Fluorescent proteins (FPs) have gained much attention over the last few decades as powerful tools in bioimaging since the discovery of green fluorescent protein (GFP) in the 1960s. The mechanism of FP bioluminenscence has been well-studied, and new variants with improved photophysical properties are being constantly generated. In this review, a brief history of GFP along with its biogenesis is first provided. Next, the fluorescent and quenching mechanism governing the photophysical property of GFP is elaborated. Most importantly, we seek to introduce the expanding family of FP derivatives that mimics the chromophore core structure of FPs. Multiple physical and chemical strategies have been discussed to minimize the inherent fluorescence quenching effect of FP derivatives. Finally, we briefly overview the biological application of FP derivatives, with a focus on fluorescent RNA aptamer and recently reported protein aggregation detection probes. Through citing and discussing the most important works in this field, this review aims to provide a general photophysical understanding regarding the luminescence phenomenon of GFP and its derivatives, as well as chemical strategies to design functional FP derivatives.

1.
O.
Shimomura
, “
The discovery of aequorin and green fluorescent protein
,”
J. Microsc.
217
(
1
),
3
15
(
2005
).
2.
O.
Shimomura
,
F. H.
Johnson
, and
Y.
Saiga
, “
Extraction, purification and properties of aequorin, a bioluminescent protein from luminous hydromedusan, Aequorea
,”
J. Cell. Comp. Physiol.
59
(
3
),
223
239
(
1962
).
3.
H.
Morise
,
O.
Shimomura
,
F. H.
Johnson
, and
J.
Winant
, “
Intermolecular energy transfer in the bioluminescent system of Aequorea
,”
Biochemistry
13
(
12
),
2656
2662
(
1974
).
4.
D. C.
Prasher
,
V. K.
Eckenrode
,
W. W.
Ward
,
F. G.
Prendergast
, and
M. J.
Cormier
, “
Primary structure of the Aequorea victoria green-fluorescent protein
,”
Gene
111
(
2
),
229
233
(
1992
).
5.
M.
Chalfie
,
Y.
Tu
,
G.
Euskirchen
,
W. W.
Ward
, and
D. C.
Prasher
, “
Green fluorescent protein as a marker for gene expression
,”
Science
263
(
5148
),
802
805
(
1994
).
6.
R. Y.
Tsien
, “
The green fluorescent protein
,”
Annu. Rev. Biochem.
67
(
1
),
509
544
(
1998
).
7.
J.
Zhang
,
R. E.
Campbell
,
A. Y.
Ting
, and
R. Y.
Tsien
, “
Creating new fluorescent probes for cell biology
,”
Nat. Rev. Mol. Cell Biol.
3
(
12
),
906
918
(
2002
).
8.
R. Y.
Tsien
, “
Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture)
,”
Angew. Chem., Int. Ed.
48
(
31
),
5612
5626
(
2009
).
9.
D. M.
Chudakov
,
M. V.
Matz
,
S.
Lukyanov
, and
K. A.
Lukyanov
, “
Fluorescent proteins and their applications in imaging living cells and tissues
,”
Physiol. Rev.
90
(
3
),
1103
1163
(
2010
).
10.
E. A.
Rodriguez
,
R. E.
Campbell
,
J. Y.
Lin
,
M. Z.
Lin
,
A.
Miyawaki
,
A. E.
Palmer
,
X.
Shu
,
J.
Zhang
, and
R. Y.
Tsien
, “
The growing and glowing toolbox of fluorescent and photoactive proteins
,”
Trends Biochem. Sci.
42
(
2
),
111
129
(
2017
).
11.
J.
Kong
,
Y.
Wang
,
W.
Qi
,
M.
Huang
,
R.
Su
, and
Z.
He
, “
Green fluorescent protein inspired fluorophores
,”
Adv. Colloid Interface Sci.
285
,
102286
(
2020
).
12.
F.
Yang
,
L. G.
Moss
, and
G. N.
Phillips
, “
The molecular structure of green fluorescent protein
,”
Nat. Biotechnol.
14
(
10
),
1246
1251
(
1996
).
13.
S.-T. D.
Hsu
,
G.
Blaser
, and
S. E.
Jackson
, “
The folding, stability and conformational dynamics of β-barrel fluorescent proteins
,”
Chem. Soc. Rev.
38
(
10
),
2951
2965
(
2009
).
14.
S.
Enoki
,
K.
Saeki
,
K.
Maki
, and
K.
Kuwajima
, “
Acid denaturation and refolding of green fluorescent protein
,”
Biochemistry
43
(
44
),
14238
14248
(
2004
).
15.
H.
Fukuda
,
M.
Arai
, and
K.
Kuwajima
, “
Folding of green fluorescent protein and the cycle3 mutant
,”
Biochemistry
39
(
39
),
12025
12032
(
2000
).
16.
R.
Heim
,
D. C.
Prasher
, and
R. Y.
Tsien
, “
Wavelength mutations and posttranslational autoxidation of green fluorescent protein
,”
Proc. Natl. Acad. Sci.
91
(
26
),
12501
12504
(
1994
).
17.
P. E.
Siegbahn
,
M.
Wirstam
, and
M.
Zimmer
, “
Theoretical study of the mechanism of peptide ring formation in green fluorescent protein
,”
Int. J. Quantum Chem.
81
(
2
),
169
186
(
2001
).
18.
T. D.
Craggs
, “
Green fluorescent protein: Structure, folding and chromophore maturation
,”
Chem. Soc. Rev.
38
(
10
),
2865
2875
(
2009
).
19.
M.
Zimmer
, “
Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior
,”
Chem. Rev.
102
(
3
),
759
782
(
2002
).
20.
D. P.
Barondeau
,
C. D.
Putnam
,
C. J.
Kassmann
,
J. A.
Tainer
, and
E. D.
Getzoff
, “
Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures
,”
Proc. Natl. Acad. Sci.
100
(
21
),
12111
12116
(
2003
).
21.
L.
Zhang
,
H. N.
Patel
,
J. W.
Lappe
, and
R. M.
Wachter
, “
Reaction progress of chromophore biogenesis in green fluorescent protein
,”
J. Am. Chem. Soc.
128
(
14
),
4766
4772
(
2006
).
22.
D. P.
Barondeau
,
J. A.
Tainer
, and
E. D.
Getzoff
, “
Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis
,”
J. Am. Chem. Soc.
128
(
10
),
3166
3168
(
2006
).
23.
B. L.
Grigorenko
,
A. I.
Krylov
, and
A. V.
Nemukhin
, “
Molecular modeling clarifies the mechanism of chromophore maturation in the green fluorescent protein
,”
J. Am. Chem. Soc.
139
(
30
),
10239
10249
(
2017
).
24.
L. J.
Pouwels
,
L.
Zhang
,
N. H.
Chan
,
P. C.
Dorrestein
, and
R. M.
Wachter
, “
Kinetic isotope effect studies on the de novo rate of chromophore formation in fast-and slow-maturing GFP variants
,”
Biochemistry
47
(
38
),
10111
10122
(
2008
).
25.
M.
Chattoraj
,
B. A.
King
,
G. U.
Bublitz
, and
S. G.
Boxer
, “
Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer
,”
Proc. Natl. Acad. Sci.
93
(
16
),
8362
8367
(
1996
).
26.
M.
Ormö
,
A. B.
Cubitt
,
K.
Kallio
,
L. A.
Gross
,
R. Y.
Tsien
, and
S. J.
Remington
, “
Crystal structure of the Aequorea victoria green fluorescent protein
,”
Science
273
(
5280
),
1392
1395
(
1996
).
27.
K.
Brejc
,
T. K.
Sixma
,
P. A.
Kitts
,
S. R.
Kain
,
R. Y.
Tsien
,
M.
Ormö
, and
S. J.
Remington
, “
Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein
,”
Proc. Natl. Acad. Sci.
94
(
6
),
2306
2311
(
1997
).
28.
C.
Fang
,
R. R.
Frontiera
,
R.
Tran
, and
R. A.
Mathies
, “
Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy
,”
Nature
462
(
7270
),
200
204
(
2009
).
29.
Z. R.
Grabowski
,
K.
Rotkiewicz
, and
W.
Rettig
, “
Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures
,”
Chem. Rev.
103
(
10
),
3899
4032
(
2003
).
30.
S.
Sasaki
,
G. P.
Drummen
, and
G-i
Konishi
, “
Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry
,”
J. Mater. Chem. C
4
(
14
),
2731
2743
(
2016
).
31.
C.
Wang
,
W.
Chi
,
Q.
Qiao
,
D.
Tan
,
Z.
Xu
, and
X.
Liu
, “
Twisted intramolecular charge transfer (TICT) and twists beyond TICT: From mechanisms to rational designs of bright and sensitive fluorophores
,”
Chem. Soc. Rev.
50
(
22
),
12656
12678
(
2021
).
32.
M. C.
Chen
,
C. R.
Lambert
,
J. D.
Urgitis
, and
M.
Zimmer
, “
Photoisomerization of green fluorescent protein and the dimensions of the chromophore cavity
,”
Chem. Phys.
270
(
1
),
157
164
(
2001
).
33.
W.
Weber
,
V.
Helms
,
J. A.
McCammon
, and
P. W.
Langhoff
, “
Shedding light on the dark and weakly fluorescent states of green fluorescent proteins
,”
Proc. Natl. Acad. Sci.
96
(
11
),
6177
6182
(
1999
).
34.
O.
Shimomura
, “
Structure of the chromophore of Aequorea green fluorescent protein
,”
FEBS Lett.
104
(
2
),
220
222
(
1979
).
35.
W. W.
Ward
,
H. J.
Prentice
,
A. F.
Roth
,
C. W.
Cody
, and
S. C.
Reeves
, “
Spectral perturbations of the Aequorea green‐fluorescent protein
,”
Photochem. Photobiol.
35
(
6
),
803
808
(
1982
).
36.
C. W.
Cody
,
D. C.
Prasher
,
W. M.
Westler
,
F. G.
Prendergast
, and
W. W.
Ward
, “
Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein
,”
Biochemistry
32
(
5
),
1212
1218
(
1993
).
37.
C. L.
Walker
,
K. A.
Lukyanov
,
I. V.
Yampolsky
,
A. S.
Mishin
,
A. S.
Bommarius
,
A. M.
Duraj-Thatte
,
B.
Azizi
,
L. M.
Tolbert
, and
K. M.
Solntsev
, “
Fluorescence imaging using synthetic GFP chromophores
,”
Curr. Opin. Chem. Biol.
27
,
64
74
(
2015
).
38.
A.
Baldridge
,
S.
Feng
,
Y.-T.
Chang
, and
L. M.
Tolbert
, “
Recapture of GFP chromophore fluorescence in a protein host
,”
ACS Comb. Sci.
13
(
3
),
214
217
(
2011
).
39.
A.
Baldridge
,
S. R.
Samanta
,
N.
Jayaraj
,
V.
Ramamurthy
, and
L. M.
Tolbert
, “
Activation of fluorescent protein chromophores by encapsulation
,”
J. Am. Chem. Soc.
132
(
5
),
1498
1499
(
2010
).
40.
D. E.
Williams
,
E. A.
Dolgopolova
,
P. J.
Pellechia
,
A.
Palukoshka
,
T. J.
Wilson
,
R.
Tan
,
J. M.
Maier
,
A. B.
Greytak
,
M. D.
Smith
, and
J. A.
Krause
, “
Mimic of the green fluorescent protein β-barrel: Photophysics and dynamics of confined chromophores defined by a rigid porous scaffold
,”
J. Am. Chem. Soc.
137
(
6
),
2223
2226
(
2015
).
41.
L. M.
Tolbert
,
A.
Baldridge
,
J.
Kowalik
, and
K. M.
Solntsev
, “
Collapse and recovery of green fluorescent protein chromophore emission through topological effects
,”
Acc. Chem. Res.
45
(
2
),
171
181
(
2012
).
42.
J. S.
Paige
,
K. Y.
Wu
, and
S. R.
Jaffrey
, “
RNA mimics of green fluorescent protein
,”
Science
333
(
6042
),
642
646
(
2011
).
43.
R. L.
Strack
,
M. D.
Disney
, and
S. R.
Jaffrey
, “
A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA
,”
Nat. Methods
10
(
12
),
1219
1224
(
2013
).
44.
K. D.
Warner
,
M. C.
Chen
,
W.
Song
,
R. L.
Strack
,
A.
Thorn
,
S. R.
Jaffrey
, and
A. R.
Ferre-D'Amare
, “
Structural basis for activity of highly efficient RNA mimics of green fluorescent protein
,”
Nat. Struct. Mol. Biol.
21
(
8
),
658
663
(
2014
).
45.
Y.
Liu
,
C. H.
Wolstenholme
,
G. C.
Carter
,
H.
Liu
,
H.
Hu
,
L. S.
Grainger
,
K.
Miao
,
M.
Fares
,
C. A.
Hoelzel
, and
H. P.
Yennawar
, “
Modulation of fluorescent protein chromophores to detect protein aggregation with turn-on fluorescence
,”
J. Am. Chem. Soc.
140
(
24
),
7381
7384
(
2018
).
46.
C. H.
Wolstenholme
,
H.
Hu
,
S.
Ye
,
B. E.
Funk
,
D.
Jain
,
C.-H.
Hsiung
,
G.
Ning
,
Y.
Liu
,
X.
Li
, and
X.
Zhang
, “
Aggfluor: Fluorogenic toolbox enables direct visualization of the multi-step protein aggregation process in live cells
,”
J. Am. Chem. Soc.
142
(
41
),
17515
17523
(
2020
).
47.
S.
Ye
,
H.
Zhang
,
J.
Fei
,
C. H.
Wolstenholme
, and
X.
Zhang
, “
A general strategy to control viscosity sensitivity of molecular rotor‐based fluorophores
,”
Angew. Chem., Int. Ed.
60
(
3
),
1339
1346
(
2021
).
48.
K. H.
Jung
,
S. F.
Kim
,
Y.
Liu
, and
X.
Zhang
, “
A fluorogenic AggTag method based on Halo‐and SNAP‐tags to simultaneously detect aggregation of two proteins in live cells
,”
ChemBioChem
20
(
8
),
1078
1087
(
2019
).
49.
L.
Wu
and
K.
Burgess
, “
Syntheses of highly fluorescent GFP-chromophore analogues
,”
J. Am. Chem. Soc.
130
(
12
),
4089
4096
(
2008
).
50.
M. S.
Baranov
,
K. A.
Lukyanov
,
A. O.
Borissova
,
J.
Shamir
,
D.
Kosenkov
,
L. V.
Slipchenko
,
L. M.
Tolbert
,
I. V.
Yampolsky
, and
K. M.
Solntsev
, “
Conformationally locked chromophores as models of excited-state proton transfer in fluorescent proteins
,”
J. Am. Chem. Soc.
134
(
13
),
6025
6032
(
2012
).
51.
M.-S.
Tsai
,
C.-L.
Ou
,
C.-J.
Tsai
,
Y.-C.
Huang
,
Y.-C.
Cheng
,
S.-S.
Sun
, and
J.-S.
Yang
, “
Fluorescence enhancement of unconstrained GFP chromophore analogues based on the push–pull substituent effect
,”
J. Org. Chem.
82
(
15
),
8031
8039
(
2017
).
52.
J.-S.
Lee
,
A.
Baldridge
,
S.
Feng
,
Y.
SiQiang
,
Y. K.
Kim
,
L. M.
Tolbert
, and
Y.-T.
Chang
, “
Fluorescence response profiling for small molecule sensors utilizing the green fluorescent protein chromophore and its derivatives
,”
ACS Comb. Sci.
13
(
1
),
32
38
(
2011
).
53.
H.
Deng
,
C.
Yu
,
L.
Gong
, and
X.
Zhu
, “
Self-restricted green fluorescent protein chromophore analogues: Dramatic emission enhancement and remarkable solvatofluorochromism
,”
J. Phys. Chem. Lett.
7
(
15
),
2935
2944
(
2016
).
54.
X.
Shen
,
G.
Huang
,
K.
Li
,
G.
Zhang
, and
D.
Zhang
, “
Tuning the solid-state emission of the analogous GFP chromophore by varying alkyl chains in the imidazolinone ring
,”
Sci. China Chem.
56
(
9
),
1197
1203
(
2013
).
55.
S.
Fery-Forgues
,
S.
Veesler
,
W. B.
Fellows
,
L. M.
Tolbert
, and
K. M.
Solntsev
, “
Microcrystals with enhanced emission prepared from hydrophobic analogues of the green fluorescent protein chromophore via reprecipitation
,”
Langmuir
29
(
47
),
14718
14727
(
2013
).
56.
W.
Fan
,
H.
Deng
,
L.
Zhu
,
C.
Tu
,
Y.
Su
,
L.
Shi
,
J.
Yang
,
L.
Zhou
,
L.
Xu
, and
X.
Zhu
, “
Site-dependent fluorescence enhanced polymers with a self-restricted GFP chromophore for living cell imaging
,”
Biomater. Sci.
7
(
6
),
2421
2429
(
2019
).
57.
G.
Huang
,
G.
Zhang
,
Y.
Wu
,
Q.
Liao
,
H.
Fu
, and
D.
Zhang
, “
Modification of the green fluorescent protein chromophore with large aromatic moieties: Photophysical study and solid‐state emission
,”
Asian J. Org. Chem.
1
(
4
),
352
358
(
2012
).
58.
Y.
Hong
,
J. W.
Lam
, and
B. Z.
Tang
, “
Aggregation-induced emission
,”
Chem. Soc. Rev.
40
(
11
),
5361
5388
(
2011
).
59.
Y.
Hong
,
J. W.
Lam
, and
B. Z.
Tang
, “
Aggregation-induced emission: Phenomenon, mechanism and applications
,”
Chem. Commun.
2009
,
4332
4353
.
60.
J.
Mei
,
N. L.
Leung
,
R. T.
Kwok
,
J. W.
Lam
, and
B. Z.
Tang
, “
Aggregation-induced emission: Together we shine, united we soar!
,”
Chem. Rev.
115
(
21
),
11718
11940
(
2015
).
61.
Z.
Zhao
,
H.
Zhang
,
J. W.
Lam
, and
B. Z.
Tang
, “
Aggregation‐induced emission: New vistas at the aggregate level
,”
Angew. Chem. Int. Ed.
59
(
25
),
9888
9907
(
2020
).
62.
J.
Luo
,
Z.
Xie
,
J. W.
Lam
,
L.
Cheng
,
H.
Chen
,
C.
Qiu
,
H. S.
Kwok
,
X.
Zhan
,
Y.
Liu
, and
D.
Zhu
, “
Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole
,”
Chem. Commun.
2001
,
1740
1741
.
63.
S.
Gozem
,
H. L.
Luk
,
I.
Schapiro
, and
M.
Olivucci
, “
Theory and simulation of the ultrafast double-bond isomerization of biological chromophores
,”
Chem. Rev.
117
(
22
),
13502
13565
(
2017
).
64.
M. A.
Haidekker
and
E. A.
Theodorakis
, “
Molecular rotors—Fluorescent biosensors for viscosity and flow
,”
Org. Biomol. Chem.
5
(
11
),
1669
1678
(
2007
).
65.
M. A.
Haidekker
and
E. A.
Theodorakis
, “
Environment-sensitive behavior of fluorescent molecular rotors
,”
J. Biol. Eng.
4
(
1
),
11
(
2010
).
66.
T.
Förster
and
G.
Hoffmann
, “
Die viskositätsabhängigkeit der fluoreszenzquantenausbeuten einiger farbstoffsysteme
,”
Z. Phys. Chem.
75
(
1_2
),
63
76
(
1971
).
67.
M. K.
Kuimova
,
G.
Yahioglu
,
J. A.
Levitt
, and
K.
Suhling
, “
Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging
,”
J. Am. Chem. Soc.
130
(
21
),
6672
6673
(
2008
).
68.
W. L.
Goh
,
M. Y.
Lee
,
T. L.
Joseph
,
S. T.
Quah
,
C. J.
Brown
,
C.
Verma
,
S.
Brenner
,
F. J.
Ghadessy
, and
Y. N.
Teo
, “
Molecular rotors as conditionally fluorescent labels for rapid detection of biomolecular interactions
,”
J. Am. Chem. Soc.
136
(
17
),
6159
6162
(
2014
).
69.
W.-T.
Yu
,
T.-W.
Wu
,
C.-L.
Huang
,
I.-C.
Chen
, and
K.-T.
Tan
, “
Protein sensing in living cells by molecular rotor-based fluorescence-switchable chemical probes
,”
Chem. Sci.
7
(
1
),
301
307
(
2016
).
70.
M. K.
Kuimova
,
S. W.
Botchway
,
A. W.
Parker
,
M.
Balaz
,
H. A.
Collins
,
H. L.
Anderson
,
K.
Suhling
, and
P. R.
Ogilby
, “
Imaging intracellular viscosity of a single cell during photoinduced cell death
,”
Nat. Chem.
1
(
1
),
69
73
(
2009
).
71.
X.
Liu
,
W.
Chi
,
Q.
Qiao
,
S. V.
Kokate
,
E. P.
Cabrera
,
Z.
Xu
,
X.
Liu
, and
Y.-T.
Chang
, “
Molecular mechanism of viscosity sensitivity in BODIPY rotors and application to motion-based fluorescent sensors
,”
ACS Sens.
5
(
3
),
731
739
(
2020
).
72.
X.
Li
,
L.
Mo
,
J. L.
Litke
,
S. K.
Dey
,
S. R.
Suter
, and
S. R.
Jaffrey
, “
Imaging intracellular S-adenosyl methionine dynamics in live mammalian cells with a genetically encoded red fluorescent RNA-based sensor
,”
J. Am. Chem. Soc.
142
(
33
),
14117
14124
(
2020
).
73.
J. S.
Paige
,
T.
Nguyen-Duc
,
W.
Song
, and
S. R.
Jaffrey
, “
Fluorescence imaging of cellular metabolites with RNA
,”
Science
335
(
6073
),
1194
1194
(
2012
).
74.
S.
Nakayama
,
Y.
Luo
,
J.
Zhou
,
T. K.
Dayie
, and
H. O.
Sintim
, “
Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy
,”
Chem. Commun.
48
(
72
),
9059
9061
(
2012
).
75.
C. A.
Kellenberger
,
S. C.
Wilson
,
J.
Sales-Lee
, and
M. C.
Hammond
, “
RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP
,”
J. Am. Chem. Soc.
135
(
13
),
4906
4909
(
2013
).
76.
R. L.
Strack
and
S. R.
Jaffrey
, “
New approaches for sensing metabolites and proteins in live cells using RNA
,”
Curr. Opin. Chem. Biol.
17
(
4
),
651
655
(
2013
).
77.
R. L.
Strack
,
W.
Song
, and
S. R.
Jaffrey
, “
Using Spinach-based sensors for fluorescence imaging of intracellular metabolites and proteins in living bacteria
,”
Nat. Protoc.
9
(
1
),
146
155
(
2014
).
78.
G.
Feng
,
C.
Luo
,
H.
Yi
,
L.
Yuan
,
B.
Lin
,
X.
Luo
,
X.
Hu
,
H.
Wang
,
C.
Lei
, and
Z.
Nie
, “
DNA mimics of red fluorescent proteins (RFP) based on G-quadruplex-confined synthetic RFP chromophores
,”
Nucl. Acids Res.
45
(
18
),
10380
10392
(
2017
).
79.
W.
Song
,
G. S.
Filonov
,
H.
Kim
,
M.
Hirsch
,
X.
Li
,
J. D.
Moon
, and
S. R.
Jaffrey
, “
Imaging RNA polymerase III transcription using a photostable RNA–fluorophore complex
,”
Nat. Chem. Biol.
13
(
11
),
1187
1194
(
2017
).
80.
E. V.
Dolgosheina
,
S. C.
Jeng
,
S. S. S.
Panchapakesan
,
R.
Cojocaru
,
P. S.
Chen
,
P. D.
Wilson
,
N.
Hawkins
,
P. A.
Wiggins
, and
P. J.
Unrau
, “
RNA mango aptamer-fluorophore: A bright, high-affinity complex for RNA labeling and tracking
,”
ACS Chem. Biol.
9
(
10
),
2412
2420
(
2014
).
81.
J.
Zhang
,
H.
Li
,
B.
Lin
,
X.
Luo
,
P.
Yin
,
T.
Yi
,
B.
Xue
,
X. L.
Zhang
,
H.
Zhu
, and
Z.
Nie
, “
Development of near-infrared nucleic acid mimics of fluorescent proteins for in vivo imaging of viral RNA with turn-on fluorescence
,”
J. Am. Chem. Soc.
143
(
46
),
19317
19329
(
2021
).
82.
X.
Li
,
J.
Wu
, and
S. R.
Jaffrey
, “
Engineering fluoroscope recycling in a fluorogenic RNA aptamer
,”
Angew. Chem. Int. Ed.
60
(
45
),
24153
24161
(
2021
).
83.
X.
Li
,
H.
Kim
,
J. L.
Litke
,
J.
Wu
, and
S. R.
Jaffrey
, “
Fluorophore-promoted RNA folding and photostability enables imaging of single broccoli-tagged mRNAs in live mammalian cells
,”
Angew. Chem. Int. Ed.
59
(
11
),
4511
4518
(
2019
).
84.
Y.
Leestemaker
,
A.
de Jong
,
K. F.
Witting
,
R.
Penning
,
K.
Schuurman
,
B.
Rodenko
,
E. A.
Zaal
,
B.
van de Kooij
,
S.
Laufer
, and
A. J.
Heck
, “
Proteasome activation by small molecules
,”
Cell Chem. Biol.
24
(
6
),
725
736
(
2017
).
85.
A. M.
Wang
,
Y.
Miyata
,
S.
Klinedinst
,
H.-M.
Peng
,
J. P.
Chua
,
T.
Komiyama
,
X.
Li
,
Y.
Morishima
,
D. E.
Merry
, and
W. B.
Pratt
, “
Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation
,”
Nat. Chem. Biol.
9
(
2
),
112
118
(
2013
).
You do not currently have access to this content.