Conductive coordination polymers are hybrid materials with the potential to be implemented in the next generation of electronic devices, owing to several desirable properties. A decade ago, only a few scattered examples exhibiting conductivity existed within this class of materials, yet today groups of coordination polymers possess electrical conductivities and mobilities that rival those of inorganic semiconductors. Many currently emerging energy harvesting and storage technologies are limited by the use of inefficient, unstable, and unsustainable charge transport materials with little tunability. Coordination polymers, on the other hand, offer great electrical properties and fine-tunability through their assembly from molecular building blocks. Herein, the structure–function relationship of these building blocks and how to characterize the resulting materials are examined. Solution processability allows devices to step away drastically from conventional fabrication methods and enables cheap production from earth abundant materials. The ability to tune the electrical and structural properties through modifications at the molecular level during the material synthesis stages allows for a large design space, opening the door to a wide spectrum of applications in environmentally friendly technologies, such as molecular wires, photovoltaics, batteries, and sensors. Sustainable, high-performing charge transport materials are crucial for the continued advance of emerging molecular technologies. This review aims to provide examples of how the promising properties of coordination polymers have been exploited to accelerate the development of molecular devices.

1.
M.
Brown
, “
Electrically-conducting plastic gets simple and affordable
,” Wired (
2011
), available at https://www.wired.co.uk/article/electricity-conducting-plastics.
2.
C.
Kittel
,
Introduction to Solid State Physics
(
John Wiley and Sons Ltd
.,
NY
,
1996
).
3.
I. M.
Campbell
,
Introduction to Synthetic Polymers
(
Oxford University Press
,
Oxford
,
1994
).
4.
N.
Tessler
,
Y.
Preezant
,
N.
Rappaport
, and
Y.
Roichman
, “
Charge transport in disordered organic materials and its relevance to thin-film devices: A tutorial review
,”
Adv. Mater.
21
,
2741
2761
(
2009
).
5.
P.
Stallinga
, “
Electronic transport in organic materials: Comparison of band theory with percolation/(variable range) hopping theory
,”
Adv. Mater.
23
,
3356
3362
(
2011
).
6.
The Noel Prize in Chemistry
, Nobel Prize Outreach,
2021
, available at https://www.nobelprize.org/prizes/chemistry/2000/prize-announcement.
7.
J. H.
Burroughes
,
D. D. C.
Bradley
,
A. R.
Brown
,
R. N.
Marks
,
K.
Mackay
,
R. H.
Friend
,
P. L.
Burns
, and
A. B.
Holmes
, “
Light-emitting diodes based on conjugated polymers
,”
Nature
347
,
539
541
(
1990
).
8.
G.
Givaja
,
P.
Amo-Ochoa
,
C. J.
Gomez-Garcia
, and
F.
Zamora
, “
Electrical conductive coordination polymers
,”
Chem. Soc. Rev.
41
,
115
147
(
2012
).
9.
J.
Calbo
,
M. J.
Golomb
, and
A.
Walsh
, “
Redox-active metal–organic frameworks for energy conversion and storage
,”
J. Mater. Chem. A
7
,
16571
16597
(
2019
).
10.
J.
Gomez-Herrero
and
F.
Zamora
, “
Coordination polymers for nanoelectronics
,”
Adv. Mater.
23
,
5311
5317
(
2011
).
11.
C. H.
Hendon
,
D.
Tiana
, and
A.
Walsh
, “
Conductive metal-organic frameworks and networks: Fact or fantasy?
,”
Phys. Chem. Chem. Phys.
14
,
13120
13132
(
2012
).
12.
X.
Sun
,
K. H.
Wu
,
R.
Sakamoto
,
T.
Kusamoto
,
H.
Maeda
,
X.
Ni
,
W.
Jiang
,
F.
Liu
,
S.
Sasaki
,
H.
Masunaga
, and
H.
Nishihara
, “
Bis(aminothiolato)nickel nanosheet as a redox switch for conductivity and an electrocatalyst for the hydrogen evolution reaction
,”
Chem. Sci.
8
,
8078
8085
(
2017
).
13.
Z.
Jin
,
J.
Yan
,
X.
Huang
,
W.
Xu
,
S.
Yang
,
D.
Zhu
, and
J.
Wang
, “
Solution-processed transparent coordination polymer electrode for photovoltaic solar cells
,”
Nano Energy
40
,
376
381
(
2017
).
14.
Z.
Chen
,
X.
Xing
,
R.
Zhou
,
D.
Wang
,
X.
Ye
,
B.
Li
, and
D.
Wu
, “
Highly selective detection of Ni2+ ion based on a luminescent Zn(II) coordination polymer
,”
IEEE Sens. J.
19
,
7652
7658
(
2019
).
15.
J. H. D.
Campos
,
M. E.
Alvarenga
,
M. A.
Lemes
,
J. A.
do Nascimento Neto
,
F. F.
Guimarães
,
L. J. Q.
Maia
,
R. C.
de Santana
, and
F. T.
Martins
, “
The critical role of the coordination sphere in the high-efficiency blue-light emission from aminopyrazine metal-organic polymers
,”
Dyes Pigm.
186
,
109025
(
2021
).
16.
X.-F.
Cheng
,
E.-B.
Shi
,
X.
Hou
,
J.
Shu
,
J.-H.
He
,
H.
Li
,
Q.-F.
Xu
,
N.-J.
Li
,
D.-Y.
Chen
, and
J.-M.
Lu
, “
1D π-d conjugated coordination polymers for multilevel memory of long-term and high-temperature stability
,”
Adv. Electron. Mater.
3
,
1700107
(
2017
).
17.
H.
Kaur
,
S.
Sundriyal
,
V.
Pachauri
,
S.
Ingebrandt
,
K.-H.
Kim
,
A. L.
Sharma
, and
A.
Deep
, “
Luminescent metal-organic frameworks and their composites: Potential future materials for organic light emitting displays
,”
Coord. Chem. Rev.
401
,
213077
(
2019
).
18.
E.
Najafi
,
M. M.
Amini
,
E.
Mohajerani
,
M.
Janghouri
,
H.
Razavi
, and
H.
Khavasi
, “
Fabrication of an organic light-emitting diode (OLED) from a two-dimensional lead(II) coordination polymer
,”
Inorg. Chim. Acta.
399
,
119
125
(
2013
).
19.
D.
Tiana
,
C. H.
Hendon
,
A.
Walsh
, and
T. P.
Vaid
, “
Computational screening of structural and compositional factors for electrically conductive coordination polymers
,”
Phys. Chem. Chem. Phys.
16
,
14463
14472
(
2014
).
20.
L.
Wang
,
Y.
Han
,
X.
Feng
,
J.
Zhou
,
P.
Qi
, and
B.
Wang
, “
Metal–organic frameworks for energy storage: Batteries and supercapacitors
,”
Coord. Chem. Rev.
307
,
361
381
(
2016
).
21.
R.
Kaur
,
K.-H.
Kim
,
A. K.
Paul
, and
A.
Deep
, “
Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks
,”
J. Mater. Chem. A
4
,
3991
4002
(
2016
).
22.
L.
Sun
,
M. G.
Campbell
, and
M.
Dinca
, “
Electrically conductive porous metal-organic frameworks
,”
Angew. Chem., Int. Ed.
55
,
3566
3579
(
2016
).
23.
C.
Musumeci
,
S.
Osella
,
L.
Ferlauto
,
D.
Niedzialek
,
L.
Grisanti
,
S.
Bonacchi
,
A.
Jouaiti
,
S.
Milita
,
A.
Ciesielski
,
D.
Beljonne
,
M. W.
Hosseini
, and
P.
Samori
, “
Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials
,”
Nanoscale
8
,
2386
2394
(
2016
).
24.
T.
Okubo
,
N.
Tanaka
,
K. H.
Kim
,
H.
Yone
,
M.
Maekawa
, and
T.
Kuroda-Sowa
, “
Magnetic and conducting properties of new halide-bridged mixed-valence Cu(I)-Cu(II) 1D coordination polymers including a hexamethylene dithiocarbamate ligand
,”
Inorg. Chem.
49
,
3700
3702
(
2010
).
25.
S.
Islam
,
B.
Pal
,
S.
Khan
,
S.
Maity
,
S.
Naaz
,
P.
Ghosh
,
P. P.
Ray
, and
M. H.
Mir
, “
Fabrication of Cu(II) based halobenzoate appended ladder polymers with efficient charge transport properties
,”
CrystEngComm
22
,
6720
6726
(
2020
).
26.
S. A.
Sahadevan
,
A.
Abherve
,
N.
Monni
,
C. S.
de Pipaon
,
J. R.
Galan-Mascaros
,
J. C.
Waerenborgh
,
B. J. C.
Vieira
,
P.
Auban-Senzier
,
S.
Pillet
,
E. E.
Bendeif
,
P.
Alemany
,
E.
Canadell
,
M. L.
Mercuri
, and
N.
Avarvari
, “
Conducting anilate-based mixed-valence Fe(II)Fe(III) coordination polymer: Small-polaron hopping model for oxalate-type Fe(II)Fe(III) 2D networks
,”
J. Am. Chem. Soc.
140
,
12611
12621
(
2018
).
27.
A. A.
Gurtovenko
and
I.
Vattulainen
, “
Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: Atomistic molecular dynamics study
,”
J. Am. Chem. Soc.
127
,
17570
17571
(
2005
).
28.
K.
Himoto
,
S.
Suzuki
,
T.
Okubo
,
M.
Maekawa
, and
T.
Kuroda-Sowa
, “
A new semiconducting 1D Cu(I)–Cu(II) mixed-valence coordination polymer with Cu(II) dimethylpiperidine–dithiocarbamate and a tetranuclear Cu(I)–Br cluster unit
,”
New J. Chem.
42
,
3995
3998
(
2018
).
29.
K. H.
Kim
,
T.
Okubo
,
N.
Tanaka
,
N.
Mimura
,
M.
Maekawa
, and
T.
Kuroda-Sowa
, “
Dye-sensitized solar cells with halide-bridged mixed-valence Cu(I)–Cu(II) coordination polymers with hexamethylenedithiocarbamate ligand
,”
Chem. Lett.
39
,
792
793
(
2010
).
30.
S.
Menzel
,
S. P.
Höfert
,
S.
Ŏztürk
,
A.
Schmitz
, and
C.
Janiak
, “
A mixed–valence copper(I/II) coordination polymer directed with a bifunctional soft– hard pyrazolate-carboxylate ligand
,”
Z. Anorg. Allg. Chem.
647
,
803
808
(
2021
).
31.
J.
Zhu
,
B.
Liu
,
W.
Zhang
,
J.
Jiang
, and
X.
Li
, “
Slow magnetic relaxation in mixed-valence coordination polymer, containing Co(III) cluster and Co(II) nodes
,”
J. Mol. Struct.
1230
,
129934
(
2021
).
32.
S. C.
Ngo
,
K. K.
Banger
,
M. J.
DelaRosa
,
P. J.
Toscano
, and
J. T.
Welch
, “
Thermal and structural characterization of a series of homoleptic Cu(II) dialkyldithiocarbamate complexes: Bigger is only marginally better for potential MOCVD performance
,”
Polyhedron
22
,
1575
1583
(
2003
).
33.
M.-Y.
Shao
,
P.
Huo
,
Y.-G.
Sun
,
X.-Y.
Li
,
Q.-Y.
Zhu
, and
J.
Dai
, “
Synthetic methods and structural study of coordination polymers of Cd(II) and Co(II) with tetrathiafulvalene–tetracarboxylate
,”
CrystEngComm
15
,
1086
1094
(
2013
).
34.
A.
Vladyka
,
M. L.
Perrin
,
J.
Overbeck
,
R. R.
Ferradas
,
V.
Garcia-Suarez
,
M.
Gantenbein
,
J.
Brunner
,
M.
Mayor
,
J.
Ferrer
, and
M.
Calame
, “
In-situ formation of one-dimensional coordination polymers in molecular junctions
,”
Nat. Commun.
10
,
262
(
2019
).
35.
Y.
Cao
,
Y.
Saygili
,
A.
Ummadisingu
,
J.
Teuscher
,
J.
Luo
,
N.
Pellet
,
F.
Giordano
,
S. M.
Zakeeruddin
,
J. E.
Moser
,
M.
Freitag
,
A.
Hagfeldt
, and
M.
Gratzel
, “
11 dye-sensitized solar cells with copper(II/I) hole transport materials
,”
Nat. Commun.
8
,
15390
(
2017
).
36.
X.
Huang
,
P.
Sheng
,
Z.
Tu
,
F.
Zhang
,
J.
Wang
,
H.
Geng
,
Y.
Zou
,
C. A.
Di
,
Y.
Yi
,
Y.
Sun
,
W.
Xu
, and
D.
Zhu
, “
A two-dimensional pi-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour
,”
Nat. Commun.
6
,
7408
(
2015
).
37.
H.
Maeda
,
R.
Sakamoto
, and
H.
Nishihara
, “
Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes
,”
Coord. Chem. Rev.
346
,
139
149
(
2017
).
38.
E. H.
Jung
,
N. J.
Jeon
,
E. Y.
Park
,
C. S.
Moon
,
T. J.
Shin
,
T. Y.
Yang
,
J. H.
Noh
, and
J.
Seo
, “
Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)
,”
Nature
567
,
511
515
(
2019
).
39.
Y.
Saito
, “
Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor
,”
Electrochem. Commun.
6
,
71
74
(
2004
).
40.
J.
Zhang
,
L.
Häggman
,
M.
Jouini
,
A.
Jarboui
,
G.
Boschloo
,
N.
Vlachopoulos
, and
A.
Hagfeldt
, “
Solid-state dye-sensitized solar cells based on poly(3,4-ethylenedioxypyrrole) and metal-free organic dyes
,”
ChemPhysChem
15
,
1043
1047
(
2014
).
41.
A. Y.
Robin
and
K. M.
Fromm
, “
Coordination polymer networks with o- and n-donors: What they are, why and how they are made
,”
Coord. Chem. Rev.
250
,
2127
2157
(
2006
).
42.
D.
Zacher
,
K.
Yusenko
,
A.
Betard
,
S.
Henke
,
M.
Molon
,
T.
Ladnorg
,
O.
Shekhah
,
B.
Schupbach
,
T.
de los Arcos
,
M.
Krasnopolski
,
M.
Meilikhov
,
J.
Winter
,
A.
Terfort
,
C.
Woll
, and
R. A.
Fischer
, “
Liquid-phase epitaxy of multicomponent layer-based porous coordination polymer thin films of [M(L)(P)0.5] type: Importance of deposition sequence on the oriented growth
,”
Chem. - Eur. J.
17
,
1448
1455
(
2011
).
43.
D. R.
Talham
and
M. W.
Meisel
, “
Thin films of coordination polymer magnets
,”
Chem. Soc. Rev.
40
,
3356
3365
(
2011
).
44.
L.
Sun
,
G.
Yuan
,
L.
Gao
,
J.
Yang
,
M.
Chhowalla
,
M. H.
Gharahcheshmeh
,
K. K.
Gleason
,
Y. S.
Choi
,
B. H.
Hong
, and
Z.
Liu
, “
Chemical vapour deposition
,”
Nat. Rev. Methods Primers
1
,
5
(
2021
).
45.
J.
Ogle
,
N.
Lahiri
,
C.
Jaye
,
C. J.
Tassone
,
D. A.
Fischer
,
J.
Louie
, and
L.
Whittaker–Brooks
, “
Semiconducting to metallic electronic landscapes in defects–controlled 2D π–d conjugated coordination polymer thin films
,”
Adv. Funct. Mater.
31
,
2006920
(
2021
).
46.
I.
Benesperi
,
H.
Michaels
, and
M.
Freitag
, “
The researcher's guide to solid-state dye-sensitized solar cells
,”
J. Mater. Chem. C
6
,
11903
11942
(
2018
).
47.
H.
Liu
,
Y.
Wang
,
Z.
Qin
,
D.
Liu
,
H.
Xu
,
H.
Dong
, and
W.
Hu
, “
Electrically conductive coordination polymers for electronic and optoelectronic device applications
,”
J Phys. Chem. Lett.
12
,
1612
1630
(
2021
).
48.
J. A.
Rohr
,
D.
Moia
,
S. A.
Haque
,
T.
Kirchartz
, and
J.
Nelson
, “
Exploring the validity and limitations of the Mott–Gurney law for charge-carrier mobility determination of semiconducting thin-films
,”
J. Phys.: Condens. Matter
30
,
105901
(
2018
).
49.
W.
Zhang
,
J.
Chu
, and
M.
Hu
, “
Coupled electrical conduction in coordination polymers: From electrons/ions to mixed charge carriers
,”
Chem. - Asian J.
15
,
1202
1213
(
2020
).
50.
C. P.
Kwan
,
M.
Street
,
A.
Mahmood
,
W.
Echtenkamp
,
M.
Randle
,
K.
He
,
J.
Nathawat
,
N.
Arabchigavkani
,
B.
Barut
,
S.
Yin
,
R.
Dixit
,
U.
Singisetti
,
C.
Binek
, and
J. P.
Bird
, “
Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates
,”
AIP Adv.
9
,
055018
(
2019
).
51.
Y.
Tanaka
,
Y.
Kato
,
T.
Tada
,
S.
Fujii
,
M.
Kiguchi
, and
M.
Akita
, “
‘Doping’ of polyyne with an organometallic fragment leads to highly conductive metallapolyyne molecular wire
,”
J. Am. Chem. Soc.
140
,
10080
10084
(
2018
).
52.
P.
Baskaran
,
R.
Nanao
,
Y.
Yamanashi
,
M.
Sakaida
,
Y.
Suzuki
,
M.
Navaneethan
,
K. D.
Nisha
,
Y.
Hayakawa
,
H.
Inokawa
,
M.
Shimomura
,
K.
Murakami
, and
H.
Ikeda
, “
Measurement of thermal conductivity and thermal diffusivity of one-dimensional-system material by scanning electron microscopy and infrared thermography
,”
AIP Adv.
11
,
095101
(
2021
).
53.
D.
Braga
,
N.
Battaglini
,
A.
Yassar
,
G.
Horowitz
,
M.
Campione
,
A.
Sassella
, and
A.
Borghesi
, “
Bulk electrical properties of rubrene single crystals: Measurements and analysis
,”
Phys. Rev. B
77
,
115205
(
2008
).
54.
D.
Poplavskyy
and
J.
Nelson
, “
Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound
,”
J. Appl. Phys.
93
,
341
346
(
2003
).
55.
M.
Kiy
,
P.
Losio
,
I.
Biaggio
,
M.
Koehler
,
A.
Tapponnier
, and
P.
Günter
, “
Observation of the Mott–Gurney law in tris (8-hydroxyquinoline) aluminum films
,”
Appl. Phys. Lett.
80
,
1198
1200
(
2002
).
56.
M. A.
Lampert
and
R. B.
Schilling
,
Current Injection in Solids
(
Academic Press
,
NY
,
1970
), Vol.
6
.
57.
B.
Cvikl
, “
On an example of the space charge limited conduction breakdown in relation to the current-voltage characteristics of a single layer metal/organic structure
,”
J. Appl. Phys.
104
,
113721
(
2008
).
58.
M. Z.
Szymanski
,
I.
Kulszewicz-Bajer
,
J.
Faure-Vincent
, and
D.
Djurado
, “
Comparison of simulations to experiment for a detailed analysis of space-charge-limited transient current measurements in organic semiconductors
,”
Phys. Rev. B
85
,
195205
(
2012
).
59.
A.
Kokil
,
K.
Yang
, and
J.
Kumar
, “
Techniques for characterization of charge carrier mobility in organic semiconductors
,”
J. Polym. Sci., Part B: Polym. Phys.
50
,
1130
1144
(
2012
).
60.
L.
Welte
,
A.
Calzolari
,
R. D.
Felice
,
F.
Zamora
, and
J.
Gomez-Herrero
, “
Highly conductive self-assembled nanoribbons of coordination polymers
,”
Nat. Nanotechnol.
5
,
110
115
(
2010
).
61.
R.
Farran
,
D.
Jouvenot
,
B.
Gennaro
,
F.
Loiseau
,
J.
Chauvin
, and
A.
Deronzier
, “
Photoinduced charge separation within metallo-supramolecular wires built around a [Ru(bpy)3](2+)-bisterpyridine linear entity
,”
ACS Appl. Mater. Interfaces
8
,
16136
16146
(
2016
).
[PubMed]
62.
P.
Ares
,
P.
Amo-Ochoa
,
J. M.
Soler
,
J. J.
Palacios
,
J.
Gomez-Herrero
, and
F.
Zamora
, “
High electrical conductivity of single metal-organic chains
,”
Adv. Mater.
30
,
1705645
(
2018
).
63.
I.
Hnid
,
A.
Grempka
,
A.
Khettabi
,
X.
Sun
,
J. C.
Lacroix
,
F.
Lafolet
, and
S.
Cobo
, “
Combining photomodulation and rectification in coordination molecular wires based on dithienylethene molecular junctions
,”
J. Phys. Chem. C
124
,
26304
26309
(
2020
).
64.
H.
Masai
,
J.
Terao
,
S.
Seki
,
S.
Nakashima
,
M.
Kiguchi
,
K.
Okoshi
,
T.
Fujihara
, and
Y.
Tsuji
, “
Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials
,”
J. Am. Chem. Soc.
136
,
1742
1745
(
2014
).
65.
R.
Matsuoka
,
R.
Toyoda
,
R.
Sakamoto
,
M.
Tsuchiya
,
K.
Hoshiko
,
T.
Nagayama
,
Y.
Nonoguchi
,
K.
Sugimoto
,
E.
Nishibori
,
T.
Kawai
, and
H.
Nishihara
, “
Bis(dipyrrinato)metal(II) coordination polymers: Crystallization, exfoliation into single wires, and electric conversion ability
,”
Chem. Sci.
6
,
2853
2858
(
2015
).
66.
J.
Huang
,
J.
Zhang
,
R.
He
, and
Z.
Fu
, “
Structure of a Cd(II) mixed-ligand coordination polymer: Single crystalline conductance switch involving photoinduced electron transfer and photocoloration
,”
CrystEngComm
20
,
5663
5666
(
2018
).
67.
X.
Huang
,
H.
Li
,
Z.
Tu
,
L.
Liu
,
X.
Wu
,
J.
Chen
,
Y.
Liang
,
Y.
Zou
,
Y.
Yi
,
J.
Sun
,
W.
Xu
, and
D.
Zhu
, “
Highly conducting neutral coordination polymer with infinite two-dimensional silver-sulfur networks
,”
J. Am. Chem. Soc.
140
,
15153
15156
(
2018
).
68.
Y.
Lin
,
H.
Jiang
,
G.
Liang
,
W.-H.
Deng
,
Q.
Li
,
W.-H.
Li
, and
G.
Xu
, “
The exceptionally high moisture responsiveness of a new conductive-coordination-polymer based chemiresistive sensor
,”
CrystEngComm
23
,
3549
3556
(
2021
).
69.
P.
Ghorai
,
A.
Dey
,
P.
Brandao
,
J.
Ortega-Castro
,
A.
Bauza
,
A.
Frontera
,
P. P.
Ray
, and
A.
Saha
, “
The development of a promising photosensitive Schottky barrier diode using a novel Cd(II) based coordination polymer
,”
Dalton Trans.
46
,
13531
13543
(
2017
).
70.
S.
Wang
,
J.
Liu
,
H.
Zhao
,
Z.
Guo
,
H.
Xing
, and
Y.
Gao
, “
Electrically conductive coordination polymer for highly selective chemiresistive sensing of volatile amines
,”
Inorg. Chem.
57
,
541
544
(
2018
).
71.
K.
Naskar
,
A.
Dey
,
S.
Maity
,
M. K.
Bhunia
,
P. P.
Ray
, and
C.
Sinha
, “
Novel porous polycatenated iodo–cadmium coordination polymer for iodine sorption and electrical conductivity measurement
,”
Cryst. Growth Des.
19
,
2206
2218
(
2019
).
72.
B.
Dutta
,
R.
Jana
,
C.
Sinha
,
P. P.
Ray
, and
M. H.
Mir
, “
Synthesis of a Cd(II) based 1D coordination polymer by in situ ligand generation and fabrication of a photosensitive electronic device
,”
Inorg. Chem. Front.
5
,
1998
2005
(
2018
).
73.
B.
Dutta
,
R.
Jana
,
A. K.
Bhanja
,
P. P.
Ray
,
C.
Sinha
, and
M. H.
Mir
, “
Supramolecular aggregate of cadmium(II)-based one-dimensional coordination polymer for device fabrication and sensor application
,”
Inorg. Chem.
58
,
2686
2694
(
2019
).
74.
A.
Chandra
,
D.
Das
,
J.-O.
Castro
,
K.
Naskar
,
S.
Jana
,
A.
Frontera
,
P. P.
Ray
, and
C.
Sinha
, “
Cd(II) coordination polymer of fumaric acid and pyridyl-hydrazide schiff base: Structure, photoconductivity and theoretical interpretation
,”
Inorg. Chim. Acta
518
,
120253
(
2021
).
75.
L.
Tang
,
T.
Wu
, and
J.
Kan
, “
Synthesis and properties of polyaniline–cobalt coordination polymer
,”
Synth. Met.
159
,
1644
1648
(
2009
).
76.
W.
Xue
,
B. Y.
Wang
,
J.
Zhu
,
W. X.
Zhang
,
Y. B.
Zhang
,
H. X.
Zhao
, and
X. M.
Chen
, “
A one-dimensional coordination polymer exhibiting simultaneous spin-crossover and semiconductor behaviour
,”
Chem Commun.
47
,
10233
10235
(
2011
).
77.
P.
Mani
,
A.
Sheelam
,
S.
Das
,
G.
Wang
,
V. K.
Ramani
,
K.
Ramanujam
,
S. K.
Pati
, and
S.
Mandal
, “
Cobalt-based coordination polymer for oxygen reduction reaction
,”
ACS Omega
3
,
3830
3834
(
2018
).
78.
S.
Naaz
,
P.
Das
,
S.
Khan
,
B.
Dutta
,
S.
Maity
,
P.
Ghosh
,
P. P.
Ray
, and
M. H.
Mir
, “
Fabrication of a halopyridine appended Co(ii) based 1D coordination polymer for efficient charge transportation
,”
Polyhedron
201
,
115159
(
2021
).
79.
M.
Tadokoro
,
S.
Yasuzuka
,
M.
Nakamura
,
T.
Shinoda
,
T.
Tatenuma
,
M.
Mitsumi
,
Y.
Ozawa
,
K.
Toriumi
,
H.
Yoshino
,
D.
Shiomi
,
K.
Sato
,
T.
Takui
,
T.
Mori
, and
K.
Murata
, “
A high-conductivity crystal containing a copper(I) coordination polymer bridged by the organic acceptor tanc
,”
Angew. Chem., Int. Ed.
45
,
5144
5147
(
2006
).
80.
S.
Delgado
,
P. J. S.
Miguel
,
J. L.
Priego
,
R.
Jimenez-Aparicio
,
C. J.
Gomez-Garcia
, and
F.
Zamora
, “
A conducting coordination polymer based on assembled Cu9 cages
,”
Inorg. Chem.
47
,
9128
9130
(
2008
).
81.
S.
Takaishi
,
M.
Hosoda
,
T.
Kajiwara
,
H.
Miyasaka
,
M.
Yamashita
,
Y.
Nakanishi
,
Y.
Kitagawa
,
K.
Yamaguchi
,
A.
Kobayashi
, and
H.
Kitagawa
, “
Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units
,”
Inorg. Chem.
48
,
9048
9050
(
2009
).
[PubMed]
82.
Y.
Han
and
H. V.
Huynh
, “
Pyrazolin-4-ylidenes: A new class of intriguing ligands
,”
Dalton Trans.
40
,
2141
2147
(
2011
).
83.
P.
Amo-Ochoa
,
K.
Hassanein
,
C. J.
Gomez-Garcia
,
S.
Benmansour
,
J.
Perles
,
O.
Castillo
,
J. I.
Martinez
,
P.
Ocon
, and
F.
Zamora
, “
Reversible stimulus-responsive Cu(I) iodide pyridine coordination polymer
,”
Chem. Commun.
51
,
14306
14309
(
2015
).
84.
J.-X.
Wu
,
D.-D.
Zhou
,
C.
Zhang
,
H.-L.
Zhou
, and
J.-P.
Zhang
, “
From discrete complex to 1-D coordination polymer by subtle variation of ligand donor: Structures and electrical conductivities
,”
J. Coord. Chem.
69
,
1837
1843
(
2016
).
85.
M. G.
Campbell
,
D.
Sheberla
,
S. F.
Liu
,
T. M.
Swager
, and
M.
Dinca
, “
Cu3(hexaiminotriphenylene)(2): An electrically conductive 2D metal-organic framework for chemiresistive sensing
,”
Angew. Chem., Int. Ed.
54
,
4349
4352
(
2015
).
86.
K.
Himoto
,
T.
Horii
,
T.
Syoji
,
T.
Okubo
,
M.
Maekawa
, and
T.
Kuroda-Sowa
, “
A new semiconducting coordination polymer consisting of copper(I)-iodide and 3-pyridinecarboxaldehyde
,”
Inorg. Chem. Commun.
88
,
34
37
(
2018
).
87.
S.
Khan
,
S.
Halder
,
P. P.
Ray
,
S.
Herrero
,
R.
González-Prieto
,
M. G. B.
Drew
, and
S.
Chattopadhyay
, “
A semiconducting copper(II) coordination polymer with (4,4) square grid topology: Synthesis, characterization, and application in the formation of a photoswitch
,”
Cryst. Growth Des.
18
,
651
659
(
2018
).
88.
T.
Okubo
,
K.
Himoto
,
K.
Tanishima
,
S.
Fukuda
,
Y.
Noda
,
M.
Nakayama
,
K.
Sugimoto
,
M.
Maekawa
, and
T.
Kuroda-Sowa
, “
Crystal structure and band-gap engineering of a semiconducting coordination polymer consisting of copper(I) bromide and a bridging acceptor ligand
,”
Inorg. Chem.
57
,
2373
2376
(
2018
).
89.
B.
Dutta
,
C.
Sinha
, and
M. H.
Mir
, “
Supramolecular assembly of cu(II)-based 1D coordination polymer: Synthesis, characterization and correlation of band gap
,”
J. Mol. Struct.
1197
,
430
435
(
2019
).
90.
Y.
Cui
,
J.
Yan
,
Z.
Chen
,
J.
Zhang
,
Y.
Zou
,
Y.
Sun
,
W.
Xu
, and
D.
Zhu
, “
Cu3(C6Se6)]n: The first highly conductive 2D pi-d conjugated coordination polymer based on benzenehexaselenolate
,”
Adv. Sci.
6
,
1802235
(
2019
).
91.
J.
Sherine
,
E.
Indubala
,
R.
Rajagopal
, and
S.
Harinipriya
, “
Organic ligand capping of CuI for enhanced electrical and ionic conductivity
,”
J. Mater. Res. Technol.
8
,
2326
2335
(
2019
).
92.
V. G.
Vegas
,
N.
Maldonado
,
O.
Castillo
,
C. J.
Gomez-Garcia
, and
P.
Amo-Ochoa
, “
Multifunctional coordination polymers based on copper with modified nucleobases, easily modulated in size and conductivity
,”
J. Inorg. Biochem.
200
,
110805
(
2019
).
93.
K.
Fuku
,
M.
Miyata
,
S.
Takaishi
,
T.
Yoshida
,
M.
Yamashita
,
N.
Hoshino
,
T.
Akutagawa
,
H.
Ohtsu
,
M.
Kawano
, and
H.
Iguchi
, “
Emergence of electrical conductivity in a flexible coordination polymer by using chemical reduction
,”
Chem. Commun.
56
,
8619
8622
(
2020
).
94.
S. A.
Bhat
,
N. B.
Palakurthy
,
N.
Kambhala
,
A.
Subramanian
,
D. S. S.
Rao
,
S. K.
Prasad
, and
C. V.
Yelamaggad
, “
Gram-scale synthesis and multifunctional properties of a two-dimensional layered copper(II) coordination polymer
,”
ACS Appl. Polym. Mater.
2
,
1543
1552
(
2020
).
95.
M. S.
Yao
,
J. J.
Zheng
,
A. Q.
Wu
,
G.
Xu
,
S. S.
Nagarkar
,
G.
Zhang
,
M.
Tsujimoto
,
S.
Sakaki
,
S.
Horike
,
K.
Otake
, and
S.
Kitagawa
, “
A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity
,”
Angew. Chem., Int. Ed.
59
,
172
176
(
2020
).
96.
G.
Xing
,
Y.
Li
,
Z.
Feng
,
D. J.
Singh
, and
F.
Pauly
, “
Copper(I)-based flexible organic-inorganic coordination polymer and analogues: High-power factor thermoelectrics
,”
ACS Appl. Mater. Interfaces
12
,
53841
(
2020
).
97.
R.
Murase
,
B. F.
Abrahams
,
D. M.
D'Alessandro
,
C. G.
Davies
,
T. A.
Hudson
,
G. N. L.
Jameson
,
B.
Moubaraki
,
K. S.
Murray
,
R.
Robson
, and
A. L.
Sutton
, “
Mixed valency in a 3D semiconducting iron-fluoranilate coordination polymer
,”
Inorg. Chem.
56
,
9025
9035
(
2017
).
98.
M.
Karthikeyan
,
B.
Bhagyaraju
,
C. R.
Mariappan
,
S. M.
Mobin
, and
B.
Manimaran
, “
Novel semiconducting metal-organic framework: Synthesis, structural characterisation and electrical conductivity studies of manganese based two dimensional coordination polymer
,”
Inorg. Chem. Commun.
20
,
269
272
(
2012
).
99.
T.
Kambe
,
R.
Sakamoto
,
K.
Hoshiko
,
K.
Takada
,
M.
Miyachi
,
J. H.
Ryu
,
S.
Sasaki
,
J.
Kim
,
K.
Nakazato
,
M.
Takata
, and
H.
Nishihara
, “
pi-conjugated nickel bis(dithiolene) complex nanosheet
,”
J. Am. Chem. Soc.
135
,
2462
2465
(
2013
).
100.
Y.
Wu
,
Y.
Chen
,
M.
Tang
,
S.
Zhu
,
C.
Jiang
,
S.
Zhuo
, and
C.
Wang
, “
A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: Reconsidering its structures
,”
Chem. Commun.
55
,
10856
10859
(
2019
).
101.
K.
Naskar
,
A.
Dey
,
B.
Dutta
,
F.
Ahmed
,
C.
Sen
,
M. H.
Mir
,
P. P.
Roy
, and
C.
Sinha
, “
Intercatenated coordination polymers (ICPs) of carboxylato bridged Zn(II)-isoniazid and their electrical conductivity
,”
Cryst. Growth Des.
17
,
3267
3276
(
2017
).
102.
A.
Chandra
,
M.
Das
,
K.
Pal
,
S.
Jana
,
B.
Dutta
,
P. P.
Ray
,
K.
Jana
, and
C.
Sinha
, “
Three-dimensional-coordination polymer of Zn(II)-carboxylate: Structural elucidation, photoelectrical conductivity, and biological activity
,”
ACS Omega
4
,
17649
17661
(
2019
).
103.
M.
Saha
,
S.
Chatterjee
,
M. S.
Hossain
,
A.
Ghude
, and
S.
Bandyopadhyay
, “
Modulation of electronic mobility of a one-dimensional coordination polymeric molecular wire with light
,”
Chem. - Asian J.
14
,
4659
4664
(
2019
).
104.
A.
Bakkar
,
F.
Lafolet
,
D.
Roldan
,
E.
Puyoo
,
D.
Jouvenot
,
G.
Royal
,
E.
Saint-Aman
, and
S.
Cobo
, “
Bidirectional light-induced conductance switching in molecular wires containing a dimethyldihydropyrene unit
,”
Nanoscale
10
,
5436
5441
(
2018
).
105.
Y.-N.
Luo
,
H.-Y.
Jiang
,
Z.-C.
Liu
,
L.-Y.
Yu
, and
X.-Y.
Yu
, “
A new zinc coordination polymer constructed from 4-[(8-hydroxy-5-quinolinyl)azo]-benzenesulfonic acid: Synthesis, structure, and photoelectrical property
,”
Struct. Chem.
29
,
977
982
(
2018
).
106.
J. X.
Zhang
,
Y.
Wu
,
J. C.
Liu
, and
R. Z.
Li
, “
Bilayer structured supramolecular light harvesting arrays based on zinc porphyrin coordination polymers for enhanced photocurrent generation in dye sensitized solar cells
,”
Dalton Trans.
45
,
16283
16289
(
2016
).
107.
B.
Febriansyah
,
T. M.
Koh
,
P. J. S.
Rana
,
T. J. N.
Hooper
,
Z. Z.
Ang
,
Y.
Li
,
A.
Bruno
,
M.
Grätzel
,
J.
England
,
S. G.
Mhaisalkar
, and
N.
Mathews
, “
Hybrid 2D [Pb(CH3NH2)I2]n coordination polymer precursor for scalable perovskite deposition
,”
ACS Energy Lett.
5
,
2305
2312
(
2020
).
108.
H. Q.
Luo
,
X. H.
Xing
,
P.
Zhang
,
Z. S.
Yan
,
Q. F.
Zhou
,
Y.
Gong
, and
J. H.
Lin
, “
The photocurrent response in the perovskite device based on coordination polymers: Structure, topology, band gap and matched energy levels
,”
Dalton Trans.
46
,
7866
7877
(
2017
).
109.
L.
Qiu
,
X.
Zheng
,
Y.
Yang
,
Y.
Dong
,
G.
Dong
,
D.
Xia
,
X.
Liu
,
Q.
Wu
, and
R.
Fan
, “
A copper coordination polymer with matching energy level for modifying hole transport layers to improve the performance of perovskite solar cells
,”
ChemSusChem
12
,
2763
2772
(
2019
).
110.
Y.
Dong
,
J.
Zhang
,
Y.
Yang
,
L.
Qiu
,
D.
Xia
,
K.
Lin
,
J.
Wang
,
X.
Fan
, and
R.
Fan
, “
Self-assembly of hybrid oxidant POM@Cu-BTC for enhanced efficiency and long-term stability of perovskite solar cells
,”
Angew. Chem., Int. Ed.
58
,
17610
17615
(
2019
).
111.
J.
Wang
,
J.
Zhang
,
Y.
Yang
,
S.
Gai
,
Y.
Dong
,
L.
Qiu
,
D.
Xia
,
X.
Fan
,
W.
Wang
,
B.
Hu
,
W.
Cao
, and
R.
Fan
, “
New insight into the Lewis basic sites in metal-organic framework-doped hole transport materials for efficient and stable perovskite solar cells
,”
ACS Appl. Mater. Interfaces
13
,
5235
5244
(
2021
).
112.
S.
Wu
,
Z.
Li
,
M. Q.
Li
,
Y.
Diao
,
F.
Lin
,
T.
Liu
,
J.
Zhang
,
P.
Tieu
,
W.
Gao
,
F.
Qi
,
X.
Pan
,
Z.
Xu
,
Z.
Zhu
, and
A. K.
Jen
, “
2D metal-organic framework for stable perovskite solar cells with minimized lead leakage
,”
Nat. Nanotechnol.
15
,
934
940
(
2020
).
113.
J.
Lopez-Molina
,
C.
Hernandez-Rodriguez
,
R.
Guerrero-Lemus
,
E.
Cantelar
,
G.
Lifante
,
M.
Munoz
, and
P.
Amo-Ochoa
, “
Cu(I)-I coordination polymers as the possible substitutes of lanthanides as downshifters for increasing the conversion efficiency of solar cells
,”
Dalton Trans.
49
,
4315
4322
(
2020
).
114.
W.
Xing
,
P.
Ye
,
J.
Lu
,
X.
Wu
,
Y.
Chen
,
T.
Zhu
,
A.
Peng
, and
H.
Huang
, “
Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells
,”
J. Power Sources
401
,
13
19
(
2018
).
115.
J.
Chaopaknam
,
C.
Wechwithayakhlung
,
H.
Nakajima
,
T.
Lertvanithphol
,
M.
Horprathum
,
T.
Sudyoadsuk
,
V.
Promarak
,
A.
Saeki
, and
P.
Pattanasattayavong
, “
Tin(II) thiocyanate Sn(SCN)2 as an ultrathin anode interlayer in organic photovoltaics
,”
Appl. Phys. Lett.
119
,
063301
(
2021
).
116.
C.-H.
Chang
,
A.-C.
Li
,
I.
Popovs
,
W.
Kaveevivitchai
,
J.-L.
Chen
,
K.-C.
Chou
,
T.-S.
Kuo
, and
T.-H.
Chen
, “
Elucidating metal and ligand redox activities of a copper-benzoquinoid coordination polymer as the cathode for lithium-ion batteries
,”
J. Mater. Chem. A
7
,
23770
23774
(
2019
).
117.
X.
Shen
,
H.
Liu
,
X.-B.
Cheng
,
C.
Yan
, and
J.-Q.
Huang
, “
Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes
,”
Energy Storage Mater.
12
,
161
175
(
2018
).
118.
S.
Baksa
and
W.
Yourey
, “
Consumer-based evaluation of commercially available protected 18650 cells
,”
Batteries
4
,
45
(
2018
).
119.
N.
Nitta
,
F.
Wu
,
J. T.
Lee
, and
G.
Yushin
, “
Li-ion battery materials: Present and future
,”
Mater. Today
18
,
252
264
(
2015
).
120.
G.
Gao
,
F.
Zheng
,
F.
Pan
, and
L. W.
Wang
, “
Theoretical investigation of 2D conductive microporous coordination polymers as Li's battery cathode with ultrahigh energy density
,”
Adv. Energy Mater.
8
,
1801823
(
2018
).
121.
V.
Rubio-Gimenez
,
S.
Tatay
, and
C.
Marti-Gastaldo
, “
Electrical conductivity and magnetic bistability in metal-organic frameworks and coordination polymers: Charge transport and spin crossover at the nanoscale
,”
Chem. Soc. Rev.
49
,
5601
5638
(
2020
).
122.
F.
Schlachter
, “
Has the battery bubble burst?
,”
2012
.
123.
C.
Li
,
X.
Lou
,
M.
Shen
,
X.
Hu
,
Z.
Guo
,
Y.
Wang
,
B.
Hu
, and
Q.
Chen
, “
High anodic performance of Co 1,3,5-benzenetricarboxylate coordination polymers for Li-ion battery
,”
ACS Appl. Mater. Interfaces
8
,
15352
15360
(
2016
).
124.
J.
Xie
,
X. F.
Cheng
,
X.
Cao
,
J. H.
He
,
W.
Guo
,
D. S.
Li
,
Z. J.
Xu
,
Y.
Huang
,
J. M.
Lu
, and
Q.
Zhang
, “
Nanostructured metal-organic conjugated coordination polymers with ligand tailoring for superior rechargeable energy storage
,”
Small
15
,
1903188
(
2019
).
125.
Y.
Song
,
L.
Yu
,
Y.
Gao
,
C.
Shi
,
M.
Cheng
,
X.
Wang
,
H. J.
Liu
, and
Q.
Liu
, “
One-dimensional zinc-based coordination polymer as a higher capacity anode material for lithium ion batteries
,”
Inorg. Chem.
56
,
11603
11609
(
2017
).
126.
P.
Wang
,
X.
Lou
,
C.
Li
,
X.
Hu
,
Q.
Yang
, and
B.
Hu
, “
One-pot synthesis of Co-based coordination polymer nanowire for Li-ion batteries with great capacity and stable cycling stability
,”
Nano-Micro Lett.
10
,
19
(
2018
).
127.
H. H.
Lee
,
J. B.
Lee
,
Y.
Park
,
K. H.
Park
,
M. S.
Okyay
,
D. S.
Shin
,
S.
Kim
,
J.
Park
,
N.
Park
,
B. K.
An
,
Y. S.
Jung
,
H. W.
Lee
,
K. T.
Lee
, and
S. Y.
Hong
, “
Coordination polymers for high-capacity Li-ion batteries: Metal-dependent solid-state reversibility
,”
ACS Appl. Mater. Interfaces
10
,
22110
22118
(
2018
).
128.
G.
Sun
,
L.
Yu
,
Y.
Hu
,
Y.
Sha
,
H.
Rong
,
B.
Li
,
H.-J.
Liu
, and
Q.
Liu
, “
A manganese-based coordination polymer containing no solvent as a high performance anode in Li-ion batteries
,”
Cryst. Growth Des.
19
,
6503
6510
(
2019
).
129.
H.
Su
,
Y.
Song
,
Y.
Hu
,
Y.
Ma
,
W.
Liu
,
H.
Liu
, and
Q.
Liu
, “
A copper-based polycarbonyl coordination polymer as a cathode for Li ion batteries
,”
Cryst. Growth Des.
21
,
3668
3676
(
2021
).
130.
W. M.
Haynes
,
D. R.
Lide
, and
T. J.
Bruno
,
CRC Handbook of Chemistry and Physics
, 97th ed. (
CRC Press
,
Boca Raton, FL
, 2016-
2017
).
131.
Y.
Ning
,
X.
Lou
,
M.
Shen
, and
B.
Hu
, “
Mesoporous cobalt 2,5-thiophenedicarboxylic coordination polymer for high performance Na-ion batteries
,”
Mater. Lett.
197
,
245
248
(
2017
).
132.
J. K.
Huang
,
M.
Li
,
Y.
Wan
,
S.
Dey
,
M.
Ostwal
,
D.
Zhang
,
C. W.
Yang
,
C. J.
Su
,
U. S.
Jeng
,
J.
Ming
,
A.
Amassian
,
Z.
Lai
,
Y.
Han
,
S.
Li
, and
L. J.
Li
, “
Functional two-dimensional coordination polymeric layer as a charge barrier in Li-S batteries
,”
ACS Nano
12
,
836
843
(
2018
).
133.
H. J.
Kim
,
Y.
Kim
,
J.
Shim
,
K. H.
Jung
,
M. S.
Jung
,
H.
Kim
,
J. C.
Lee
, and
K. T.
Lee
, “
Environmentally sustainable aluminum-coordinated poly(tetrahydroxybenzoquinone) as a promising cathode for sodium ion batteries
,”
ACS Appl. Mater. Interfaces
10
,
3479
3486
(
2018
).
134.
T.
Liu
,
S.
Chen
,
W.
Sun
,
L. P.
Lv
,
F. H.
Du
,
H.
Liu
, and
Y.
Wang
, “
Lithiophilic vertical cactus–like framework derived from Cu/Zn–based coordination polymer through in situ chemical etching for stable lithium metal batteries
,”
Adv. Funct. Mater.
31
,
2008514
(
2021
).
135.
O. A.
Kraevaya
,
E. V.
Shchurik
, and
P. A.
Troshin
, “
Ni–based coordination polymer as a promising anode material for potassium batteries
,”
Phys. Status Solidi A
217
,
1901050
(
2020
).
136.
Y.
Chen
,
Q.
Zhu
,
K.
Fan
,
Y.
Gu
,
M.
Sun
,
Z.
Li
,
C.
Zhang
,
Y.
Wu
,
Q.
Wang
,
S.
Xu
,
J.
Ma
,
C.
Wang
, and
W.
Hu
, “
Successive storage of cations and anions by ligands of pi-d-conjugated coordination polymers enabling robust sodium-ion batteries
,”
Angew. Chem., Int. Ed.
60
,
18769
18776
(
2021
).
137.
N.
Ma
,
S.
Kosasang
,
A.
Yoshida
, and
S.
Horike
, “
Proton-conductive coordination polymer glass for solid-state anhydrous proton batteries
,”
Chem. Sci.
12
,
5818
5824
(
2021
).
138.
T.
Ogawa
,
K.
Takahashi
,
S. S.
Nagarkar
,
K.
Ohara
,
Y.-l.
Hong
,
Y.
Nishiyama
, and
S.
Horike
, “
Coordination polymer glass from a protic ionic liquid: Proton conductivity and mechanical properties as an electrolyte
,”
Chem. Sci.
11
,
5175
5181
(
2020
).
139.
Q.
Miao
,
F.
Rouhani
,
H.
Moghanni-Bavil-Olyaei
,
K.-G.
Liu
,
X.-M.
Gao
,
J.-Z.
Li
,
X.-D.
Hu
,
Z.-M.
Jin
,
M.-L.
Hu
, and
A.
Morsali
, “
Comparative study of the supercapacitive performance of three ferrocene-based structures: Targeted design of a conductive ferrocene-functionalized coordination polymer as a supercapacitor electrode
,”
Chem. - Eur. J.
26
,
9518
9526
(
2020
).
140.
H.
Banda
,
J.-H.
Dou
,
T.
Chen
,
Y.
Zhang
, and
M.
Dincǎ
, “
Dual-ion intercalation and high volumetric capacitance in a two-dimensional non-porous coordination polymer
,”
Angew. Chem., Int. Ed.
60
,
27119
27125
(
2021
).
141.
H.
Banda
,
J.-H.
Dou
,
T.
Chen
,
N. J.
Libretto
,
M.
Chaudhary
,
G. M.
Bernard
,
J. T.
Miller
,
V. K.
Michaelis
, and
M.
Dincă
, “
High-capacitance pseudocapacitors from Li+ ion intercalation in nonporous, electrically conductive 2D coordination polymers
,”
J. Am. Chem. Soc.
143
,
2285
2292
(
2021
).
142.
M.
Günthel
,
J.
Hübscher
,
R.
Dittrich
,
E.
Weber
,
Y.
Joseph
, and
F.
Mertens
, “
XPS and resistive studies on thin films of a copper(II)-based coordination polymer deposited on functionalized interdigital electrodes
,”
J. Polym. Sci., Part B: Polym. Phys.
53
,
335
344
(
2015
).
143.
Y.
Hasegawa
,
T.
Matsui
,
Y.
Kitagawa
,
T.
Nakanishi
,
T.
Seki
,
H.
Ito
,
Y.
Nakasaka
,
T.
Masuda
, and
K.
Fushimi
, “
Near-IR luminescent Yb(III) coordination polymers composed of pyrene derivatives for thermostable oxygen sensors
,”
Chem. - Eur. J.
25
,
12308
12315
(
2019
).
144.
M.
Yang
,
S.
Rong
,
X.
Wang
,
H.
Ma
,
H.
Pang
,
L.
Tan
,
Y.
Jiang
, and
K.
Gao
, “
Preparation and application of keggin polyoxometalate–based 3D coordination polymer materials as supercapacitors and amperometric sensors
,”
ChemNanoMat
7
,
299
306
(
2021
).
145.
M. E.
DMello
,
N. G.
Sundaram
,
A.
Singh
,
A. K.
Singh
, and
S. B.
Kalidindi
, “
An amine functionalized zirconium metal–organic framework as an effective chemiresistive sensor for acidic gases
,”
Chem. Commun.
55
,
349
352
(
2019
).
146.
Z.-S.
Zhang
,
J.-X.
Liu
,
X.-F.
Cheng
,
J.-H.
He
,
H.
Li
,
Q.-F.
Xu
,
N.-J.
Li
,
D.-Y.
Chen
, and
J.-M.
Lu
, “
Ultrasensitive humidity sensing using one-dimensional pi-d conjugated coordination polymers for breath monitoring
,”
Sens. Actuators, B
330
,
129353
(
2021
).
147.
M.-S.
Yao
,
W.-H.
Li
, and
G.
Xu
, “
Metal–organic frameworks and their derivatives for electrically-transduced gas sensors
,”
Coord. Chem. Rev.
426
,
213479
(
2021
).
148.
N.
Maldonado
,
V. G.
Vegas
,
O.
Halevi
,
J. I.
Martínez
,
P. S.
Lee
,
S.
Magdassi
,
M. T.
Wharmby
,
A. E.
Platero–Prats
,
C.
Moreno
,
F.
Zamora
, and
P.
Amo–Ochoa
, “
3D printing of a thermo– and solvatochromic composite material based on a Cu(II)–thymine coordination polymer with moisture sensing capabilities
,”
Adv. Funct. Mater.
29
,
1808424
(
2019
).
149.
J. J.
Oppenheim
,
J. L.
Mancuso
,
A. M.
Wright
,
A. J.
Rieth
,
C. H.
Hendon
, and
M.
Dincǎ
, “
Divergent adsorption behavior controlled by primary coordination sphere anions in the metal–organic framework Ni2X2BTDD
,”
J. Am. Chem. Soc.
143
,
16343
16347
(
2021
).
150.
Y.
Yang
,
J.
Dong
,
H.
Li
,
D.
Guo
,
W.
Yang
, and
Q.
Pan
, “
AIE infinite coordination polymer for phosphate ion detection via aggregation state modulation
,”
ChemistrySelect
5
,
11483
11488
(
2020
).
151.
W.
Liu
,
X.
Dai
,
J.
Xie
,
M. A.
Silver
,
D.
Zhang
,
Y.
Wang
,
Y.
Cai
,
J.
Diwu
,
J.
Wang
,
R.
Zhou
,
Z.
Chai
, and
S.
Wang
, “
Highly sensitive detection of UV radiation using a uranium coordination polymer
,”
ACS Appl. Mater. Interfaces
10
,
4844
4850
(
2018
).
152.
K.
Zheng
,
Z.
Liu
,
Y.
Jiang
,
P.
Guo
,
H.
Li
,
C.
Zeng
,
S. W.
Ng
, and
S.
Zhong
, “
Ultrahigh luminescence quantum yield lanthanide coordination polymer as a multifunctional sensor
,”
Dalton Trans.
47
,
17432
17440
(
2018
).
153.
X.
Zhang
,
Y.
Huang
,
Q.
Zhang
,
D.
Li
, and
Y.
Li
, “
A one–dimensional cadmium coordination polymer: Synthesis, structure, and application as luminescent sensor for Cu2+ and CrO42-/Cr2O72- ions
,”
Eur. J. Inorg. Chem.
2021
,
1349
1357
.
154.
X. D.
Zhang
,
Y.
Zhao
,
K.
Chen
,
Y. F.
Jiang
, and
W. Y.
Sun
, “
Water-stable coordination polymers as dual fluorescent sensors for highly oxidizing anions Cr2O7 (2-) and MnO4-
,”
Chem. - Asian J.
14
,
3620
3626
(
2019
).
155.
X.
Yin
,
S.
Meng
, and
J.
Xie
, “
A rare heterobimetallic Ca–Ag coordination polymer as sensitive luminescence sensor for TNP
,”
J. Cluster. Sci.
29
,
411
416
(
2018
).
156.
D.-D.
Li
,
J.-H.
Yu
, and
J.-Q.
Xu
, “
Synthesis and selective detection towards TNP of two coordination polymers based on ligand generated by in situ acylation reaction
,”
J. Solid State Chem.
293
,
121771
(
2021
).
157.
X.
Liang
,
Y.
Jia
,
Z.
Zhan
, and
M.
Hu
, “
A highly selective multifunctional Zn–coordination polymer sensor for detection of Cr (III), Cr (VI) ion, and TNP molecule
,”
Appl. Organomet. Chem.
33
,
e4988
(
2019
).
158.
Y.
Luo
,
L.
Zhang
,
L.
Zhang
,
B.
Yu
,
Y.
Wang
, and
W.
Zhang
, “
Multiporous terbium phosphonate coordination polymer microspheres as fluorescent probes for trace anthrax biomarker detection
,”
ACS Appl. Mater. Interfaces
11
,
15998
16005
(
2019
).
159.
S.
Wu
,
M.
Zhu
,
Y.
Zhang
,
M.
Kosinova
,
V. P.
Fedin
, and
E.
Gao
, “
Luminescent sensors based on coordination polymers with adjustable emissions for detecting biomarker of pollutant ethylbenzene and styrene
,”
Appl. Organomet. Chem.
35
,
e6058
(
2021
).
160.
Y.
Yang
,
K. Z.
Wang
, and
D.
Yan
, “
Ultralong persistent room temperature phosphorescence of metal coordination polymers exhibiting reversible pH-responsive emission
,”
ACS Appl. Mater. Interfaces
8
,
15489
15496
(
2016
).
161.
X.
Liu
,
A. A. L.
Michalchuk
,
B.
Bhattacharya
,
N.
Yasuda
,
F.
Emmerling
, and
C. R.
Pulham
, “
High-pressure reversibility in a plastically flexible coordination polymer crystal
,”
Nat. Commun.
12
,
3871
(
2021
).
162.
B. B.
Rath
and
J. J.
Vittal
, “
Mechanical bending and modulation of photoactuation properties in a one-dimensional Pb(II) coordination polymer
,”
Chem. Mater.
33
,
4621
4627
(
2021
).
You do not currently have access to this content.