The fluorescence quantum yield parameter in Förster resonance energy transfer (FRET) processes underpins vital phenomena ranging from light harvesting in photosynthesis to design of sensors for monitoring physiological processes. The criteria for choosing a donor for use in FRET processes include chemical features (solubility, bioconjugatability, synthetic accessibility, and stability) as well as photophysical properties pertaining to absorption (wavelength and molar absorption coefficient) and fluorescence (wavelength and fluorescence quantum yield). The value of the donor fluorescence quantum yield (Φf, or emphatically, Φf(D)) alone has sometimes been thought (erroneously) to place a ceiling on the possible quantum yield of energy transfer (Φtrans). A high value of the donor Φf, while attractive, is not at all essential; indeed, many valuable candidates for use as FRET donors have likely been excluded on the basis of this injudiciously applied filter. Such disregard is unwarranted. In this tutorial overview, the equations for FRET are reviewed along with pertinent core concepts in photophysics. An analogy using simple hydraulics provides a pedagogical tool for the non-aficionado to better understand photochemical kinetics. Ten examples are presented of donor–acceptor systems with donors that exhibit a range of Φf values (0.60, 0.59. 0.21, 0.17, 0.12, 0.118, 0.04, 0.018, 0.007, and 0.003; i.e., 60%–0.3%), yet for each corresponding donor–acceptor pair, the value of Φtrans is at least 0.70 and in some cases nearly 1.00 (i.e., 70%–100%). The systems encompass protein, synthetic inorganic, and synthetic organic architectures. The objectives of this illustrative review are to deepen understanding of FRET and to broaden molecular design considerations by enabling selection from among a far richer set of donors for use in FRET processes.

1.
T.
Förster
, “
10th Spiers memorial lecture: Transfer mechanisms of electronic excitation
,”
Faraday Discuss.
27
,
7
17
(
1959
).
2.
T.
Förster
, “
Excitation transfer
,” in
Comparative Effects of Radiation
, edited by
M.
Burton
,
J. S.
Kirby-Smith
, and
J. L.
Magee
(
John Wiley & Sons
:
New York
,
1960
), pp.
300
341
.
3.
T.
Förster
, “
Delocalized excitation and excitation transfer
,” in
Modern Quantum Chemistry—Istanbul Lectures, Part III: Action of Light and Organic Crystals
, edited by
O.
Sinanoglu
(
Academic Press, Inc
.:
New York
,
1965
), pp.
93
137
.
4.
T.
Förster
, “
Mechanisms of energy transfer
,” in
Comprehensive Biochemistry
, edited by
M.
Florkin
and
E. H.
Stotz
(
Elsevier Publishing Co
.:
Amsterdam
,
1967
),
Vol. 22
, pp.
61
80
.
5.
F.
Wilkinson
, “
Electronic energy transfer between organic molecules in solution
,” in
Advances in Photochemistry
, edited by
W. A.
Noyes
, Jr.
,
G. S.
Hammond
, and
J. N.
Pitts
, Jr.
(
Interscience Publishers
,
New York
,
1964
),
Vol. 3
, pp.
241
268
.
6.
A. A.
Lamola
, “
Electronic energy transfer in solution: Theory and applications
,” in
Energy Transfer and Organic Photochemistry XIV
, edited by
P. A.
Leermakers
and
A.
Weissberger
(
Interscience Publishers
:
New York
,
1969
), pp.
17
132
.
7.
T.
Förster
, “
Intermolecular energy migration and fluorescence
,” in
Biological Physics
, edited by
E. V.
Mielczarek
,
E.
Greenbaum
, and
R. S.
Knox
(
American Institute of Physics
:
New York
,
1993
), pp.
148
160
. [R. S. Knox of Forster, Th. (Annalen der Physik, 1948), Ser. 146, Vol. 142, pp.155–175.
8.
R. S.
Knox
, “
Förster's resonance excitation transfer theory: Not just a formula
,”
J. Biomed. Opt.
17
,
011003
(
2012
).
9.
B. W.
van der Meer
, “
Förster theory
,” in
FRET–Förster Resonance Energy Transfer
, edited by
I.
Medintz
and
N.
Hildebrandt
(
Wiley-VCH
:
Weinheim
,
2014
), pp.
23
62
.
10.
P. A.
Tanner
,
L.
Zhou
,
C.
Duan
, and
K.-L.
Wong
, “
Misconceptions in electronic energy transfer: Bridging the gap between chemistry and physics
,”
Chem. Soc. Rev.
47
,
5234
5265
(
2018
).
11.
B. W.
van der Meer
, “
Kappa-squared: From nuisance to new sense
,”
Rev. Mol. Biotechnol.
82
,
181
196
(
2002
).
12.
H.
Du
,
R.-C. A.
Fuh
,
J.
Li
,
L. A.
Corkan
, and
J. S.
Lindsey
, “
PhotochemCAD: A computer-aided design and research tool in photochemistry
,”
Photochem. Photobiol.
68
,
141
142
(
1998
).
13.
J. M.
Dixon
,
M.
Taniguchi
, and
J. S.
Lindsey
, “
PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations
,”
Photochem. Photobiol.
81
,
212
213
(
2005
).
14.
M.
Taniguchi
,
H.
Du
, and
J. S.
Lindsey
, “
PhotochemCAD 3: Diverse modules for photophysical calculations with access to multiple spectral databases
,”
Photochem. Photobiol.
94
,
277
289
(
2018
).
15.
M.
Taniguchi
and
J. S.
Lindsey
, “
Database of absorption and fluorescence spectra of >300 common compounds for use in PhotochemCAD
,”
Photochem. Photobiol.
94
,
290
327
(
2018
).
16.
Y.
Guo
,
Z.
Xu
,
A. E.
Norcross
,
M.
Taniguchi
, and
J. S.
Lindsey
, “
Developing a user community in the photosciences: A website for spectral data and access to PhotochemCAD
,”
Proc. SPIE
10893
,
108930O
(
2019
).
17.
M.
Taniguchi
and
J. S.
Lindsey
, “
Absorption and fluorescence spectra of organic compounds from 40 sources: Archives, repositories, databases, and literature search engines
,”
Proc. SPIE
11256
,
112560J
(
2020
).
18.
Y.
Cao
,
H.
Mehta
,
A. E.
Norcross
,
M.
Taniguchi
, and
J. S.
Lindsey
, “
Analysis of Wikipedia pageviews to identify popular chemicals
,”
Proc. SPIE
11256
,
112560I
(
2020
).
19.
M.
Taniguchi
and
J. S.
Lindsey
, “
Absorption and fluorescence spectral database of chlorophylls and analogues
,”
Photochem. Photobiol
97
,
136
165
(
2021
).
20.
D. L.
Andrews
, “
Mechanistic principles and applications of resonance energy transfer
,”
Can. J. Chem.
86
,
855
870
(
2008
).
21.
R. S.
Knox
and
H.
van Amerongen
, “
Refractive index dependence of the Förster resonance excitation transfer rate
,”
J. Phys. Chem. B
106
,
5289
5293
(
2002
).
22.
Q.
Qi
,
M.
Taniguchi
, and
J. S.
Lindsey
, “
Heuristics from modeling of spectral overlap in Förster resonance energy transfer (FRET)
,”
J. Chem. Inf. Model.
59
,
652
667
(
2019
).
23.
J. A.
Barltrop
and
J. D.
Coyle
,
Principles of Photochemistry
(
John Wiley & Sons
:
New York
,
1978
.
24.
M.
Kobayashi
,
Y.
Sorimachi
,
D.
Fukayama
,
H.
Komatsu
,
T.
Kanjoh
,
K.
Wada
,
M.
Kawachi
,
H.
Miyashita
,
M.
Ohnishi-Kameyama
, and
H.
Ono
, “
Physicochemical properties of chlorophylls and bacteriochlorophylls
,” in
Handbook of Photosynthesis
, edited by
M.
Pessarakli
(
CRC Press
:
Florida
,
2016
), pp.
95
147
.
25.
H. L.
Kee
,
C.
Kirmaier
,
Q.
Tang
,
J. R.
Diers
,
C.
Muthiah
,
M.
Taniguchi
,
J. K.
Laha
,
M.
Ptaszek
,
J. S.
Lindsey
,
D. F.
Bocian
, and
D.
Holten
, “
Effects of substituents on synthetic analogs of chlorophylls. Part 1: Synthesis, vibrational properties and excited-state decay characteristics
,”
Photochem. Photobiol.
83
,
1110
1124
(
2007
).
26.
D.
Hood
,
D. M.
Niedzwiedzki
,
R.
Zhang
,
Y.
Zhang
,
J.
Dai
,
E. S.
Miller
,
D. F.
Bocian
,
P. G.
Williams
,
J. S.
Lindsey
, and
D.
Holten
, “
Photophysical characterization of the naturally occurring dioxobacteriochlorin Tolyporphin A and synthetic oxobacteriochlorin analogues
,”
Photochem. Photobiol.
93
,
1204
1215
(
2017
).
27.
L.
Stryer
and
R. P.
Haugland
, “
Energy transfer: A spectroscopic ruler
,”
Proc. Natl. Acad. Sci. U S A.
58
,
719
726
(
1967
).
28.
L.
Stryer
, “
Fluorescence energy transfer as a spectroscopic ruler
,”
Annu. Rev. Biochem.
47
,
819
846
(
1978
).
29.
C.
Santana-Calvo
,
F.
Romero
,
I.
López-González
, and
T.
Nishigaki
, “
Robust evaluation of intermolecular FRET using a large Stokes shift fluorophore as a donor
,”
Biotechniques
65
,
211
218
(
2018
).
30.
Y.
Kataoka
,
Y.
Shibata
, and
H.
Tamiaki
, “
Intramolecular excitation energy transfer from visible-light absorbing chlorophyll derivatives to a near-infrared-light emitting boron dipyrromethene moiety
,”
Chem. Lett.
39
,
953
955
(
2010
).
31.
W.
Zhao
and
E. M.
Carreira
, “
Conformationally restricted aza-BODIPY: Highly fluorescent, stable near-infrared absorbing dyes
,”
Chem. Eur. J.
12
,
7254
7263
(
2006
).
32.
D.
Guo
,
T. E.
Knight
, and
J. K.
McCusker
, “
Angular momentum conservation in dipolar energy transfer
,”
Science
334
,
1684
1687
(
2011
).
33.
J. S.
Lindsey
,
P. A.
Brown
, and
D. A.
Siesel
, “
Visible light-harvesting in covalently-linked porphyrin-cyanine dyes
,”
Tetrahedron
45
,
4845
4866
(
1989
).
34.
A. K.
Mandal
,
M.
Taniguchi
,
J. R.
Diers
,
D. M.
Niedzwiedzki
,
C.
Kirmaier
,
J. S.
Lindsey
,
D. F.
Bocian
, and
D.
Holten
, “
Photophysical properties and electronic structure of porphyrins bearing zero to four meso-phenyl substituents: New insights into seemingly well understood tetrapyrroles
,”
J. Phys. Chem. A
120
,
9719
9731
(
2016
).
35.
M.
Taniguchi
,
J.
Lindsey
,
D. F.
Bocian
, and
D.
Holten
, “
Comprehensive review of photophysical parameters (
ε, Φf, τ
) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP)–Critical benchmark molecules in photochemistry and photosynthesis
,”
J. Photochem. Photobiol. C: Photochem. Rev.
46
,
100401
(
2021
).
36.
A.
Khammari
,
A. A.
Saboury
,
M. H.
Karimi-Jafari
,
M.
Khoobi
,
A.
Ghasemi
,
S.
Yousefinejad
, and
O. K.
Abou-Zied
, “
Insights into the molecular interaction between two polyoxygenated cinnamoylcoumarin derivatives and human serum albumin
,”
Phys. Chem. Chem. Phys.
19
,
10099
10115
(
2017
).
37.
M. A.
Griep
and
C. S.
McHenry
, “
Dissociation of the DNA polymerase III holoenzyme β2 subunits is accompanied by conformational change at distal cysteines 333
,”
J. Biol. Chem.
265
,
20356
20363
(
1990
).
38.
M.
Taniguchi
,
D.
Ra
,
C.
Kirmaier
,
E.
Hindin
,
J. K.
Schwartz
,
J. R.
Diers
,
R. S.
Knox
,
D. F.
Bocian
,
J. S.
Lindsey
, and
D.
Holten
, “
Comparison of excited-state energy transfer in arrays of hydroporphyrins (chlorins, oxochlorins) versus porphyrins: Rates, mechanisms, and design criteria
,”
J. Am. Chem. Soc.
125
,
13461
13470
(
2003
).
39.
M. J.
Brites
,
C.
Santos
,
S.
Nascimento
,
B.
Gigante
,
H.
Luftmann
,
A.
Fedorov
, and
M. N.
Berberan-Santos
, “
Synthesis and fluorescence properties of [60] and [70] fullerene–coumarin dyads: Efficient dipole–dipole resonance energy transfer from coumarin to fullerene
,”
New J. Chem.
30
,
1036
1045
(
2006
).
40.
L.
Yu
,
K.
Muthukumaran
,
I. V.
Sazanovich
,
C.
Kirmaier
,
E.
Hindin
,
J. R.
Diers
,
P. D.
Boyle
,
D. F.
Bocian
,
D.
Holten
, and
J. S.
Lindsey
, “
Excited-state energy-transfer dynamics in self-assembled triads composed of two porphyrins and an intervening bis(dipyrrinato)metal complex
,”
Inorg. Chem.
42
,
6629
6647
(
2003
).
41.
H.
Fischer
and
M.
Schubert
, “
Synthetische Versuche mit Blutfarbstoff-Spaltprodukten und Komplexsalz-Bildung bei Dipyrryl-methenen (II.)
,”
Ber. Dtsch Chem. Ges.
57
,
610
617
(
1924
).
42.
I. V.
Sazanovich
,
C.
Kirmaier
,
E.
Hindin
,
L.
Yu
,
D. F.
Bocian
,
J. S.
Lindsey
, and
D.
Holten
, “
Structural control of the excited-state dynamics of bis(dipyrrinato)zinc complexes: Self-assembling chromophores for light-harvesting architectures
,”
J. Am. Chem. Soc.
126
,
2664
2665
(
2004
).
43.
P. R.
Hania
,
D. J.
Heijs
,
T.
Bowden
,
A.
Pugžlys
,
J.
van Esch
,
J.
Knoester
, and
K.
Duppen
, “
Ultrafast energy transport in a first-generation coumarin−tetraphenylporphyrin dendrimer
,”
J. Phys. Chem. B
108
,
71
81
(
2004
).
44.
R. C.
Hilborn
, “
Einstein coefficients, cross sections, f values, dipole moments, and all that
,”
Am. J. Phys.
50
,
982
986
(
1982
).
45.
A. K.
Mandal
,
T.
Sahin
,
M.
Liu
,
J. S.
Lindsey
,
D. F.
Bocian
, and
D.
Holten
, “
Photophysical comparisons of PEGylated porphyrins, chlorins and bacteriochlorins in water
,”
New J. Chem.
40
,
9648
9656
(
2016
).
46.
J.
Jiang
,
E.
Yang
,
K. R.
Reddy
,
D. M.
Niedzwiedzki
,
C.
Kirmaier
,
D. F.
Bocian
,
D.
Holten
, and
J. S.
Lindsey
, “
Synthetic bacteriochlorins bearing polar motifs (carboxylate, phosphonate, ammonium and a short PEG). Water-solubilization, bioconjugation, and photophysical properties
,”
New J. Chem.
39
,
5694
5714
(
2015
).
47.
G. N.
Lewis
and
M.
Calvin
, “
The color of organic substances
,”
Chem. Rev.
25
,
273
328
(
1939
).
48.
G. N.
Lewis
and
M.
Kasha
, “
Phosphorescence and the triplet state
,”
J. Am. Chem. Soc.
66
,
2100
2116
(
1944
).
49.
M.
Kasha
, “
Characterization of electronic transitions in complex molecules
,”
Disc. Faraday Soc.
9
,
14
19
(
1950
).
50.
M.
Kasha
, “
Four great personalities of science: G. N. Lewis, J. Franck, R. S. Mulliken and A. Szent-Györgyi
,”
Pure Appl. Chem.
62
,
1615
1630
(
1990
).
51.
M.
Ptaszek
, “
Rational design of fluorophores for in vivo applications
,” in
Progress in Molecular Biology and Translational Science
, edited by
M. C.
Morris
(
Academic Press
:
Burlington
,
2013
), pp.
59
108
,
Vol. 113
.
52.
Q.
Zheng
and
L. D.
Lavis
, “
Development of photostable fluorophores for molecular imaging
,”
Curr. Opin. Chem. Biol.
39
,
32
38
(
2017
).
53.
L. D.
Lavis
, “
Teaching old dyes new tricks: Biological probes built from fluoresceins and rhodamines
,”
Annu. Rev. Biochem.
86
,
825
843
(
2017
).
54.
J. V.
Jun
,
D. M.
Chenoweth
, and
E. J.
Petersson
, “
Rational design of small molecule fluorescent probes for biological applications
,”
Org. Biomol. Chem.
18
,
5747
5763
(
2020
).
55.
D.
Holten
,
D. F.
Bocian
, and
J. S.
Lindsey
, “
Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices
,”
Acc. Chem. Res.
35
,
57
69
(
2002
).
56.
S.
Zadran
,
S.
Standley
,
K.
Wong
,
E.
Otiniano
,
A.
Amighi
, and
M.
Baudry
, “
Fluorescence resonance energy transfer (FRET)-based biosensors: Visualizing cellular dynamics and bioenergetics
,”
Appl. Microbiol. Biotechnol
96
,
895
902
(
2012
).
You do not currently have access to this content.