Heterogeneous electrocatalytic reactions are believed to occur at a minority of coordination sites through a series of elementary reactions that are balanced by minor equilibria. These features mask changes in reaction sites, making it challenging to directly identify and analyze reaction sites or intermediates while studying reaction mechanisms. Systematic perturbations of a reaction system often yield systematic changes in material properties and behavior. Correlations between measurable changes in parameters describing the structure and behavior, therefore, serve as powerful tools for distinguishing active reaction sites. This review explores structure–property correlations that have advanced understanding of behavior and reaction mechanisms in heterogeneous electrocatalysis. It covers correlations that have advanced understanding of the contributions of the local reaction environment to reactivity, of structure and bonding within solid-state materials, of geometric or mechanical strain in bonding environments, and of the impact of structural defects. Such correlations can assist researchers in developing next generation catalysts by establishing catalyst design principles and gaining control over reaction mechanisms.

1.
A.
Vojvodic
and
J. K.
Nørskov
, “
New design paradigm for heterogeneous catalysts
,”
Nat. Sci. Rev.
2
,
140
149
(
2015
).
2.
S.
Nitopi
,
E.
Bertheussen
,
S. B.
Scott
,
X.
Liu
,
A. K.
Engstfeld
,
S.
Horch
,
B.
Seger
,
I. E. L.
Stephens
,
K.
Chan
,
C.
Hahn
 et al, “
Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte
,”
Chem. Rev.
12
,
7610
7672
(
2019
).
3.
J. H.
Montoya
,
L. C.
Seitz
,
P.
Chakthranont
,
A.
Vojvodic
,
T. F.
Jaramillo
, and
J. K.
Nørskov
, “
Materials for solar fuels and chemicals
,”
Nat. Mater.
16
,
70
81
(
2017
).
4.
Z. F.
Huang
,
J.
Song
,
S.
Dou
,
X.
Li
,
J.
Wang
, and
X.
Wang
, “
Strategies to break the scaling relation toward enhanced oxygen electrocatalysis
,”
Matter. Cell Press
1
1494
1518
(
2019
).
5.
J.
Greeley
, “
Theoretical heterogeneous catalysis: Scaling relationships and computational catalyst design
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
605
635
(
2016
).
6.
J.
Yu
,
Q.
He
,
G.
Yang
,
W.
Zhou
,
Z.
Shao
, and
M.
Ni
, “
Recent advances and prospective in ruthenium-based materials for electrochemical water splitting
,”
ACS Catal.
9
(
11
),
9973
10011
(
2019
).
7.
C.
Xie
,
D.
Yan
,
W.
Chen
,
Y.
Zou
,
R.
Chen
,
S.
Zang
,
Y.
Wang
,
X.
Yao
, and
S.
Wang
, “
Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy
,”
Mater. Today
31
,
47
68
(
2019
).
8.
B.
Hammer
and
J. K.
Nørskov
, “
Electronic factors determining the reactivity of metal surfaces
,”
Surf. Sci.
343
,
211
220
(
1995
).
9.
V. R.
Stamenkovic
,
B.
Fowler
,
B. S.
Mun
,
G.
Wang
,
P. N.
Ross
,
C. A.
Lucas
, and
N. M.
Markovic
, “
Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability
,”
Science
315
(
5811
),
493
497
(
2007
).
10.
S.
Trasatti
, “
Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions
,”
J. Electroanal. Chem. Interfacial Electrochem.
39
(
1
),
163
184
(
1972
).
11.
N. S.
Hush
, “
Electron transfer in retrospect and prospect 1: Adiabatic electrode processes
,”
J. Electroanal. Chem.
470
(
1999
),
170
195
(
1999
).
12.
R. A.
Marcus
and
N.
Sutin
, “
Proposed suspension of rules of nomenclature in the case of Bohadsch 1761
,”
Biochim. Biophys. Acta
811
,
265
322 (
1985
).
13.
E.
Laborda
,
M. C.
Henstridge
,
C.
Batchelor-Mcauley
, and
R. G.
Compton
, “
Asymmetric Marcus-Hush theory for voltammetry
,”
Chem. Soc. Rev.
42
,
4894
4905
(
2013
).
14.
T.
Shinagawa
,
A. T.
Garcia-Esparza
, and
K.
Takanabe
, “
Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion
,”
Sci. Rep.
5
,
13801
(
2015
).
15.
J. O.
Bockris
and
T.
Otagawa
, “
Mechanism of oxygen evolution on perovskites
,”
J. Phys. Chem.
57
,
2960
2971
(
1983
).
16.
L.
Giordano
,
B.
Han
,
M.
Risch
,
W. T.
Hong
,
R. R.
Rao
,
K. A.
Stoerzinger
, and
Y.
Shao-Horn
, “
pH dependence of OER activity of oxides: Current and future perspectives
,”
Catal. Today
262
,
2
10
(
2016
).
17.
M.
Moura de Salles Pupo
and
R.
Kortlever
, “
Electrolyte effects on the electrochemical reduction of CO2
,”
ChemPhysChem
20
(
22
),
2926
2935
(
2019
).
18.
Y. J.
Sa
,
C. W.
Lee
,
S. Y.
Lee
,
J.
Na
,
U.
Lee
, and
Y. J.
Hwang
, “
Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction
,”
Chem. Soc. Rev.
49
(
18
),
6632
6665
(
2020
).
19.
M.
König
,
J.
Vaes
,
E.
Klemm
, and
D.
Pant
, “
Solvents and supporting electrolytes in the electrocatalytic reduction of CO2
,”
iScience
19
,
135
160
(
2019
).
20.
V. R.
Stamenkovic
,
D.
Strmcnik
,
P. P.
Lopes
, and
N. M.
Markovic
, “
Energy and fuels from electrochemical interfaces
,”
Nat. Mater.
16
(
1
),
57
69
(
2017
).
21.
A.
Wagner
,
C. D.
Sahm
, and
E.
Reisner
, “
Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction
,”
Nat. Catal.
3
(
10
),
775
786
(
2020
).
22.
N.
Dubouis
and
A.
Grimaud
, “
The hydrogen evolution reaction: From material to interfacial descriptors
,”
Chem. Sci.
10
(
40
),
9165
9181
(
2019
).
23.
T.
Shinagawa
and
K.
Takanabe
, “
Towards versatile and sustainable hydrogen production through electrocatalytic water splitting: Electrolyte engineering
,”
ChemSusChem
10
(
7
),
1318
1336
(
2017
).
24.
M. M.
Waegele
,
C. M.
Gunathunge
,
J.
Li
, and
X.
Li
, “
How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes
,”
J. Chem. Phys.
151
(
16
),
160902
(
2019
).
25.
D. A.
Kuznetsov
,
B.
Han
,
Y.
Yu
,
R. R.
Rao
,
J.
Hwang
,
Y.
Román-Leshkov
, and
Y.
Shao-Horn
, “
Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis
,”
Joule
2
,
225
244
(
2018
).
26.
L. I.
Krishtalik
, “
On the conditions favourable to the detection of barrierless electrode processes
,”
J. Electroanal. Chem. Interfacial Electrochem.
21
(
3
),
421
424
(
1969
).
27.
L. I.
Krishtalik
and
V. M.
Tsionsky
, “
Mechanism of the elementary act of proton transfer. Preexponential factor and hydrogen isotope separation factor
,”
J. Electroanal. Chem. Interfacial Electrochem.
31
(
2
),
363
374
(
1971
).
28.
L. I.
Krishtalik
, “
On some possible mechanisms of electrode reactions of atomic hydrogen
,”
J. Electroanal. Chem. Interfacial Electrochem.
130
(
C
),
9
21
(
1981
).
29.
S.
Hammes-Schiffer
and
A. A.
Stuchebrukhov
, “
Theory of coupled electron and proton transfer reactions
,”
Chem. Rev.
110
(
12
),
6939
6960
(
2010
).
30.
K.
Sakaushi
,
T.
Kumeda
,
S.
Hammes-Schiffer
,
M. M.
Melander
, and
O.
Sugino
, “
Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces
,”
Phys. Chem. Chem. Phys.
22
(
35
),
19401
19442
(
2020
).
31.
D.
Himmel
,
S. K.
Goll
,
I.
Leito
, and
I.
Krossing
, “
A unified pH scale for all phases
,”
Angew. Chem. Int. Ed.
49
(
38
),
6885
6888
(
2010
).
32.
M. J. N.
Pourbaix
,
Atlas of Electrochemical Equilibria in Aqueous Solutions
, 1st ed. (
Pergamon Press
,
New York
,
1966
).
33.
Z.
Wang
,
X.
Guo
,
J.
Montoya
, and
J. K.
Nørskov
, “
Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional
,”
npj Comput. Mater
6
(
1
),
160
(
2020
).
34.
L.-F.
Huang
and
J. M.
Rondinelli
, “
Reliable electrochemical phase diagrams of magnetic transition metals and related compounds from high-throughput ab initio calculations
,”
npj Mater. Degrad.
3
(
1
),
26
(
2019
).
35.
J. B.
Gerken
,
J. G.
McAlpin
,
J. Y. C.
Chen
,
M. L.
Rigsby
,
W. H.
Casey
,
R. D.
Britt
, and
S. S.
Stahl
, “
Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity
,”
J. Am. Chem. Soc.
133
(
36
),
14431
14442
(
2011
).
36.
A.
Minguzzi
,
F.-R. F.
Fan
,
A.
Vertova
,
S.
Rondinini
, and
A. J.
Bard
, “
Dynamic potential–pH diagrams application to electrocatalysts for water oxidation
,”
Chem. Sci.
3
(
1
),
217
229
(
2012
).
37.
C. J.
Reed
and
T.
Agapie
, “
Thermodynamics of proton and electron transfer in tetranuclear clusters with Mn–OH2/OH motifs relevant to H2O activation by the oxygen evolving complex in photosystem II
,”
J. Am. Chem. Soc.
140
(
34
),
10900
10908
(
2018
).
38.
M.
Murakami
,
D.
Hong
,
T.
Suenobu
,
S.
Yamaguchi
,
T.
Ogura
, and
S.
Fukuzumi
, “
Catalytic mechanism of water oxidation with single-site ruthenium–heteropolytungstate complexes
,”
J. Am. Chem. Soc.
133
(
30
),
11605
11613
(
2011
).
39.
K.
Elouarzaki
,
A.
Le Goff
,
M.
Holzinger
,
J.
Thery
, and
S.
Cosnier
, “
Electrocatalytic oxidation of glucose by rhodium porphyrin-functionalized MWCNT electrodes: Application to a fully molecular catalyst-based glucose/O2 fuel cell
,”
J. Am. Chem. Soc.
134
(
34
),
14078
14085
(
2012
).
40.
R. L.
Doyle
,
I. J.
Godwin
,
M. P.
Brandon
, and
M. E. G.
Lyons
, “
Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes
,”
Phys. Chem. Chem. Phys.
15
,
13737–13783
(
2013
).
41.
A.
Grimaud
,
O.
Diaz-Morales
,
B.
Han
,
W. T.
Hong
,
Y. L.
Lee
,
L.
Giordano
,
K. A.
Stoerzinger
,
M. T. M.
Koper
, and
Y.
Shao-Horn
, “
Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
,”
Nat. Chem.
9
(
5
),
457
465
(
2017
).
42.
Y.
Surendranath
,
M. W.
Kanan
, and
D. G.
Nocera
, “
Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH
,”
J. Am. Chem. Soc.
132
(
46
),
16501
16509
(
2010
).
43.
A.
Moysiadou
,
S.
Lee
,
C. S.
Hsu
,
H. M.
Chen
, and
X.
Hu
, “
Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step
,”
J. Am. Chem. Soc.
142
(
27
),
11901
11914
(
2020
).
44.
M.
Huynh
,
D.
Kwabena
, and
D. G.
Nocera
, “
A functionally stable manganese oxide oxygen evolution catalyst in acid
,”
J. Am. Chem. Soc.
136
,
6002
6010
(
2014
).
45.
C.
Yang
,
M.
Batuk
,
Q.
Jacquet
,
G.
Rousse
,
W.
Yin
,
L.
Zhang
,
J.
Hadermann
,
A. M.
Abakumov
,
G.
Cibin
,
A.
Chadwick
 et al, “
Revealing pH-dependent activities and surface instabilities for Ni-based electrocatalysts during the oxygen evolution reaction
,”
ACS Energy Lett.
3
(
12
),
2884
2890
(
2018
).
46.
L.
Bai
,
S.
Lee
, and
X.
Hu
, “
Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction
,”
Angew. Chem. Int. Ed.
60
(
6
),
3095
3103
(
2021
).
47.
K.
Bediako
,
D.
Surendranath
,
Y.
Nocera
, and
G.
D
, “
Mechanistic studies of the oxygen evolution reaction mediated by a nickel−borate thin film electrocatalyst
,”
J. Am. Chem. Soc.
135
,
3662
3674
(
2013
).
48.
Y.
Lin
,
C.
Deng
,
L.
Wu
,
Y.
Zhang
,
C.
Chen
,
W.
Ma
, and
J.
Zhao
, “
Quantitative isotope measurements in heterogeneous photocatalysis and electrocatalysis
,”
Energy Environ. Sci.
13
(
9
),
2602
2617
(
2020
).
49.
J.
Zheng
,
W.
Sheng
,
Z.
Zhuang
,
B.
Xu
, and
Y.
Yan
, “
Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH hydrogen binding energy,”
Sci. Adv.
2
(
3
),
e1501602
(
2016
).
50.
S.
Zhu
,
X.
Qin
,
Y.
Yao
, and
M.
Shao
, “
pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy
,”
J. Am. Chem. Soc.
142
,
8748
(
2020
).
51.
J.
Durst
,
C.
Simon
,
F.
Hasché
, and
H. A.
Gasteiger
, “
Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media
,”
J. Electrochem. Soc.
162
(
1
),
F190
F203
(
2014
).
52.
K. A.
Stoerzinger
,
R. R.
Rao
,
X. R.
Wang
,
W. T.
Hong
,
C. M.
Rouleau
, and
Y.
Shao-Horn
, “
The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces
,”
Chemistry
2
(
5
),
668
675
(
2017
).
53.
L. D.
Burke
and
D. P.
Whelan
, “
A new interpretation of the charge storage and electrical conductivity behavior of hydrous iridium oxide
,”
J. Electroanal. Chem.
124
,
333
337
(
1981
).
54.
L. D.
Burke
,
M. E.
Lyons
,
E. J. M.
O'Sullivan
, and
D. P.
Whelan
, “
Influence of hydrolysis on the redox behaviour of hydrous oxide films
,”
J. Electroanal. Chem.
122
(
C
),
403
407
(
1981
).
55.
R. D. L.
Smith
and
C. P.
Berlinguette
, “
Accounting for the dynamic oxidative behavior of nickel anodes
,”
J. Am. Chem. Soc.
138
,
1561
1567
(
2016
).
56.
R. D. L.
Smith
,
R. S.
Sherbo
,
K. E.
Dettelbach
, and
C. P.
Berlinguette
, “
On how experimental conditions affect the electrochemical response of disordered nickel oxyhydroxide films
,”
Chem. Mater.
28
,
5635
5642
(
2016
).
57.
Y.
Zhao
,
W.
Wan
,
Y.
Chen
,
R.
Erni
,
C. A.
Triana
,
J.
Li
,
C. K.
Mavrokefalos
,
Y.
Zhou
, and
G. R.
Patzke
, “
Understanding and optimizing ultra‐thin coordination polymer derivatives with high oxygen evolution performance
,”
Adv. Energy Mater.
10
(
37
),
2002228
(
2020
).
58.
C.
Wildi
,
G.
Cabello
,
M. E.
Zoloff Michoff
,
P. M.
Veíez
,
E. P.
Leiva
,
J.
Jose
,
R.
Andreu
, and
A.
Cuesta
, “
Super-Nernstian shifts of interfacial proton-coupled electron transfers: Origin and effect of noncovalent interactions
,”
J. Phys. Chem. C
120
,
15586
15592
(
2016
).
59.
D.-Y.
Kuo
,
J. K.
Kawasaki
,
J. N.
Nelson
,
J.
Kloppenburg
,
G.
Hautier
,
K. M.
Shen
,
D. G.
Schlom
, and
J.
Suntivich
, “
Influence of surface adsorption on the oxygen evolution reaction on IrO2(110)
,”
J. Am. Chem. Soc.
139
(
9
),
3473
3479
(
2017
).
60.
D.-Y.
Kuo
,
H.
Paik
,
J.
Kloppenburg
,
B.
Faeth
,
K. M.
Shen
,
D. G.
Schlom
,
G.
Hautier
, and
J.
Suntivich
, “
Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): A discussion of the sabatier principle and its role in electrocatalysis
,”
J. Am. Chem. Soc.
140
(
50
),
17597
17605
(
2018
).
61.
X.
Yang
,
J.
Nash
,
N.
Oliveira
,
Y.
Yan
, and
B.
Xu
, “
Understanding the pH dependence of underpotential deposited hydrogen on platinum
,”
Angew. Chem. Int. Ed.
58
(
49
),
17718
17723
(
2019
).
62.
E.
Watanabe
,
J.
Rossmeisl
,
M. E.
Björketun
,
H.
Ushiyama
, and
K.
Yamashita
, “
Atomic-scale analysis of the RuO2/water interface under electrochemical conditions
,”
J. Phys. Chem. C
120
(
15
),
8096
8103
(
2016
).
63.
K.
Schwarz
,
B.
Xu
,
Y.
Yan
, and
R.
Sundararaman
, “
Partial oxidation of step-bound water leads to anomalous pH effects on metal electrode step-edges
,”
Phys. Chem. Chem. Phys.
18
(
24
),
16216
16223
(
2016
).
64.
X.
Chen
,
I. T.
McCrum
,
K. A.
Schwarz
,
M. J.
Janik
, and
M. T. M.
Koper
, “
Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode
,”
Angew. Chem. Int. Ed.
56
(
47
),
15025
15029
(
2017
).
65.
R.
Zhang
,
P. E.
Pearce
,
Y.
Duan
,
N.
Dubouis
,
T.
Marchandier
, and
A.
Grimaud
, “
Importance of water structure and catalyst–electrolyte interface on the design of water splitting catalysts
,”
Chem. Mater.
31
(
20
),
8248
8259
(
2019
).
66.
T.
Nishimoto
,
T.
Shinagawa
,
T.
Naito
, and
K.
Takanabe
, “
Delivering the full potential of oxygen evolving electrocatalyst by conditioning electrolytes at near-neutral pH
,”
ChemSusChem
14
(
6
),
1554
1564
(
2021
).
67.
A.
Yamaguchi
,
R.
Inuzuka
,
T.
Takashima
,
T.
Hayashi
,
K.
Hashimoto
, and
R.
Nakamura
, “
Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH
,”
Nat. Commun.
5
(
1
),
4256
(
2014
).
68.
K.
Klingan
,
F.
Ringleb
,
I.
Zaharieva
,
J.
Heidkamp
,
P.
Chernev
,
D.
Gonzalez-Flores
,
M.
Risch
,
A.
Fischer
, and
H.
Dau
, “
Water oxidation by amorphous cobalt-based oxides: Volume activity and proton transfer to electrolyte bases
,”
ChemSusChem
7
(
5
),
1301
1310
(
2014
).
69.
B. M.
Hunter
,
W.
Hieringer
,
J. R.
Winkler
,
H. B.
Gray
, and
A. M.
Müller
, “
Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity
,”
Energy Environ. Sci.
9
,
1734
1743
(
2016
).
70.
J.
Villalobos
,
D.
Gonzá Lez-Flores
,
K.
Klingan
,
P.
Chernev
,
P.
Kubella
,
R.
Urcuyo
,
C.
Pasquini
,
M. R.
Mohammadi
,
R. D. L.
Smith
,
M. L.
Montero
 et al, “
Structural and functional role of anions in electrochemical water oxidation probed by arsenate incorporation into cobalt-oxide materials
,”
Phys. Chem. Chem. Phys.
21
,
12485
(
2019
).
71.
M. T. M.
Koper
, “
Volcano activity relationships for proton-coupled electron transfer reactions in electrocatalysis
,”
Top. Catal.
58
(
18
),
1153
1158
(
2015
).
72.
J.
Joo
,
T.
Uchida
,
A.
Cuesta
,
M. T. M.
Koper
, and
M.
Osawa
, “
Importance of acid–base equilibrium in electrocatalytic oxidation of formic acid on platinum
,”
J. Am. Chem. Soc.
135
(
27
),
9991
9994
(
2013
).
73.
M. T. M.
Koper
, “
Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis
,”
Chem. Sci.
4
(
7
),
2710
2723
(
2013
).
74.
M. T. M.
Koper
, “
Theory of the transition from sequential to concerted electrochemical proton–electron transfer
,”
Phys. Chem. Chem. Phys.
15
(
5
),
1399
1407
(
2013
).
75.
J.
Ryu
,
A.
Wuttig
, and
Y.
Surendranath
, “
Quantification of interfacial pH variation at molecular length scales using a concurrent non-faradaic reaction
,”
Angew. Chem. Int. Ed.
57
(
30
),
9300
9304
(
2018
).
76.
B. J. T.
Trześniewski
,
O.
Diaz-Morales
,
D. A.
Vermaas
,
A.
Longo
,
W.
Bras
,
M. T. M.
Koper
, and
W. A.
Smith
, “
In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity
,”
J. Am. Chem. Soc.
137
,
15112
15121
(
2015
).
77.
N.
Bodappa
,
M.
Su
,
Y.
Zhao
,
J. B.
Le
,
W. M.
Yang
,
P.
Radjenovic
,
J. C.
Dong
,
J.
Cheng
,
Z. Q.
Tian
, and
J. F.
Li
, “
Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy
,”
J. Am. Chem. Soc.
141
(
31
),
12192
12196
(
2019
).
78.
A. J.
Göttle
and
M. T. M.
Koper
, “
Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: Prediction of sequential vs. concerted pathways using DFT
,”
Chem. Sci.
8
(
1
),
458
465
(
2017
).
79.
Y.
Zhang
,
H.
Zhang
,
H.
Ji
,
W.
Ma
,
C.
Chen
, and
J.
Zhao
, “
Pivotal role and regulation of proton transfer in water oxidation on hematite photoanodes
,”
J. Am. Chem. Soc.
138
(
8
),
2705
2711
(
2016
).
80.
E. C. M.
Tse
,
T. T. H.
Hoang
,
J. A.
Varnell
, and
A. A.
Gewirth
, “
Observation of an inverse kinetic isotope effect in oxygen evolution electrochemistry
,”
ACS Catal.
6
,
5706
5714
(
2016
).
81.
C.
Pasquini
,
I.
Zaharieva
,
D.
González-Flores
,
P.
Chernev
,
M. R.
Mohammadi
,
L.
Guidoni
,
R. D. L.
Smith
, and
H.
Dau
, “
H/D isotope effects reveal factors controlling catalytic activity in Co-based oxides for water oxidation
,”
J. Am. Chem. Soc.
141
(
7
),
2938
2948
(
2019
).
82.
S.
Geiger
,
O.
Kasian
,
M.
Ledendecker
,
E.
Pizzutilo
,
A. M.
Mingers
,
W. T.
Fu
,
O.
Diaz-Morales
,
Z.
Li
,
T.
Oellers
,
L.
Fruchter
 et al, “
Stability number as a metric electrocatalyst stability benchmarking
,”
Nat. Catal.
1
(
7
),
508
515
(
2018
).
83.
T.
Li
,
O.
Kasian
,
S.
Cherevko
,
S.
Zhang
,
S.
Geiger
,
C.
Scheu
,
P.
Felfer
,
D.
Raabe
,
B.
Gault
, and
K. J. J.
Mayrhofer
, “
Atomic-scale insights into surface species of electrocatalysts in three dimensions
,”
Nat. Catal.
1
(
4
),
300
305
(
2018
).
84.
O.
Kasian
,
S.
Geiger
,
T.
Li
,
J.-P.
Grote
,
K.
Schweinar
,
S.
Zhang
,
C.
Scheu
,
D.
Raabe
,
S.
Cherevko
,
B.
Gault
 et al, “
Degradation of iridium oxides via oxygen evolution from the lattice: Correlating atomic scale structure with reaction mechanisms
,”
Energy Environ. Sci.
12
(
12
),
3548
3555
(
2019
).
85.
S.
Cherevko
,
S.
Geiger
,
O.
Kasian
,
A.
Mingers
, and
K. J. J.
Mayrhofer
, “
Oxygen evolution activity and stability of iridium in acidic media. Part 2—Electrochemically grown hydrous iridium oxide
,”
J. Electroanal. Chem.
774
,
102
110
(
2016
).
86.
G.
Wan
,
J. W.
Freeland
,
J.
Kloppenburg
,
G.
Petretto
,
J. N.
Nelson
,
D.-Y.
Kuo
,
C.-J.
Sun
,
J.
Wen
,
J. T.
Diulus
,
G. S.
Herman
 et al, “
Amorphization mechanism of SrIrO3 electrocatalyst: How oxygen redox initiates ionic diffusion and structural reorganization
,”
Sci. Adv.
7
(
2
),
eabc7323
(
2021
).
87.
J.
Yu
,
X.
Wu
,
D.
Guan
,
Z.
Hu
,
S.-C.
Weng
,
H.
Sun
,
Y.
Song
,
R.
Ran
,
W.
Zhou
,
M.
Ni
 et al, “
Monoclinic SrIrO3: An easily synthesized conductive perovskite oxide with outstanding performance for overall water splitting in alkaline solution
,”
Chem. Mater.
32
(
11
),
4509
4517
(
2020
).
88.
D. Y.
Chung
,
P. P.
Lopes
,
P.
Farinazzo Bergamo Dias Martins
,
H.
He
,
T.
Kawaguchi
,
P.
Zapol
,
H.
You
,
D.
Tripkovic
,
D.
Strmcnik
,
Y.
Zhu
 et al, “
Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction
,”
Nat. Energy
5
(
3
),
222
230
(
2020
).
89.
P. P.
Lopes
,
D. Y.
Chung
,
X.
Rui
,
H.
Zheng
,
H.
He
,
P.
Farinazzo Bergamo Dias Martins
,
D.
Strmcnik
,
V. R.
Stamenkovic
,
P.
Zapol
,
J. F.
Mitchell
 et al, “
Dynamically stable active sites from surface evolution of perovskite materials during the oxygen evolution reaction
,”
J. Am. Chem. Soc.
143
(
7
),
2741
2750
(
2021
).
90.
L.
Trotochaud
,
S. L.
Young
,
J. K.
Ranney
, and
S. W.
Boettcher
, “
Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation
,”
J. Am. Chem. Soc.
136
(
18
),
6744
6753
(
2014
).
91.
L. J.
Enman
,
A. E.
Vise
,
M. B.
Stevens
, and
S. W.
Boettcher
, “
Effects of metal electrode support on the catalytic activity of Fe(oxy)hydroxide for the oxygen evolution reaction in alkaline media
,”
ChemPhysChem
20
(
22
),
3089
3095
(
2019
).
92.
T.
Zhang
,
M. R.
Nellist
,
L. J.
Enman
,
J.
Xiang
, and
S. W.
Boettcher
, “
Modes of Fe incorporation in Co–Fe (oxy)hydroxide oxygen evolution electrocatalysts
,”
ChemSusChem
12
(
9
),
2015
2021
(
2019
).
93.
F.
Bao
,
E.
Kemppainen
,
I.
Dorbandt
,
F.
Xi
,
R.
Bors
,
N.
Maticiuc
,
R.
Wenisch
,
R.
Bagacki
,
C.
Schary
,
U.
Michalczik
,
P.
Bogdanoff
,
I.
Lauermann
,
R.
van de Krol
,
R.
Schlatmann
, and
S.
Calnan
, “
Host, suppressor, and promoter—the roles of Ni and Fe on oxygen evolution reaction activity and stability of NiFe alloy thin films in alkaline media
,”
ACS Catal.
11
, 16,
10537
10552
(
2021
).
94.
D. A.
Corrigan
, “
The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes
,”
J. Electrochem. Soc.
134
(
2
),
377
(
1987
).
95.
P. P.
Lopes
,
D.
Strmcnik
,
D.
Tripkovic
,
J. G.
Connell
,
V.
Stamenkovic
, and
N. M.
Markovic
, “
Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments
,”
ACS Catal.
6
(
4
),
2536
2544
(
2016
).
96.
E.
Fabbri
,
M.
Nachtegaal
,
T.
Binninger
,
X.
Cheng
,
B.-J.
Kim
,
J.
Durst
,
F.
Bozza
,
T.
Graule
,
R.
Schäublin
,
L.
Wiles
 et al, “
Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting
,”
Nat. Mater.
16
(
9
),
925
931
(
2017
).
97.
Y.-G.
Kim
,
J. H.
Baricuatro
,
A.
Javier
,
J. M.
Gregoire
, and
M. P.
Soriaga
, “
The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: A study by Operando EC-STM
,”
Langmuir
30
(
50
),
15053
15056
(
2014
).
98.
Y.-G.
Kim
,
J. H.
Baricuatro
, and
M. P.
Soriaga
, “
Surface reconstruction of polycrystalline Cu electrodes in aqueous KHCO3 electrolyte at potentials in the early stages of CO2 reduction
,”
Electrocatalysis
9
(
4
),
526
530
(
2018
).
99.
A.
Auer
,
M.
Andersen
,
E.-M.
Wernig
,
N. G.
Hörmann
,
N.
Buller
,
K.
Reuter
, and
J.
Kunze-Liebhäuser
, “
Self-activation of copper electrodes during CO electro-oxidation in alkaline electrolyte
,”
Nat. Catal.
3
(
10
),
797
803
(
2020
).
100.
B.
Zhang
,
Q.
Daniel
,
M.
Cheng
,
L.
Fan
, and
L.
Sun
, “
Temperature dependence of electrocatalytic water oxidation: A triple device model with a photothermal collector and photovoltaic cell coupled to an electrolyzer
,”
Faraday Discuss.
198
(
0
),
169
179
(
2017
).
101.
E.
Nurlaela
,
T.
Shinagawa
,
M.
Qureshi
,
D. S.
Dhawale
, and
K.
Takanabe
, “
Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide
,”
ACS Catal.
6
(
3
),
1713
1722
(
2016
).
102.
G.
Zhang
,
H.
Wang
,
J.
Yang
,
Q.
Zhao
,
L.
Yang
,
H.
Tang
,
C.
Liu
,
H.
Chen
,
Y.
Lin
, and
F.
Pan
, “
Temperature effect on Co-based catalysts in oxygen evolution reaction
,”
Inorg. Chem.
57
(
5
),
2766
2772
(
2018
).
103.
S. T.
Ahn
,
I.
Abu-Baker
, and
G. T. R.
Palmore
, “
Electroreduction of CO2 on polycrystalline copper: effect of temperature on product selectivity
,”
Catal. Today
288
,
24
29
(
2017
).
104.
Y.
Duan
,
N.
Dubouis
,
J.
Huang
,
D. A.
Dalla Corte
,
V.
Pimenta
,
Z. J.
Xu
, and
A.
Grimaud
, “
Revealing the impact of electrolyte composition for Co-based water oxidation catalysts by the study of reaction kinetics parameters
,”
ACS Catal.
10
(
7
),
4160
4170
(
2020
).
105.
T.
Takashima
,
T.
Suzuki
, and
H.
Irie
, “
Acceleration of electrocatalytic CO2 reduction by adding proton-coupled electron transfer inducing compounds
,”
J. Photonics Energy
7
(
1
),
012005
(
2016
).
106.
T.
Takashima
,
K.
Ishikawa
, and
H.
Irie
, “
Efficient oxygen evolution on hematite at neutral ph enabled by proton-coupled electron transfer
,”
Chem. Commun.
52
(
97
),
14015
14018
(
2016
).
107.
T.
Takashima
,
K.
Ishikawa
, and
H.
Irie
, “
Induction of concerted proton-coupled electron transfer during oxygen evolution on hematite using lanthanum oxide as a solid proton acceptor
,”
ACS Catal.
9
(
10
),
9212
9215
(
2019
).
108.
Y.
Fang
and
J. C.
Flake
, “
Electrochemical reduction of CO2 at functionalized Au electrodes
,”
J. Am. Chem. Soc.
139
(
9
),
3399
3405
(
2017
).
109.
D.
Strmcnik
,
K.
Kodama
,
D.
van der Vliet
,
J.
Greeley
,
V. R.
Stamenkovic
, and
N. M.
Marković
, “
The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum
,”
Nat. Chem.
1
(
6
),
466
472
(
2009
).
110.
T.
Kumeda
,
H.
Tajiri
,
O.
Sakata
,
N.
Hoshi
, and
M.
Nakamura
, “
Effect of hydrophobic cations on the oxygen reduction reaction on single–crystal platinum electrodes
,”
Nat. Commun.
9
(
1
),
4378
(
2018
).
111.
J.
Zaffran
,
M. B.
Stevens
,
C. D. M.
Trang
,
M.
Nagli
,
M.
Shehadeh
,
S. W.
Boettcher
, and
M.
Caspary Toroker
, “
Influence of electrolyte cations on Ni(Fe)OOH catalyzed oxygen evolution reaction
,”
Chem. Mater.
29
(
11
),
4761
4767
(
2017
).
112.
J.
Suntivich
,
E. E.
Perry
,
H. A.
Gasteiger
, and
Y.
Shao-Horn
, “
The influence of the cation on the oxygen reduction and evolution activities of oxide surfaces in alkaline electrolyte
,”
Electrocatalysis
4
(
1
),
49
55
(
2013
).
113.
A. C.
Garcia
,
T.
Touzalin
,
C.
Nieuwland
,
N.
Perini
, and
M. T. M.
Koper
, “
Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations
,”
Angew. Chem. Int. Ed.
58
(
37
),
12999
13003
(
2019
).
114.
C.
Yang
,
O.
Fontaine
,
J.-M.
Tarascon
, and
A.
Grimaud
, “
Chemical recognition of active oxygen species on the surface of oxygen evolution reaction electrocatalysts
,”
Angew. Chem. Int. Ed.
56
(
30
),
8652
8656
(
2017
).
115.
C.
Stoffelsma
,
P.
Rodriguez
,
G.
Garcia
,
N.
Garcia-Araez
,
D.
Strmcnik
,
N. M.
Marković
, and
M. T. M.
Koper
, “
Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations
,”
J. Am. Chem. Soc.
132
(
45
),
16127
16133
(
2010
).
116.
M.
Görlin
,
J. H.
Stenlid
,
S.
Koroidov
,
H.
Wang
,
M.
Börner
,
M.
Shipilin
,
A.
Kalinko
,
V.
Murzin
,
O. V.
Safonova
,
M.
Nachtegaal
 et al, “
Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations
,”
Nat. Commun.
11
,
6181
(
2020
).
117.
J.
Resasco
,
L. D.
Chen
,
E.
Clark
,
C.
Tsai
,
C.
Hahn
,
T. F.
Jaramillo
,
K.
Chan
, and
A. T.
Bell
, “
Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide
,”
J. Am. Chem. Soc.
139
,
11277
11287
(
2017
).
118.
J.
Li
,
X.
Li
,
C. M.
Gunathunge
, and
M. M.
Waegele
, “
Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction
,”
Proc. Natl. Acad. U. S. A.
116
,
9220
9229
(
2019
).
119.
J.
Li
,
D.
Wu
,
A. S.
Malkani
,
X.
Chang
,
M.-J.
Cheng
,
B.
Xu
, and
Q.
Lu
, “
Hydroxide is not a promoter of C2+ product formation in the electrochemical reduction of CO on copper
,”
Angew. Chem. Int. Ed.
59
(
11
),
4464
4469
(
2020
).
120.
A. S.
Malkani
,
J.
Li
,
N. J.
Oliveira
,
M.
He
,
X.
Chang
,
B.
Xu
, and
Q.
Lu
, “
Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction
,”
Sci. Adv.
6
(
45
),
eabd2569
(
2020
).
121.
J. D.
Michael
,
E. L.
Demeter
,
S. M.
Illes
,
Q.
Fan
,
J. R.
Boes
, and
J. R.
Kitchin
, “
Alkaline electrolyte and Fe impurity effects on the performance and active-phase structure of NiOOH thin films for OER catalysis applications
,”
J. Phys. Chem. C
119
,
11475
11481
(
2015
).
122.
D.
Zhou
,
Z.
Cai
,
Y.
Bi
,
W.
Tian
,
M.
Luo
,
Q.
Zhang
,
Q.
Xie
,
J.
Wang
,
Y.
Li
,
Y.
Kuang
 et al, “
Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets
,”
Nano Res
11
(
3
),
1358
1368
(
2018
).
123.
L.
Dang
,
H.
Liang
,
J.
Zhuo
,
B. K.
Lamb
,
H.
Sheng
,
Y.
Yang
, and
S.
Jin
, “
Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis
,”
Chem. Mater
30
(
13
),
4321
4330
(
2018
).
124.
J. A.
Carrasco
,
R.
Sanchis-Gual
,
A.
Seijas-Da Silva
,
G.
Abellan
, and
E.
Coronado
, “
Influence of the interlayer space on the water oxidation performance in a family of surfactant-intercalated NiFe-layered double hydroxides
,”
Chem. Mater
31
(
17
),
6798
6807
(
2019
).
125.
J.
Gao
,
C.-Q.
Xu
,
S.-F.
Hung
,
W.
Liu
,
W.
Cai
,
Z.
Zeng
,
C.
Jia
,
H. M.
Chen
,
H.
Xiao
,
J.
Li
 et al, “
Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation
,”
J. Am. Chem. Soc
141
(
7
),
3014
3023
(
2019
).
126.
H.
Chen
,
W.
Fu
,
Z.
Geng
,
J.
Zeng
, and
B.
Yang
, “
Inductive effect as a universal concept to design efficient catalysts for CO2 electrochemical reduction: Electronegativity difference makes a difference
,”
J. Mater. Chem. A. Roy. Soc. Chem.
9
4626
4647
(
2021
).
127.
E. Y.
Tsui
and
T.
Agapie
, “
Reduction potentials of heterometallic manganese-oxido cubane complexes modulated by redox-inactive metals
,”
Proc. Natl. Acad. Sci.
110
(
25
),
10084
(
2013
).
128.
D. E.
Herbert
,
D.
Lionetti
,
J.
Rittle
, and
T.
Agapie
, “
Heterometallic triiron-oxo/hydroxo clusters: Effect of redox-inactive metals
,”
J. Am. Chem. Soc.
135
(
51
),
19075
19078
(
2013
).
129.
E. Y.
Tsui
,
R.
Tran
,
J.
Yano
, and
T.
Agapie
, “
Redox-inactive metals modulate the reduction potential in heterometallic manganese–oxido clusters
,”
Nat. Chem.
5
(
4
),
293
299
(
2013
).
130.
H. B.
Lee
and
T.
Agapie
, “
Redox tuning via ligand-induced geometric distortions at a YMn3O4 cubane model of the biological oxygen evolving complex
,”
Inorg. Chem.
58
,
14998
15003
(
2019
).
131.
A.
Kumar
,
D.
Lionetti
,
V. W.
Day
, and
J. D.
Blakemore
, “
Trivalent Lewis acidic cations govern the electronic properties and stability of heterobimetallic complexes of nickel
,”
Chemistry
24
(
1
),
141
149
(
2018
).
132.
J. A.
Buss
,
D. G.
Vandervelde
, and
T.
Agapie
, “
Lewis acid enhancement of proton induced CO2 cleavage: Bond weakening and ligand residence time effects
,”
J. Am. Chem. Soc.
140
(
32
),
10121
10125
(
2018
).
133.
A.
Kumar
,
D.
Lionetti
,
V. W.
Day
, and
J. D.
Blakemore
, “
Redox-inactive metal cations modulate the reduction potential of the uranyl ion in macrocyclic complexes
,”
J. Am. Chem. Soc.
142
(
6
),
3032
3041
(
2020
).
134.
S.
Suseno
,
C. C. L.
McCrory
,
R.
Tran
,
S.
Gul
,
J.
Yano
, and
T.
Agapie
, “
Molecular mixed-metal manganese oxido cubanes as precursors to heterogeneous oxygen evolution catalysts
,”
Chemistry
21
(
38
),
13420
13430
(
2015
).
135.
J.
Zaanen
and
G. A.
Sawatzky
, “
Systematics in band gaps and optical spectra of 3D transition metal compounds
,”
J. Solid State Chem.
88
(
1
),
8
27
(
1990
).
136.
W. T.
Hong
,
R. E.
Welsch
, and
Y.
Shao-Horn
, “
Descriptors of oxygen-evolution activity for oxides: A statistical evaluation
,”
J. Phys. Chem. C
120
(
1
),
78
86
(
2016
).
137.
Y.
Zhou
,
S.
Sun
,
J.
Song
,
S.
Xi
,
B.
Chen
,
Y.
Du
,
A. C.
Fisher
,
F.
Cheng
,
X.
Wang
,
H.
Zhang
 et al, “
Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction
,”
Adv. Mater.
30
,
1802912
(
2018
).
138.
Y.
Duan
,
S.
Sun
,
S.
Xi
,
X.
Ren
,
Y.
Zhou
,
G.
Zhang
,
H.
Yang
,
Y.
Du
, and
Z. J.
Xu
, “
Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction
,”
Chem. Mater.
29
(
24
),
10534
10541
(
2017
).
139.
E. P.
Alsaç
,
E.
Ülker
,
S. V. K.
Nune
,
Y.
Dede
, and
F.
Karadas
, “
Tuning the electronic properties of Prussian blue analogues for efficient water oxidation electrocatalysis: Experimental and computational studies
,”
Chemistry
24
(
19
),
4856
4863
(
2018
).
140.
J.
Zhu
,
S.
Li
,
Z.
Zhuang
,
S.
Gao
,
X.
Hong
,
X.
Pan
,
R.
Yu
,
L.
Zhou
,
L. V.
Moskaleva
, and
L.
Mai
, “
Ultrathin metal silicate hydroxide nanosheets with moderate metal–oxygen covalency enables efficient oxygen evolution
,”
Energy Environ. Mater.
(published online,
2020
); available at https://onlinelibrary.wiley.com/doi/full/10.1002/eem2.12155.
141.
Y.
Yang
,
Y.
Ou
,
Y.
Yang
,
X.
Wei
,
D.
Gao
,
L.
Yang
,
Y.
Xiong
,
H.
Dong
,
P.
Xiao
, and
Y.
Zhang
, “
Modulated transition metal-oxygen covalency in the octahedral sites of CoFe layered double hydroxides with vanadium doping leading to highly efficient electrocatalysts
,”
Nanoscale
11
(
48
),
23296
23303
(
2019
).
142.
J.
Suntivich
,
W. T.
Hong
,
Y. L.
Lee
,
J. M.
Rondinelli
,
W.
Yang
,
J. B.
Goodenough
,
B.
Dabrowski
,
J. W.
Freeland
, and
Y.
Shao-Horn
, “
Estimating hybridization of transition metal and oxygen states in perovskites from o k-edge x-ray absorption spectroscopy
,”
J. Phys. Chem. C
118
(
4
),
1856
1863
(
2014
).
143.
S.
Yagi
,
I.
Yamada
,
H.
Tsukasaki
,
A.
Seno
,
M.
Murakami
,
H.
Fujii
,
H.
Chen
,
N.
Umezawa
,
H.
Abe
,
N.
Nishiyama
 et al, “
Covalency-reinforced oxygen evolution reaction catalyst
,”
Nat. Commun
6
,
8249
(
2015
).
144.
X.
Long
,
P.
Yu
,
N.
Zhang
,
C.
Li
,
X.
Feng
,
G.
Ren
,
S.
Zheng
,
J.
Fu
,
F.
Cheng
, and
X.
Liu
, “
Direct spectroscopy for probing the critical role of partial covalency in oxygen reduction reaction for cobalt-manganese spinel oxides
,”
Nanomaterials
9
(
4
),
577
(
2019
).
145.
N.
Li
,
D. K.
Bediako
,
R. G.
Hadt
,
D.
Hayes
,
T. J.
Kempa
,
F.
Von Cube
,
D. C.
Bell
,
L. X.
Chen
, and
D. G.
Nocera
, “
Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films
,”
Proc. Natl. Acad. Sci. U. S. A
114
(
7
),
1486
1491
(
2017
).
146.
D.
Drevon
,
M.
Görlin
,
P.
Chernev
,
L.
Xi
,
H.
Dau
, and
K. M.
Lange
, “
Uncovering the role of oxygen in Ni-Fe(OxHy) electrocatalysts using in situ soft x-ray absorption spectroscopy during the oxygen evolution reaction
,”
Sci. Rep
9
(
1
),
1
11
(
2019
).
147.
J.
Deng
,
H.
Li
,
S.
Wang
,
D.
Ding
,
M.
Chen
,
C.
Liu
,
Z.
Tian
,
K. S.
Novoselov
,
C.
Ma
,
D.
Deng
 et al, “
Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production
,”
Nat. Commun
8
(
1
),
14430
(
2017
).
148.
Q.
Xiong
,
Y.
Wang
,
P. F.
Liu
,
L. R.
Zheng
,
G.
Wang
,
H. G.
Yang
,
P. K.
Wong
,
H.
Zhang
, and
H.
Zhao
, “
Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting
,”
Adv. Mater
30
(
29
),
1801450
(
2018
).
149.
G.
Liu
,
Z.
Li
,
J.
Shi
,
K.
Sun
,
Y.
Ji
,
Z.
Wang
,
Y.
Qiu
,
Y.
Liu
,
Z.
Wang
, and
P. A.
Hu
, “
Black reduced porous SnO2 nanosheets for CO2 electroreduction with high formate selectivity and low overpotential
,”
Appl. Catal. B
260
,
118134
(
2020
).
150.
Y.
Zhou
,
F.
Che
,
M.
Liu
,
C.
Zou
,
Z.
Liang
,
P.
De Luna
,
H.
Yuan
,
J.
Li
,
Z.
Wang
,
H.
Xie
 et al, “
Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons
,”
Nat. Chem.
10
(
9
),
974
980
(
2018
).
151.
M.
Li
,
Y.
Ma
,
J.
Chen
,
R.
Lawrence
,
W.
Luo
,
M.
Sacchi
,
W.
Jiang
, and
J.
Yang
, “
Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+
,”
Angew. Chem. Int. Ed.
60
(
20
),
11487
11493
(
2021
).
152.
H.
Wang
,
E.
Matios
,
C.
Wang
,
J.
Luo
,
X.
Lu
,
X.
Hu
, and
W.
Li
, “
Rapid and scalable synthesis of cuprous halide-derived copper nano-architectures for selective electrochemical reduction of carbon dioxide
,”
Nano Lett.
19
(
6
),
3925
3932
(
2019
).
153.
T.
Kim
and
G. T. R.
Palmore
, “
A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products
,”
Nat. Commun.
11
(
1
),
1
11
(
2020
).
154.
Y.
Xing
,
J.
Ku
,
W.
Fu
,
L.
Wang
, and
H.
Chen
, “
Inductive effect between atomically dispersed iridium and transition-metal hydroxide nanosheets enables highly efficient oxygen evolution reaction
,”
Chem. Eng. J.
395
,
125149
(
2020
).
155.
M.
Kuang
,
J.
Zhang
,
D.
Liu
,
H.
Tan
,
K. N.
Dinh
,
L.
Yang
,
H.
Ren
,
W.
Huang
,
W.
Fang
,
J.
Yao
 et al, “
Amorphous/crystalline heterostructured cobalt-vanadium-iron (oxy)hydroxides for highly efficient oxygen evolution reaction
,”
Adv. Energy Mater.
10
(
43
),
2002215
(
2020
).
156.
J.
Suntivich
,
K. J.
May
,
H. A.
Gasteiger
,
J. B.
Goodenough
, and
Y.
Shao-Horn
, “
A perovskite oxide optimized oxygen evolution catalysis from molecular orbital principles
,”
Science
334
(
6061
),
1383
1385
(
2011
).
157.
J.
Suntivich
,
H. A.
Gasteiger
,
N.
Yabuuchi
,
H.
Nakanishi
,
J. B.
Goodenough
, and
Y.
Shao-Horn
, “
Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries
,”
Nat. Chem.
3
(
7
),
546
550
(
2011
).
158.
R.
Subbaraman
,
D.
Tripkovic
,
K. C.
Chang
,
D.
Strmcnik
,
A. P.
Paulikas
,
P.
Hirunsit
,
M.
Chan
,
J.
Greeley
,
V.
Stamenkovic
, and
N. M.
Markovic
, “
Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts
,”
Nat. Mater.
11
(
6
),
550
557
(
2012
).
159.
J.
Yu
,
R.
Ran
,
Y.
Zhong
,
W.
Zhou
,
M.
Ni
, and
Z.
Shao
, “
Advances in porous perovskites: Synthesis and electrocatalytic performance in fuel cells and metal–air batteries
,”
Energy Environ. Mater.
3
(
2
),
121
145
(
2020
).
160.
C.
Wei
,
Z.
Feng
,
G. G.
Scherer
,
J.
Barber
,
Y.
Shao-Horn
, and
Z. J.
Xu
, “
Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels
,”
Adv. Mater.
29
(
23
),
1606800
(
2017
).
161.
Y.
Zhou
,
S.
Sun
,
S.
Xi
,
Y.
Duan
,
T.
Sritharan
,
Y.
Du
, and
Z. J.
Xu
, “
Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1−xO6] octahedra in spinel oxide
,”
Adv. Mater.
30
(
11
),
1705407
(
2018
).
162.
I.
Yamada
,
M.
Kinoshita
,
S.
Oda
,
H.
Tsukasaki
,
S.
Kawaguchi
,
K.
Oka
,
S.
Mori
,
H.
Ikeno
, and
S.
Yagi
, “
enhanced catalytic activity and stability of the oxygen evolution reaction on tetravalent mixed metal oxide
,”
Chem. Mater.
32
,
3893
3903
(
2020
).
163.
M.
Qu
,
X.
Ding
,
Z.
Shen
,
M.
Cui
,
F. E.
Oropeza
,
G.
Gorni
,
V. A.
de la Pena O'Shea
,
W.
Li
,
D.-C.
Qi
, and
K. H. L.
Zhang
, “
Tailoring the electronic structures of the La2NiMnO6 double perovskite as efficient bifunctional oxygen electrocatalysis
,”
Chem. Mater.
33
,
2062
2071
(
2021
).
164.
I.
Yamada
,
A.
Takamatsu
,
K.
Asai
,
T.
Shirakawa
,
H.
Ohzuku
,
A.
Seno
,
T.
Uchimura
,
H.
Fujii
,
S.
Kawaguchi
,
K.
Wada
 et al, “
Systematic study of descriptors for oxygen evolution reaction catalysis in perovskite oxides
,”
J. Phys. Chem. C
122
,
27885
27892
(
2018
).
165.
W.
Shao
,
Y.
Xia
,
X.
Luo
,
L.
Bai
,
J.
Zhang
,
G.
Sun
,
C.
Xie
,
X.
Zhang
,
W.
Yan
, and
Y.
Xie
, “
Structurally distorted wolframite-type coxfe1-xwo4 solid solution for enhanced oxygen evolution reaction
,”
Nano Energy
50
,
717
722
(
2018
).
166.
S.
Zhou
,
X.
Miao
,
X.
Zhao
,
C.
Ma
,
Y.
Qiu
,
Z.
Hu
,
J.
Zhao
,
L.
Shi
, and
J.
Zeng
, “
Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition
,”
Nat. Commun
7
,
11510
(
2016
).
167.
J.
Kim
,
X.
Yin
,
K. C.
Tsao
,
S.
Fang
, and
H.
Yang
, “
Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction
,”
J. Am. Chem. Soc.
136
(
42
),
14646
14649
(
2014
).
168.
H.
Li
,
Y.
Chen
,
S.
Xi
,
J.
Wang
,
S.
Sun
,
Y.
Sun
,
Y.
Du
, and
Z. J.
Xu
, “
Degree of geometric tilting determines the activity of FeO6 octahedra for water oxidation
,”
Chem. Mater.
30
,
4313
4320
(
2018
).
169.
J.
Yu
,
J.
Sunarso
,
Y.
Zhu
,
X.
Xu
,
R.
Ran
,
W.
Zhou
, and
Z.
Shao
, “
Activity and stability of Ruddlesden–Popper-type LaN+1NinO3n+1 (N = 1, 2, 3, and ∞) electrocatalysts for oxygen reduction and evolution reactions in alkaline media
,”
Chemistry
22
(
8
),
2719
2727
(
2016
).
170.
Y.
Zhou
,
S.
Sun
,
C.
Wei
,
Y.
Sun
,
P.
Xi
,
Z.
Feng
, and
Z. J.
Xu
, “
Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides
,”
Adv. Mater.
31
(
41
),
1902509
(
2019
).
171.
R.
Zhang
,
Y.-C.
Zhang
,
L.
Pan
,
G.-Q.
Shen
,
N.
Mahmood
,
Y.-H.
Ma
,
Y.
Shi
,
W.
Jia
,
L.
Wang
,
X.
Zhang
 et al, “
Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution
,”
ACS Catal.
8
,
3803
3811
(
2018
).
172.
J. M.
Lee
and
S. J.
Hwang
, “
Remarkable influence of the local symmetry of substituted 3D metal ion on bifunctional electrocatalyst performance of α-MnO2 nanowire
,”
J. Solid State Chem.
269
,
354
360
(
2019
).
173.
Y.
Zhao
,
X.
Jia
,
G.
Chen
,
L.
Shang
,
G. I. N.
Waterhouse
,
L. Z.
Wu
,
C. H.
Tung
,
D.
Ohare
, and
T.
Zhang
, “
Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst
,”
J. Am. Chem. Soc.
138
(
20
),
6517
6524
(
2016
).
174.
Z.
Zhang
,
C.
Liu
,
C.
Feng
,
P.
Gao
,
Y.
Liu
,
F.
Ren
,
Y.
Zhu
,
C.
Cao
,
W.
Yan
,
R.
Si
 et al, “
Breaking the local symmetry of LiCoO2 via atomic doping for efficient oxygen evolution
,”
Nano Lett.
19
(
12
),
8774
8779
(
2019
).
175.
H. J.
Lee
,
S.
Back
,
J. H.
Lee
,
S. H.
Choi
,
Y.
Jung
, and
J. W.
Choi
, “
Mixed transition metal oxide with vacancy-induced lattice distortion for enhanced catalytic activity of oxygen evolution reaction
,”
ACS Catal.
9
(
8
),
7099
7108
(
2019
).
176.
L.
Wang
,
K. A.
Stoerzinger
,
L.
Chang
,
X.
Yin
,
Y.
Li
,
C. S.
Tang
,
E.
Jia
,
M. E.
Bowden
,
Z.
Yang
,
A.
Abdelsamie
 et al, “
Strain effect on oxygen evolution reaction activity of epitaxial NdNiO3 thin films
,”
ACS Appl. Mater. Interfaces
11
(
13
),
12941
12947
(
2019
).
177.
B.
You
,
M. T.
Tang
,
C.
Tsai
,
F.
Abild-Pedersen
,
X.
Zheng
, and
H.
Li
, “
Enhancing electrocatalytic water splitting by strain engineering
,”
Adv. Mater.
31
(
17
),
1807001
(
2019
).
178.
E. P.
Alsac
,
A.
Whittingham
,
Y.
Liu
, and
R. D. L.
Smith
, “
Probing the role of internalized geometric strain on heterogeneous electrocatalysis
,”
Chem. Mater.
31
,
7522
7530
(
2019
).
179.
W.
Sun
,
Z.
Zhou
,
W. Q.
Zaman
,
L. M.
Cao
, and
J.
Yang
, “
Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst
,”
ACS Appl. Mater. Interfaces
9
(
48
),
41855
41862
(
2017
).
180.
M.
Han
,
S.
Li
,
C.
Li
,
J.
Wu
,
J.
Han
,
N.
Wang
,
Y.
Liu
, and
H.
Liang
, “
Strain-modulated Ni3Al alloy promotes oxygen evolution reaction
,”
J. Alloys Compd.
844
,
156094
(
2020
).
181.
R. P.
Jansonius
,
P. A.
Schauer
,
D. J.
Dvorak
,
B. P.
MacLeod
,
D. K.
Fork
, and
C. P.
Berlinguette
, “
Strain influences the hydrogen evolution activity and absorption capacity of palladium
,”
Angew. Chem. Int. Ed.
59
(
29
),
12192
12198
(
2020
).
182.
K.
Yan
,
T. A.
Maark
,
A.
Khorshidi
,
V. A.
Sethuraman
,
A. A.
Peterson
, and
P. R.
Guduru
, “
The influence of elastic strain on catalytic activity in the hydrogen evolution reaction
,”
Angew. Chem. Int. Ed.
55
(
21
),
6175
6181
(
2016
).
183.
M.
Li
,
Z.
Zhao
,
Z.
Xia
,
M.
Luo
,
Q.
Zhang
,
Y.
Qin
,
L.
Tao
,
K.
Yin
,
Y.
Chao
,
L.
Gu
 et al, “
Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals
,”
Angew. Chem.
133
(
15
),
8324
8331
(
2021
).
184.
E. L.
Clark
,
C.
Hahn
,
T. F.
Jaramillo
, and
A. T.
Bell
, “
Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity
,”
J. Am. Chem. Soc.
139
(
44
),
15848
15857
(
2017
).
185.
R. P.
Jansonius
,
L. M.
Reid
,
C. N.
Virca
, and
C. P.
Berlinguette
, “
Strain engineering electrocatalysts for selective CO2 reduction
,”
ACS Energy Lett.
4
(
4
),
980
986
(
2019
).
186.
M.
Du
,
X.
Zhao
,
G.
Zhu
,
H. Y.
Hsu
,
F.
Liu
, and
M.
Du
, “
Elastic strain controlling the activity and selectivity of CO2 electroreduction on Cu overlayers
,”
J. Mater. Chem. A
9
(
8
),
4933
4944
(
2021
).
187.
X.
Wang
,
Y.
Orikasa
,
Y.
Takesue
,
H.
Inoue
,
M.
Nakamura
,
T.
Minato
,
N.
Hoshi
, and
Y.
Uchimoto
, “
Quantitating the lattice strain dependence of monolayer Pt shell activity toward oxygen reduction
,”
J. Am. Chem. Soc.
135
(
16
),
5938
5941
(
2013
).
188.
M.
Luo
and
S.
Guo
, “
Strain-controlled electrocatalysis on multimetallic nanomaterials
,”
Nat. Rev. Mater.
2
,
17059
(
2017
).
189.
E. E.
Benson
,
M. A.
Ha
,
B. A.
Gregg
,
J.
van de Lagemaat
,
N. R.
Neale
, and
D.
Svedruzic
, “
Dynamic tuning of a thin film electrocatalyst by tensile strain,”
Sci. Rep.
9
(
1
),
15906
(
2019
).
190.
M.
Mavrikakis
,
B.
Hammer
, and
J. K.
Nørskov
, “
Effect of strain on the reactivity of metal surfaces
,”
Phys. Rev. Lett.
81
(
13
),
2819
2822
(
1998
).
191.
J.
Liu
and
J.
Zhang
, “
Nanointerface chemistry: Lattice-mismatch-directed synthesis and application of hybrid nanocrystals
,”
Chem. Rev. Am. Chem.
120
,
2123
2170
(
2020
).
192.
H.
Yang
,
Y.
Long
,
Y.
Zhu
,
Z.
Zhao
,
P.
Ma
,
J.
Jin
, and
J.
Ma
, “
Crystal lattice distortion in ultrathin Co(OH)2 nanosheets inducing elongated Co-OOH bonds for highly efficient oxygen evolution reaction
,”
Green Chem.
19
(
24
),
5809
5817
(
2017
).
193.
W.
Cheng
,
X.
Zhao
,
H.
Su
,
F.
Tang
,
W.
Che
,
H.
Zhang
, and
Q.
Liu
, “
Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis
,”
Nat. Energy
4
(
2
),
115
122
(
2019
).
194.
W.
Gao
,
S.
Liang
,
R.
Wang
,
Q.
Jiang
,
Y.
Zhang
,
Q.
Zheng
,
B.
Xie
,
C.
Ying Toe
,
X.
Zhu
,
J.
Wang
 et al, “
Industrial carbon dioxide capture and utilization: state of the art and future challenges
,”
Chem. Soc. Rev.
49
,
8584
(
2020
).
195.
J.
Bak
,
H. B.
Bae
,
C.
Oh
,
J.
Son
, and
S. Y.
Chung
, “
Effect of lattice strain on the formation of Ruddlesden–Popper faults in heteroepitaxial LaNiO3 for oxygen evolution electrocatalysis
,”
J. Phys. Chem. Lett.
11
(
17
),
7253
7260
(
2020
).
196.
A.
Khorshidi
,
J.
Violet
,
J.
Hashemi
, and
A. A.
Peterson
, “
How strain can break the scaling relations of catalysis
,”
Nat. Catal.
1
(
4
),
263
268
(
2018
).
197.
T. L.
Meyer
,
R.
Jacobs
,
D.
Lee
,
L.
Jiang
,
J. W.
Freeland
,
C.
Sohn
,
T.
Egami
,
D.
Morgan
, and
H. N.
Lee
, “
Strain control of oxygen kinetics in the Ruddlesden–Popper oxide La1.85Sr0.15CuO4
,”
Nat. Commun.
9
(
1
),
1
7
(
2018
).
198.
J. R.
Petrie
,
C.
Mitra
,
H.
Jeen
,
W. S.
Choi
,
T. L.
Meyer
,
F. A.
Reboredo
,
J. W.
Freeland
,
G.
Eres
, and
H. N.
Lee
, “
Strain control of oxygen vacancies in epitaxial strontium cobaltite films
,”
Adv. Funct. Mater.
26
(
10
),
1564
1570
(
2016
).
199.
L.
Bu
,
N.
Zhang
,
S.
Guo
,
X.
Zhang
,
J.
Li
,
J.
Yao
,
T.
Wu
,
G.
Lu
,
J. Y.
Ma
,
D.
Su
 et al, “
Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis
,”
Science
354
(
6318
),
1410
1414
(
2016
).
200.
M.
Du
,
L.
Cui
,
Y.
Cao
, and
A. J.
Bard
, “
Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate
,”
J. Am. Chem. Soc.
137
,
7397
7403
(
2015
).
201.
L.
Wang
,
Z.
Zeng
,
W.
Gao
,
T.
Maxson
,
D.
Raciti
,
M.
Giroux
,
X.
Pan
,
C.
Wang
, and
J.
Greeley
, “
Tunable intrinsic strain in two-dimensional transition metal electrocatalysts
,”
Science
363
(
6429
),
870
874
(
2019
).
202.
B. T.
Sneed
,
A. P.
Young
, and
C. K.
Tsung
, “
Building up strain in colloidal metal nanoparticle catalysts
,”
Nanoscale
7
(
29
),
12248
12265
(
2015
).
203.
K. A.
Stoerzinger
,
W.
Seok Choi
,
H.
Jeen
,
H. N.
Lee
, and
Y.
Shao-Horn
, “
Role of strain and conductivity in oxygen electrocatalysis on LaCoO3 thin films
,”
J. Phys. Chem. Lett.
6
(
3
),
487
492
(
2015
).
204.
J. R.
Petrie
,
V. R.
Cooper
,
J. W.
Freeland
,
T. L.
Meyer
,
Z.
Zhang
,
D. A.
Lutterman
, and
H. N.
Lee
, “
Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites
,”
J. Am. Chem. Soc.
138
(
8
),
2488
2491
(
2016
).
205.
X.
Liu
,
L.
Zhang
,
Y.
Zheng
,
Z.
Guo
,
Y.
Zhu
,
H.
Chen
,
F.
Li
,
P.
Liu
,
B.
Yu
,
X.
Wang
 et al, “
Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films
,”
Adv. Sci.
6
(
6
),
1801898
(
2019
).
206.
G.
Li
,
Q.
Yang
,
J.
Rao
,
C.
Fu
,
S.
Liou
,
G.
Auffermann
,
Y.
Sun
, and
C.
Felser
, “
In situ induction of strain in iron phosphide (FeP2) catalyst for enhanced hydroxide adsorption and water oxidation
,”
Adv. Funct. Mater.
30
(
12
),
1907791
(
2020
).
207.
S.
Sarkar
,
S. D.
Ramarao
,
T.
Das
,
R.
Das
,
C. P.
Vinod
,
S.
Chakraborty
, and
S. C.
Peter
, “
Unveiling the roles of lattice strain and descriptor species on Pt-like oxygen reduction activity in Pd-Bi catalysts
,”
ACS Catal.
11
(
2
),
800
808
(
2021
).
208.
B.
Xu
,
X.
Yang
,
X.
Liu
,
W.
Song
,
Y.
Sun
,
Q.
Liu
,
H.
Yang
, and
C.
Li
, “
Lattice distortion in hybrid NiTe2/Ni(OH)2 nanosheets as efficient synergistic electrocatalyst for water and urea oxidation
,”
J. Power Sources
449
,
227585
(
2020
).
209.
A.
Wang
,
Z.
Zhao
,
D.
Hu
,
J.
Niu
,
M.
Zhang
,
K.
Yan
, and
G.
Lu
, “
Tuning the oxygen evolution reaction on a nickel-iron alloy: Via active straining
,”
Nanoscale
11
(
2
),
426
430
(
2019
).
210.
Q.
Deng
,
M.
Smetanin
, and
J.
Weissmüller
, “
Mechanical modulation of reaction rates in electrocatalysis
,”
J. Catal.
309
,
351
361
(
2014
).
211.
Z.
Niu
,
Y.
Wan
,
X.
Li
,
M.
Zhang
,
B.
Liu
,
Z.
Chen
,
G.
Lu
, and
K.
Yan
, “
In-situ regulation of formic acid oxidation via elastic strains
,”
J. Catal.
389
,
631
635
(
2020
).
212.
Y.
Yang
and
K. S.
Kumar
, “
Elastic strain effects on the catalytic response of Pt and Pd thin films deposited on Pd-Zr metallic