacting electrons. This has intriguing implications for its structure, especially in the non-perturbative regime, leading to step and peak features that cannot be captured by bootstrapping any ground-state functional approximation. We review what has been learned about these features in the exact exchange–correlation potential of time-dependent density functional theory in the past decade or so and implications for the performance of simulations when electrons are driven far from any ground state.

1.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
2.
Fundamentals of Time-Dependent Density Functional Theory
, edited by
M. A.
Marques
,
N. T.
Maitra
,
F. M.
Nogueira
,
E. K.
Gross
, and
A.
Rubio
(
Springer
,
Berlin, Heidelberg
,
2012
), Vol.
837
.
3.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory: Concepts and Applications
(
Oxford University Press
,
2011
).
4.
N. T.
Maitra
,
J. Chem. Phys.
144
,
220901
(
2016
).
5.
E. W.
Draeger
,
X.
Andrade
,
J. A.
Gunnels
,
A.
Bhatele
,
A.
Schleife
, and
A. A.
Correa
,
J. Parallel Distrib. Comput.
106
,
205
(
2017
).
6.
C.
Shepard
,
R.
Zhou
,
D. C.
Yost
,
Y.
Yao
, and
Y.
Kanai
,
J. Chem. Phys.
155
,
100901
(
2021
).
7.
M.
Jacobs
,
J.
Krumland
, and
C.
Cocchi
,
ACS Appl. Nano Mater.
5
,
5187
(
2022
).
8.
X.
Li
,
N.
Govind
,
C.
Isborn
,
A. E.
DePrince
, and
K.
Lopata
,
Chem. Rev.
120
,
9951
(
2020
).
9.
S. A.
Sato
,
Comput. Mater. Sci.
194
,
110274
(
2021
).
10.
F.
Mauger
,
A. S.
Folorunso
,
K. A.
Hamer
,
C.
Chandre
,
M. B.
Gaarde
,
K.
Lopata
, and
K. J.
Schafer
,
Phys. Rev. Res.
4
,
013073
(
2022
).
11.
P.
Dinh
,
M.
Vincendon
,
F.
Coppens
,
E.
Suraud
, and
P.-G.
Reinhard
,
Comput. Phys. Commun.
270
,
108155
(
2022
).
12.
I.
Schelter
and
S.
Kümmel
,
J. Chem. Theory Comput.
14
,
1910
(
2018
).
13.
S.
Yamada
,
M.
Noda
,
K.
Nobusada
, and
K.
Yabana
,
Phys. Rev. B
98
,
245147
(
2018
).
14.
L.
Bhan
,
C.
Covington
, and
K.
Varga
,
Phys. Rev. B
105
,
085416
(
2022
).
15.
I.
Floss
,
C.
Lemell
,
G.
Wachter
,
V.
Smejkal
,
S. A.
Sato
,
X.-M.
Tong
,
K.
Yabana
, and
J.
Burgdörfer
,
Phys. Rev. A
97
,
011401
(
2018
).
16.
P.
Elliott
,
T.
Müller
,
J. K.
Dewhurst
,
S.
Sharma
, and
E.
Gross
,
Sci. Rep.
6
,
38911
(
2016
).
17.
R.
Ullah
,
E.
Artacho
, and
A. A.
Correa
,
Phys. Rev. Lett.
121
,
116401
(
2018
).
18.
C.
Andrea Rozzi
,
S. M.
Falke
,
N.
Spallanzani
,
A.
Rubio
,
E.
Molinari
,
D.
Brida
,
M.
Maiuri
,
G.
Cerullo
,
H.
Schramm
,
J.
Christoffers
, and
C.
Lienau
,
Nat. Commun.
4
,
1602
(
2013
).
19.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
20.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
21.
E.
Gross
and
N.
Maitra
, in
Fundamentals of Time-Dependent Density Functional Theory
, edited by
M. A.
Marques
,
N. T.
Maitra
,
F. M.
Nogueira
,
E.
Gross
, and
A.
Rubio
(
Springer
,
Berlin, Heidelberg
,
2012
), pp.
53
99
.
22.
R.
van Leeuwen
,
Phys. Rev. Lett.
82
,
3863
(
1999
).
23.
N. T.
Maitra
and
K.
Burke
,
Phys. Rev. A
63
,
042501
(
2001
).
24.
P.
Elliott
and
N. T.
Maitra
,
Phys. Rev. A
85
,
052510
(
2012
).
25.
J. I.
Fuks
,
S.
Nielsen
,
M.
Ruggenthaler
, and
N. T.
Maitra
,
Phys. Chem. Chem. Phys.
18
,
20976
(
2016
).
26.
M.
Casida
, in
Recent Advances in Density Functional Methods, Part I
, edited by
D.
Chong
(
World Scientific
,
Singapore
,
1995
).
27.
M. E.
Casida
, in
Recent Developments and Applications of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), p.
391
.
28.
M.
Petersilka
,
U. J.
Gossmann
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
76
,
1212
(
1996
).
29.
T.
Grabo
,
M.
Petersilka
, and
E.
Gross
,
J. Mol. Struct.: THEOCHEM
501
,
353
(
2000
).
30.
M.
Casida
and
M.
Huix-Rotllant
,
Annu. Rev. Phys. Chem.
63
,
287
(
2012
).
31.
C.
Adamo
and
D.
Jacquemin
,
Chem. Soc. Rev.
42
,
845
(
2013
).
32.
R.
Sarkar
,
M.
Boggio-Pasqua
,
P.-F.
Loos
, and
D.
Jacquemin
,
J. Chem. Theory Comput.
17
,
1117
(
2021
).
33.
N. T.
Maitra
,
Annu. Rev. Phys. Chem.
73
,
117–140
(
2022
).
34.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
Martínez
,
Mol. Phys.
104
,
1039
(
2006
).
35.
F.
Wilken
and
D.
Bauer
,
Phys. Rev. A
76
,
023409
(
2007
).
36.
F.
Wilken
and
D.
Bauer
,
Phys. Rev. Lett.
97
,
203001
(
2006
).
37.
R.
D'Agosta
and
G.
Vignale
,
Phys. Rev. B
71
,
245103
(
2005
).
38.
P.
Schaffhauser
and
S.
Kümmel
,
Phys. Rev. B
93
,
035115
(
2016
).
39.
D.
Dar
,
L.
Lacombe
,
J.
Feist
, and
N. T.
Maitra
,
Phys. Rev. A
104
,
032821
(
2021
).
40.
X.
Andrade
,
S.
Hamel
, and
A.
Correa
,
Eur. Phys. J. B
91
,
229
(
2018
).
41.
T.
Takeuchi
,
M.
Noda
, and
K.
Yabana
,
ACS Photonics
6
,
2517
(
2019
).
42.
U.
De Giovannini
,
H.
Hübener
, and
A.
Rubio
,
J. Chem. Theory Comput.
13
,
265
(
2017
).
43.
K.
Luo
,
J. I.
Fuks
,
E. D.
Sandoval
,
P.
Elliott
, and
N. T.
Maitra
,
J. Chem. Phys.
140
,
18A515
(
2014
).
44.
J. I.
Fuks
,
L.
Lacombe
,
S. E. B.
Nielsen
, and
N. T.
Maitra
,
Phys. Chem. Chem. Phys.
20
,
26145
(
2018
).
45.
L.
Lacombe
and
N. T.
Maitra
,
J. Chem. Theory Comput.
15
,
1672
(
2019
).
46.
L.
Lacombe
and
N. T.
Maitra
,
Faraday Discuss.
224
,
382
(
2020
).
47.
Y.
Suzuki
,
L.
Lacombe
,
K.
Watanabe
, and
N. T.
Maitra
,
Phys. Rev. Lett.
119
,
263401
(
2017
).
48.
S. E. B.
Nielsen
,
M.
Ruggenthaler
, and
R.
van Leeuwen
,
Europhys. Lett.
101
,
33001
(
2013
).
49.
N. T.
Maitra
,
K.
Burke
, and
C.
Woodward
,
Phys. Rev. Lett.
89
,
023002
(
2002
).
50.
M.
Thiele
,
E. K. U.
Gross
, and
S.
Kümmel
,
Phys. Rev. Lett.
100
,
153004
(
2008
).
51.
S.
Raghunathan
and
M.
Nest
,
J. Chem. Theory Comput.
7
,
2492
(
2011
).
52.
R.
Ramakrishnan
and
M.
Nest
,
Phys. Rev. A
85
,
054501
(
2012
).
53.
S.
Raghunathan
and
M.
Nest
,
J. Chem. Phys
136
,
064104
(
2012
).
54.
S.
Raghunathan
and
M.
Nest
,
J. Chem. Theory Comput.
8
,
806
(
2012
).
55.
B. F.
Habenicht
,
N. P.
Tani
,
M. R.
Provorse
, and
C. M.
Isborn
,
J. Chem. Phys.
141
,
184112
(
2014
).
56.
M.
Provorse
and
C. M.
Isborn
,
Int. J. Quant. Chem.
116
,
739
(
2016
).
57.
H. O.
Wijewardane
and
C. A.
Ullrich
,
Phys. Rev. Lett.
100
,
056404
(
2008
).
58.
C.-Z.
Gao
,
P. M.
Dinh
,
P.-G.
Reinhard
, and
E.
Suraud
,
Phys. Chem. Chem. Phys.
19
,
19784
(
2017
).
59.
C. A.
Ullrich
,
J. Chem. Phys.
125
,
234108
(
2006
).
60.
61.
D.
Karlsson
,
A.
Privitera
, and
C.
Verdozzi
,
Phys. Rev. Lett.
106
,
116401
(
2011
).
62.
P.
Elliott
,
J. I.
Fuks
,
A.
Rubio
, and
N. T.
Maitra
,
Phys. Rev. Lett.
109
,
266404
(
2012
).
63.
J.
Ramsden
and
R.
Godby
,
Phys. Rev. Lett.
109
,
036402
(
2012
).
64.
J. I.
Fuks
and
N. T.
Maitra
,
Phys. Chem. Chem. Phys.
16
,
14504
(
2014
).
65.
J. I.
Fuks
and
N. T.
Maitra
,
Phys. Rev. A
89
,
062502
(
2014
).
66.
67.
N.
Dittmann
,
J.
Splettstoesser
, and
N.
Helbig
,
Phys. Rev. Lett.
120
,
157701
(
2018
).
68.
F.
Covito
,
E.
Perfetto
,
A.
Rubio
, and
G.
Stefanucci
,
Phys. Rev. A
97
,
061401
(
2018
).
69.
L.
Lacombe
,
Y.
Suzuki
,
K.
Watanabe
, and
N. T.
Maitra
,
Eur. Phys. J. B
91
,
96
(
2018
).
70.
C.-Z.
Gao
,
J.
Wang
,
F.
Wang
, and
F.-S.
Zhang
,
J. Chem. Phys.
140
,
054308
(
2014
).
71.
E. E.
Quashie
,
B. C.
Saha
,
X.
Andrade
, and
A. A.
Correa
,
Phys. Rev. A
95
,
042517
(
2017
).
72.
N.
Henkel
,
M.
Keim
,
H. J.
Lüdde
, and
T.
Kirchner
,
Phys. Rev. A
80
,
032704
(
2009
).
73.
B.
Da
,
J.
Liu
,
M.
Yamamoto
,
Y.
Ueda
,
K.
Watanabe
,
N. T.
Cuong
,
S.
Li
,
K.
Tsukagoshi
,
H.
Yoshikawa
,
H.
Iwai
,
S.
Tanuma
,
H.
Guo
,
Z.
Gao
,
X.
Sun
, and
Z.
Ding
,
Nat. Commun.
8
,
15629
(
2017
).
74.
H.
Miyauchi
,
Y.
Ueda
,
Y.
Suzuki
, and
K.
Watanabe
,
Phys. Rev. B
95
,
125425
(
2017
).
75.
Y.
Ueda
,
Y.
Suzuki
, and
K.
Watanabe
,
Phys. Rev. B
94
,
035403
(
2016
).
76.
J. I.
Fuks
,
P.
Elliott
,
A.
Rubio
, and
N. T.
Maitra
,
J. Phys. Chem. Lett.
4
,
735
(
2013
).
77.
N. T.
Maitra
,
J. Phys.: Condens. Matter
29
,
423001
(
2017
).
78.
M.
Ruggenthaler
and
D.
Bauer
,
Phys. Rev. Lett.
102
,
233001
(
2009
).
79.
J. I.
Fuks
,
N.
Helbig
,
I.
Tokatly
, and
A.
Rubio
,
Phys. Rev. B
84
,
075107
(
2011
).
80.
J. I.
Fuks
,
K.
Luo
,
E. D.
Sandoval
, and
N. T.
Maitra
,
Phys. Rev. Lett.
114
,
183002
(
2015
).
81.
K.
Luo
,
J. I.
Fuks
, and
N. T.
Maitra
,
J. Chem. Phys.
145
,
044101
(
2016
).
82.
M. R.
Provorse
,
B. F.
Habenicht
, and
C. M.
Isborn
,
J. Chem. Theory Comput.
11
,
4791
(
2015
).
83.
M. J. T.
Oliveira
,
B.
Mignolet
,
T.
Kus
,
T. A.
Papadopoulos
,
F.
Remacle
, and
M. J.
Verstraete
,
J. Chem. Theory Comput.
11
,
2221
(
2015
).
84.
U.
De Giovannini
,
G.
Brunetto
,
A.
Castro
,
J.
Walkenhorst
, and
A.
Rubio
,
ChemPhysChem
14
,
1363
(
2013
).
85.
M. J. P.
Hodgson
,
J. D.
Ramsden
,
J. B. J.
Chapman
,
P.
Lillystone
, and
R. W.
Godby
,
Phys. Rev. B
88
,
241102
(
2013
).
86.
M. J. P.
Hodgson
,
J. D.
Ramsden
,
T. R.
Durrant
, and
R. W.
Godby
,
Phys. Rev. B
90
,
241107
(
2014
).
87.
C.
Verdozzi
,
D.
Karlsson
,
M.
Puig von Friesen
,
C.-O.
Almbladh
, and
U.
von Barth
, “
Open problems and new solutions in time dependent density functional theory
,”
Chem. Phys.
391
,
37
(
2011
).
88.
L.
Mancini
,
J. D.
Ramsden
,
M. J. P.
Hodgson
, and
R. W.
Godby
,
Phys. Rev. B
89
,
195114
(
2014
).
89.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
90.
J. P.
Perdew
, “
What do the Kohn-Sham orbital energies mean? how do atoms dissociate
?,” in
Density Functional Methods in Physics
, edited by
R. M.
Dreizler
and
J.
da Providência
(
Springer
,
Boston, MA
,
1985
), pp.
265
308
.
91.
C.-O.
Almbladh
and
U.
von Barth
,
Phys. Rev. B
31
,
3231
(
1985
).
92.
M. A.
Buijse
,
E. J.
Baerends
, and
J. G.
Snijders
,
Phys. Rev. A
40
,
4190
(
1989
).
93.
O. V.
Gritsenko
and
E. J.
Baerends
,
Phys. Rev. A
54
,
1957
(
1996
).
94.
D. G.
Tempel
,
T. J.
Martínez
, and
N. T.
Maitra
,
J. Chem. Theory Comput.
5
,
770
(
2009
).
95.
N.
Helbig
,
I. V.
Tokatly
, and
A.
Rubio
,
J. Chem. Phys.
131
,
224105
(
2009
).
96.
M. J. P.
Hodgson
,
J. D.
Ramsden
, and
R. W.
Godby
,
Phys. Rev. B
93
,
155146
(
2016
).
97.
S. V.
Kohut
,
A. M.
Polgar
, and
V. N.
Staroverov
,
Phys. Chem. Chem. Phys.
18
,
20938
(
2016
).
98.
S.
Giarrusso
and
P.
Gori-Giorgi
,
J. Phys. Chem. A
124
,
2473
(
2020
).
99.
S.
Giarrusso
,
S.
Vuckovic
, and
P.
Gori-Giorgi
,
J. Chem. Theory Comput.
14
,
4151
(
2018
).
100.
J.
Kocák
,
E.
Kraisler
, and
A.
Schild
,
J. Phys. Chem. Lett.
12
,
3204
(
2021
).
101.
S.
Giarrusso
,
R.
Neugarten
,
E. J.
Baerends
, and
K. J. H.
Giesbertz
, “
Secondary kinetic peak in the Kohn-Sham potential and its connection to the response step
,” arXiv:2204.06526 (
2022
).
102.
R.
van Leeuwen
,
O.
Gritsenko
, and
E. J.
Baerends
,
Z. Phys. D: At. Mol. Clusters
33
,
229
(
1995
).
103.
T.
Grabo
,
T.
Kreibich
,
S.
Kurth
, and
E.
Gross
,
Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation
(
Gordon and Breach Science Publishers
,
Amsterdam, The Netherlands
,
2000
), p.
203
.
104.
A.
Makmal
,
S.
Kümmel
, and
L.
Kronik
,
Phys. Rev. A
83
,
062512
(
2011
).
105.
F.
Della Sala
and
A.
Görling
,
Phys. Rev. Lett.
89
,
033003
(
2002
).
106.
P.
Gori-Giorgi
,
T.
Gál
, and
E. J.
Baerends
,
Mol. Phys.
114
,
1086
(
2016
).
107.
S. J. A.
van Gisbergen
,
P. R. T.
Schipper
,
O. V.
Gritsenko
,
E. J.
Baerends
,
J. G.
Snijders
,
B.
Champagne
, and
B.
Kirtman
,
Phys. Rev. Lett.
83
,
694
(
1999
).
108.
M.
Hellgren
and
E. K. U.
Gross
,
J. Chem. Phys.
136
,
114102
(
2012
).
109.
M.
Hellgren
and
E. K. U.
Gross
,
Phys. Rev. A
88
,
052507
(
2013
).
110.
S.
Kurth
,
G.
Stefanucci
,
E.
Khosravi
,
C.
Verdozzi
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
104
,
236801
(
2010
).
111.
M.
Lein
and
S.
Kümmel
,
Phys. Rev. Lett.
94
,
143003
(
2005
).
112.
N. T.
Maitra
,
K.
Burke
,
H.
Appel
,
E.
Gross
, and
R.
van Leeuwen
,
Rev. Mod. Quantum Chem.
2
,
1186
(
2002
).
113.
M.
Thiele
and
S.
Kümmel
,
Phys. Rev. A
79
,
052503
(
2009
).
114.
N. T.
Maitra
,
R.
van Leeuwen
, and
K.
Burke
,
Phys. Rev. A
78
,
056501
(
2008
).
115.
W.
Tarantino
and
C. A.
Ullrich
,
J. Chem. Phys.
154
,
204112
(
2021
).
116.
M. T.
Entwistle
and
R. W.
Godby
,
Phys. Rev. Mater.
4
,
035002
(
2020
).
117.
L.
Brus
,
Acc. Chem. Res.
47
,
2951
(
2014
).
118.
M. M.
Ugeda
,
A. J.
Bradley
,
S.-F.
Shi
,
F. H.
da Jornada
,
Y.
Zhang
,
D. Y.
Qiu
,
W.
Ruan
,
S.-K.
Mo
,
Z.
Hussain
,
Z.-X.
Shen
,
F.
Wang
,
S. G.
Louie
, and
M. F.
Crommie
,
Nat. Mater.
13
,
1091
(
2014
).
119.
J.
Feist
, “
Two-photon double ionization of helium
,” Ph.D. thesis (Vienna University of Technology,
2009
).
120.
J.
Feist
,
S.
Nagele
,
R.
Pazourek
,
E.
Persson
,
B. I.
Schneider
,
L. A.
Collins
, and
J.
Burgdörfer
,
Phys. Rev. A
77
,
043420
(
2008
).
121.
M.
Ruggenthaler
and
R.
van Leeuwen
,
Europhys. Lett.
95
,
13001
(
2011
).
122.
M.
Ruggenthaler
,
M.
Penz
, and
R.
van Leeuwen
,
J. Phys.: Condens. Matter
27
,
203202
(
2015
).
123.
A.
Bruner
,
S.
Hernandez
,
F.
Mauger
,
P. M.
Abanador
,
D. J.
LaMaster
,
M. B.
Gaarde
,
K. J.
Schafer
, and
K.
Lopata
,
J. Phys. Chem. Lett.
8
,
3991
(
2017
).
124.
A. S.
Folorunso
,
A.
Bruner
,
F.
Mauger
,
K. A.
Hamer
,
S.
Hernandez
,
R. R.
Jones
,
L. F.
DiMauro
,
M. B.
Gaarde
,
K. J.
Schafer
, and
K.
Lopata
,
Phys. Rev. Lett.
126
,
133002
(
2021
).
125.
We have omitted the correlation potential for a = 0 from the figure because it is so small that it falls within the numerical uncertainty of our inversion. Instead, it may be found in Ref. 130.
126.
G.
Vignale
and
W.
Kohn
,
Phys. Rev. Lett.
77
,
2037
(
1996
).
127.
G.
Giuliani
and
G.
Vignale
,
Quantum Theory of the Electron Liquid
(
Cambridge University Press
,
2005
).
128.
C. A.
Ullrich
,
U. J.
Gossmann
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
74
,
872
(
1995
).
129.
S.-L.
Liao
,
T.-S.
Ho
,
H.
Rabitz
, and
S.-I.
Chu
,
Phys. Rev. Lett.
118
,
243001
(
2017
).
130.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
You do not currently have access to this content.