The theoretical prediction of x-ray absorption spectra (XAS) has become commonplace in electronic structure theory. The ability to better model and understand L-edge spectra is of great interest in the study of transition metal complexes and a wide variety of solid state materials. However, until recently few first-principles works have modeled L-edge XAS due to the presence of strong spin–orbit coupling in the 2p orbitals, which splits the observed peaks into multiple groups of features. Therefore, a proper description of spin–orbit coupling is vital for the successful prediction of L-edge spectra. A number of new approaches that incorporate spin–orbit coupling have recently made advances in the computation of L-edge spectra. In this review, we describe recent work in computational L-edge XAS and how these methods may continue to improve in the future. Comparison of the advantages and disadvantages of the various approaches are considered, with special attention to not only the computational cost of the level of theory but also the various approaches that can be used to compute the absorption spectra with a large number of high energy excited states.

1.
C.
Rose-Petruck
,
R.
Jimenez
,
T.
Guo
,
A.
Cavalleri
,
C. W.
Siders
,
F.
Rksi
,
J. A.
Squier
,
B. C.
Walker
,
K. R.
Wilson
, and
C. P.
Barty
, “
Picosecond–milliångström lattice dynamics measured by ultrafast x-ray diffraction
,”
Nature
398
,
310
312
(
1999
).
2.
C.
Rischel
,
A.
Rousse
,
I.
Uschmann
,
P.-A.
Albouy
,
J.-P.
Geindre
,
P.
Audebert
,
J.-C.
Gauthier
,
E.
Fröster
,
J.-L.
Martin
, and
A.
Antonetti
, “
Femtosecond time-resolved x-ray diffraction from laser-heated organic films
,”
Nature
390
,
490
492
(
1997
).
3.
I. V.
Tomov
,
D. A.
Oulianov
,
P.
Chen
, and
P. M.
Rentzepis
, “
Ultrafast time-resolved transient structures of solids and liquids studied by means of x-ray diffraction and EXAFS
,”
J. Phys. Chem. B
103
,
7081
7091
(
1999
).
4.
R.
Schoenlein
,
S.
Chattopadhyay
,
H.
Chong
,
T.
Glover
,
P.
Heimann
,
C.
Shank
,
A.
Zholents
, and
M.
Zolotorev
, “
Generation of femtosecond pulses of synchrotron radiation
,”
Science
287
,
2237
2240
(
2000
).
5.
E.
Kleymenov
,
J. A.
van Bokhoven
,
C.
David
,
P.
Glatzel
,
M.
Janousch
,
R.
Alonso-Mori
,
M.
Studer
,
M.
Willimann
,
A.
Bergamaschi
,
B.
Henrich
, and
M.
Nachtegaal
, “
Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector
,”
Rev. Sci. Instrum.
82
,
065107
(
2011
).
6.
I.
Llorens
,
E.
Lahera
,
W.
Delnet
,
O.
Proux
,
A.
Braillard
,
J.-L.
Hazemann
,
A.
Prat
,
D.
Testemale
,
Q.
Dermigny
,
F.
Gélébart
,
M.
Morand
,
A.
Shukla
,
N.
Bardou
,
O.
Ulrich
,
S.
Arnaud
,
J.-F.
Berar
,
N.
Boudet
,
B.
Caillot
,
P.
Chaurand
,
J.
Rose
,
E.
Doelsch
,
P.
Martin
, and
P.
Solari
, “
High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline
,”
Rev. Sci. Instrum.
83
,
063104
(
2012
).
7.
M.
Kavčič
,
M.
Budnar
,
A.
Mühleisen
,
F.
Gasser
,
M.
Žitnik
,
K.
Bučar
, and
R.
Bohinc
, “
Design and performance of a versatile curved-crystal spectrometer for high-resolution spectroscopy in the tender x-ray range
,”
Rev. Sci. Instrum.
83
,
033113
(
2012
).
8.
G.
Seidler
,
D.
Mortensen
,
A.
Remesnik
,
J.
Pacold
,
N.
Ball
,
N.
Barry
,
M.
Styczinski
, and
O.
Hoidn
, “
A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements
,”
Rev. Sci. Instrum.
85
,
113906
(
2014
).
9.
D. R.
Mortensen
,
G. T.
Seidler
,
A. S.
Ditter
, and
P.
Glatzel
, “
Benchtop nonresonant x-ray emission spectroscopy: Coming soon to laboratories and XAS beamlines near you
,”
J. Phys. Conf. Ser
712
,
012036
(
2016
).
10.
R.
Beck
,
A.
Petrone
,
J. M.
Kasper
,
M. J.
Crane
,
P. J.
Pauzauskie
, and
X.
Li
, “
Effect of surface passivation on nanodiamond crystallinity
,”
J. Phys. Chem. C
122
,
8573
8580
(
2018
).
11.
J. J.
Yan
,
M. A.
Gonzales
,
P. K.
Mascharak
,
B.
Hedman
,
K. O.
Hodgson
, and
E. I.
Solomon
, “
L-edge x-ray absorption spectroscopic investigation of {FeNO}6: Delocalization vs antiferromagnetic coupling
,”
J. Am. Chem. Soc.
139
,
1215
1225
(
2017
).
12.
F.
Zheng
,
S.
Alayoglu
,
J.
Guo
,
V.
Pushkarev
,
Y.
Li
,
P.-A.
Glans
,
J-l
Chen
, and
G.
Somorjai
, “
In-situ x-ray absorption study of evolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H2) and oxidizing (O2) environments
,”
Nano Lett.
11
,
847
853
(
2011
).
13.
B.
Warner
,
J. C.
Oberg
,
T. G.
Gill
,
F. E.
Hallak
,
C. F.
Hirjibehedin
,
M.
Serri
,
S.
Heutz
,
M.-A.
Arrio
,
P.
Sainctavit
,
M.
Mannini
,
G.
Poneti
,
R.
Sessoli
, and
P.
Rosa
, “
Temperature- and light-induced spin crossover observed by x-ray spectroscopy on isolated Fe(II) complexes on gold
,”
J. Phys. Chem. Lett.
4
,
1546
1552
(
2013
).
14.
A.
Petrone
,
R. A.
Beck
,
J. M.
Kasper
,
M. J.
Crane
,
P. J.
Pauzauskie
, and
X.
Li
, “
Electronic structures and spectroscopic signatures of silicon-vacancy containing nanodiamonds
,”
Phys. Rev. B
98
,
205405
(
2018
).
15.
M.
Crane
,
A.
Petrone
,
R. A.
Beck
,
M.
Lim
,
X.
Zhou
,
X.
Li
,
R. M.
Stroud
, and
P.
Pauzauskie
, “
High pressure, high temperature molecular doping of nanodiamond
,”
Sci. Adv.
5
,
eaau6073
(
2019
).
16.
J.
Stöhr
,
NEXAFS Spectroscopy
(
Springer-Verlag
,
2003
).
17.
F.
De Groot
and
A.
Kotani
,
Core Level Spectroscopy of Solids
(
CRC Press
,
2008
).
18.
G.
Fronzoni
,
R. D.
Francesco
, and
M.
Stener
, “
Time dependent density functional theory of x-ray absorption spectroscopy of alkaline-earth oxides
,”
J. Phys. Chem. B
109
,
10332
10340
(
2005
).
19.
S. D.
George
,
T.
Petrenko
, and
F.
Neese
, “
Time-dependent density functional calculations of ligand K-edge x-ray absorption spectra
,”
Inorg. Chim. Acta
361
,
965
972
(
2008
).
20.
N. A.
Besley
and
F. A.
Asmuruf
, “
Time-dependent density functional theory calculations of the spectroscopy of core electrons
,”
Phys. Chem. Chem. Phys.
12
,
12024
12039
(
2010
).
21.
P. J.
Lestrange
,
P. D.
Nguyen
, and
X.
Li
, “
Calibration of energy-specific TDDFT for modeling K-edge XAS spectra of light elements
,”
J. Chem. Theory Comput.
11
,
2994
2999
(
2015
).
22.
B.
Peng
,
P. J.
Lestrange
,
J. J.
Goings
,
M.
Caricato
, and
X.
Li
, “
Energy-specific equation-of-motion coupled-cluster methods for high-energy excited states: Application to K-edge x-ray absorption spectroscopy
,”
J. Chem. Theory Comput.
11
,
4146
4153
(
2015
).
23.
M.
Stener
,
G.
Fronzoni
, and
M.
de Simone
, “
Time dependent density functional theory of core electrons excitations
,”
Chem. Phys. Lett.
373
,
115
123
(
2003
).
24.
K.
Ray
,
S.
DeBeer George
,
E. I.
Solomon
,
K.
Wieghardt
, and
F.
Neese
, “
Description of the ground-state covalencies of the bis(dithiolato) transition-metal complexes from x-ray absorption spectroscopy and time-dependent density-functional calculations
,”
Chem. Eur. J.
13
,
2783
2797
(
2007
).
25.
W.
Liang
,
S. A.
Fischer
,
M. J.
Frisch
, and
X.
Li
, “
Energy-specific linear response TDHF/TDDFT for calculating high-energy excited states
,”
J. Chem. Theory Comput.
7
,
3540
3547
(
2011
).
26.
K.
Lopata
,
B. E.
Van Kuiken
,
M.
Khalil
, and
N.
Govind
, “
Linear-response and real-time time-dependent density functional theory studies of core-level near-edge x-ray absorption
,”
J. Chem. Theory Comput.
8
,
3284
3292
(
2012
).
27.
R. G.
Fernando
,
M. C.
Balhoff
, and
K.
Lopata
, “
X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory
,”
J. Chem. Theory Comput.
11
,
646
654
(
2015
).
28.
R.
Van Beeumen
,
D. B.
Williams-Young
,
J. M.
Kasper
,
C.
Yang
,
E. G.
Ng
, and
X.
Li
, “
Model order reduction algorithm for estimating the absorption spectrum
,”
J. Chem. Theory Comput.
13
,
4950
4961
(
2017
).
29.
S.
Coriani
,
O.
Christiansen
,
T.
Fransson
, and
P.
Norman
, “
Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules
,”
Phys. Rev. A
85
,
022507
(
2012
).
30.
T.
Fransson
,
S.
Coriani
,
O.
Christiansen
, and
P.
Norman
, “
Carbon x-ray absorption spectra of fluoroethenes and acetone: A study at the coupled cluster, density functional, and static-exchange levels of theory
,”
J. Chem. Phys.
138
,
124311
(
2013
).
31.
D. R.
Nascimento
and
A. E.
DePrince
 III
, “
Simulation of near-edge x-ray absorption fine structure with time-dependent equation-of-motion coupled-cluster theory
,”
J. Phys. Chem. Lett.
8
,
2951
2957
(
2017
).
32.
J.
Wenzel
,
M.
Wormit
, and
A.
Dreuw
, “
Calculating core-level excitations and x-ray absorption spectra of medium-sized closed-shell molecules with the algebraic-diagrammatic construction scheme for the polarization propagator
,”
J. Comput. Chem.
35
,
1900
1915
(
2014
).
33.
J.
Wenzel
,
M.
Wormit
, and
A.
Dreuw
, “
Calculating x-ray absorption spectra of open-shell molecules with the unrestricted algebraic-diagrammatic construction scheme for the polarization propagator
,”
J. Chem. Theory Comput.
10
,
4583
4598
(
2014
).
34.
J.
Wenzel
,
A.
Holzer
,
M.
Wormit
, and
A.
Dreuw
, “
Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states
,”
J. Chem. Phys.
142
,
214104
(
2015
).
35.
L.
Triguero
,
L.
Pettersson
, and
H.
Ågren
, “
Calculations of near-edge x-ray absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory
,”
Phys. Rev. B
58
,
8097
(
1998
).
36.
I.
Josefsson
,
K.
Kunnus
,
S.
Schreck
,
A.
Föhlisch
,
F.
de Groot
,
P.
Wernet
, and
M.
Odelius
, “
Ab initio calculations of x-ray spectra: Atomic multiplet and molecular orbital effects in a multiconfigurational SCF approach to the L-edge spectra of transition metal complexes
,”
J. Phys. Chem. Lett.
3
,
3565
3570
(
2012
).
37.
R. V.
Pinjari
,
M. G.
Delcey
,
M.
Guo
,
M.
Odelius
, and
M.
Lundberg
, “
Restricted active space calculations of L-edge x-ray absorption spectra: From molecular orbitals to multiplet states
,”
J. Chem. Phys.
141
,
124116
(
2014
).
38.
M.
Roemelt
and
F.
Neese
, “
Excited states of large open-shell molecules: An efficient, general, and spin-adapted approach based on a restricted open-shell ground state wave function
,”
J. Phys. Chem. A
117
,
3069
3083
(
2013
).
39.
M.
Roemelt
,
D.
Maganas
,
S.
DeBeer
, and
F.
Neese
, “
A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: Application to transition metal L-edge x-ray absorption spectroscopy
,”
J. Chem. Phys.
138
,
204101
(
2013
).
40.
M.
Kadek
,
L.
Konecny
,
B.
Gao
,
M.
Repisky
, and
K.
Ruud
, “
X-ray absorption resonances near L2,3-edges from real-time propagation of the Dirac–Kohn–Sham density matrix
,”
Phys. Chem. Chem. Phys.
17
,
22566
22570
(
2015
).
41.
J. M.
Kasper
,
P. J.
Lestrange
,
T. F.
Stetina
, and
X.
Li
, “
Modeling L2,3-edge x-ray absorption spectroscopy with real-time exact two-component relativistic time-dependent density functional theory
,”
J. Chem. Theory Comput.
14
,
1998
2006
(
2018
).
42.
T. F.
Stetina
,
J. M.
Kasper
, and
X.
Li
, “
Modeling L2,3-edge x-ray absorption spectroscopy with linear response exact two-component relativistic time-dependent density functional theory
,”
J. Chem. Phys.
150
,
234103
(
2019
).
43.
P.
Norman
and
A.
Dreuw
, “
Simulating x-ray spectroscopies and calculating core-excited states of molecules
,”
Chem. Rev.
118
,
7208
7248
(
2018
).
44.
E. C.
Wasinger
,
F. M.
De Groot
,
B.
Hedman
,
K. O.
Hodgson
, and
E. I.
Solomon
, “
L-edge x-ray absorption spectroscopy of non-heme iron sites: Experimental determination of differential orbital covalency
,”
J. Am. Chem. Soc.
125
,
12894
12906
(
2003
).
45.
R.
Leapman
and
L.
Grunes
, “
Anomalous L3/L2 white-line ratios in the 3d transition metals
,”
Phys. Rev. Lett.
45
,
397
(
1980
).
46.
B.
Thole
and
G.
van der Laan
, “
Branching ratio in x-ray absorption spectroscopy
,”
Phys. Rev. B
38
,
3158
(
1988
).
47.
M.
Pederson
,
A.
Liu
,
T.
Baruah
,
E.
Kurmaev
,
A.
Moewes
,
S.
Chiuzbăian
,
M.
Neumann
,
C.
Kmety
,
K.
Stevenson
, and
D.
Ederer
, “
Electronic structure of the molecule-based magnet Mn[N(CN)2]2 from theory and experiment
,”
Phys. Rev. B
66
,
014446
(
2002
).
48.
B.
Ravel
, “
Muffin-tin potentials in EXAFS analysis
,”
J. Synchrotron Radiat.
22
,
1258
1262
(
2015
).
49.
J.
Rehr
,
R.
Albers
, and
S.
Zabinsky
, “
High-order multiple-scattering calculations of x-ray absorption fine structure
,”
Phys. Rev. Lett.
69
,
3397
(
1992
).
50.
J. J.
Rehr
and
R. C.
Albers
, “
Theoretical approaches to x-ray absorption fine structure
,”
Rev. Mod. Phys.
72
,
621
654
(
2000
).
51.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
52.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry
, 2nd ed. (
Wiley-VCH
,
2015
).
53.
S.
Chiodo
and
N.
Russo
, “
Determination of spin-orbit coupling contributions in the framework of density functional theory
,”
J. Comput. Chem.
29
,
912
920
(
2008
).
54.
S. G.
Chiodo
and
N.
Russo
, “
DFT spin-orbit coupling between singlet and triplet excited states: A case of psoralen compounds
,”
Chem. Phys. Lett.
490
,
90
96
(
2010
).
55.
D. G.
Fedorov
and
M. S.
Gordon
, “
A study of the relative importance of one and two-electron contributions to spin-orbit coupling
,”
J. Chem. Phys.
112
,
5611
5623
(
2000
).
56.
X.
Gao
,
S.
Bai
,
D.
Fazzi
,
T.
Niehaus
,
M.
Barbatti
, and
W.
Thiel
, “
Evaluation of spin-orbit couplings with linear-response time-dependent density functional methods
,”
J. Chem. Theory Comput.
13
,
515
524
(
2017
).
57.
J. C.
Boettger
, “
Approximate two-electron spin-orbit coupling term for density-functional-theory DFT calculations using the Douglas-Kroll-Hess transformation
,”
Phys. Rev. B
62
,
7809
7815
(
2000
).
58.
B. A.
Heß
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
, “
A mean-field spin-orbit method applicable to correlated wavefunctions
,”
J. Chem. Phys.
251
,
365
371
(
1996
).
59.
L.
Cheng
and
J.
Gauss
, “
Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory
,”
J. Chem. Phys.
141
,
164107
(
2014
).
60.
Z.
Li
,
Y.
Xiao
, and
W.
Liu
, “
On the spin separation of algebraic two-component relativistic Hamiltonians
,”
J. Chem. Phys.
137
,
154114
(
2012
).
61.
C. M.
Marian
, “
Spin-orbit coupling in molecules
,”
Rev. Comput. Chem.
17
,
99
204
(
2001
).
62.
B. E.
Van Kuiken
,
M.
Valiev
,
S. L.
Daifuku
,
C.
Bannan
,
M. L.
Strader
,
H.
Cho
,
N.
Huse
,
R. W.
Schoenlein
,
N.
Govind
, and
M.
Khalil
, “
Simulating Ru L3-edge x-ray absorption spectroscopy with time-dependent density functional theory: Model complexes and electron localization in mixed-valence metal dimers
,”
J. Phys. Chem. A
117
,
4444
4454
(
2013
).
63.
K. G.
Dyall
, “
An exact separation of the spin-free and spin-dependent terms of the Dirac–Coulomb–Breit Hamiltonian
,”
J. Chem. Phys.
100
,
2118
2127
(
1994
).
64.
Y. S.
Lee
and
A.
McLean
, “
Relativistic effects on Re and De in AgH and AuH from all-electron Dirac–Hartree–Fock calculations
,”
J. Chem. Phys.
76
,
735
736
(
1982
).
65.
R. E.
Stanton
and
S.
Havriliak
, “
Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations
,”
J. Chem. Phys.
81
,
1910
1918
(
1984
).
66.
W.
Kutzelnigg
, “
Relativistic one-electron Hamiltonians for electrons only and the variational treatment of the Dirac equation
,”
Chem. Phys.
225
,
203
222
(
1997
).
67.
W.
Kutzelnigg
, “
Basis set expansion of the Dirac operator without variational collapse
,”
Int. J. Quant. Chem.
25
,
107
129
(
1984
).
68.
T.
Saue
, “
Relativistic Hamiltonians for chemistry: A primer
,”
ChemPhysChem
12
,
3077
3094
(
2011
).
69.
W.
Kutzlenigg
and
W.
Liu
, “
Quasirelativistic theory equivalent to fully relativistic theory
,”
J. Chem. Phys.
123
,
241102
(
2005
).
70.
W.
Liu
and
D.
Peng
, “
Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory
,”
J. Chem. Phys.
125
,
044102
(
2006
).
71.
M.
Ilias
and
T.
Saue
, “
An infinite-order relativistic Hamiltonian by a simple one-step transformation
,”
J. Chem. Phys.
126
,
064102
(
2007
).
72.
W.
Liu
and
D.
Peng
, “
Exact two-component Hamiltonians revisited
,”
J. Chem. Phys.
131
,
031104
(
2009
).
73.
D.
Peng
,
N.
Middendorf
,
F.
Weigend
, and
M.
Reiher
, “
An efficient implementation of two-component relativistic exact-decoupling methods for large molecules
,”
J. Chem. Phys.
138
,
184105
(
2013
).
74.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
, “
Making four- and two-component relativistic density functional methods fully equivalent based on the idea of ‘from atoms to molecule
,’”
J. Chem. Phys.
127
,
104106
(
2007
).
75.
F.
Egidi
,
J. J.
Goings
,
M. J.
Frisch
, and
X.
Li
, “
Direct atomic-orbital-based relativistic two-component linear response method for calculating excited-state fine structures
,”
J. Chem. Theory Comput.
12
,
3711
3718
(
2016
).
76.
F.
Egidi
,
S.
Sun
,
J. J.
Goings
,
G.
Scalmani
,
M. J.
Frisch
, and
X.
Li
, “
Two-component non-collinear time-dependent spin density functional theory for excited state calculations
,”
J. Chem. Theory Comput.
13
,
2591
2603
(
2017
).
77.
M.
Douglas
and
N. M.
Kroll
, “
Quantum electrodynamical corrections to the fine structure of helium
,”
Ann. Phys.
82
,
89
155
(
1974
).
78.
B. A.
Hess
, “
Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations
,”
Phys. Rev. A
32
,
756
763
(
1985
).
79.
B. A.
Hess
, “
Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators
,”
Phys. Rev. A
33
,
3742
3748
(
1986
).
80.
R.
Samzow
,
B. A.
Hess
, and
G.
Jansen
, “
The two-electron terms of the no-pair Hamiltonian
,”
J. Chem. Phys.
96
,
1227
1231
(
1992
).
81.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
, “
Relativistic regular two-component Hamiltonians
,”
J. Chem. Phys.
99
,
4597
4610
(
1993
).
82.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
, “
Relativistic total energy using regular approximations
,”
J. Chem. Phys.
101
,
9783
9792
(
1994
).
83.
C.
van Wülien
, “
Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations
,”
J. Chem. Phys.
109
,
392
399
(
1998
).
84.
M.
Barysz
and
A. J.
Sadlej
, “
Infinite-order two-component theory for relativistic quantum chemistry
,”
J. Phys. Chem. A
116
,
2696
2704
(
2002
).
85.
D.
Ke
and
M.
Barysz
, “
Non-iterative approach to the infinite-order two-component (IOTC) relativistic theory and the non-symmetric algebraic Riccati equation
,”
Chem. Phys. Lett.
446
,
176
181
(
2007
).
86.
B.
Schimmelpfennig
,
Amfi–an Atomic Mean Field Integral Program
(
Stockholm University
,
1996
).
87.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
88.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods Part I
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
) pp.
155
192
.
89.
M.
Petersilka
,
U. J.
Gossmann
, and
E. K. U.
Gross
, “
Excitation energies from time-dependent density-functional theory
,”
Phys. Rev. Lett.
76
,
1212
1215
(
1996
).
90.
A.
Dreuw
and
M.
Head-Gordon
, “
Single-reference ab initio methods for the calculation of excited states of large molecules
,”
Chem. Rev.
105
,
4009
4037
(
2005
).
91.
D.
Rowe
, “
An interpretation of time-dependent Hartree–Fock theory
,”
Nucl. Phys.
80
,
209
222
(
1966
).
92.
A.
Fetter
and
J.
Walecka
,
Quantum Theory of Many Particle Systems
(
McGraw Hill
,
1971
).
93.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm–Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
299
(
1999
).
94.
G.
Scalmani
and
M. J.
Frisch
, “
A new approach to noncollinear spin density functional theory beyond the local density approximation
,”
J. Chem. Theory Comput.
8
,
2193
(
2012
).
95.
A.
Petrone
,
D. B.
Williams-Young
,
S.
Sun
,
T. F.
Stetina
, and
X.
Li
, “
An efficient implementation of two-component relativistic density functional theory with torque-free auxiliary variables
,”
Euro. Phys. J. B
91
,
169
(
2018
).
96.
W.
Liu
and
Y.
Xiao
, “
Relativistic time-dependent density functional theories
,”
Chem. Soc. Rev.
47
,
4481
4509
(
2018
).
97.
A.
Kubas
,
M.
Verkamp
,
J.
Vura-Weis
,
F.
Neese
, and
D.
Maganas
, “
Restricted open-shell configuration interaction singles study on M- and L-edge x-ray absorption spectroscopy of solid chemical systems
,”
J. Chem. Theory Comput.
14
,
4320
4334
(
2018
).
98.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
,
7029
7039
(
1993
).
99.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2014
).
100.
H.
Koch
and
P.
Jo/rgensen
, “
Coupled cluster response functions
,”
J. Chem. Phys.
93
,
3333
3344
(
1990
).
101.
L. N.
Koulias
,
D. B.
Williams-Young
,
D. R.
Nascimento
,
A. E.
DePrince
, and
X.
Li
, “
Relativistic time-dependent equation-of-motion coupled-cluster
,”
J. Chem. Theory Comput.
15
,
6617
6624
(
2019
).
102.
S.
Coriani
and
H.
Koch
, “
Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework
,”
J. Chem. Phys.
143
,
181103
(
2015
).
103.
M. L.
Vidal
,
X.
Feng
,
E.
Epifanovsky
,
A. I.
Krylov
, and
S.
Coriani
, “
New and efficient equation-of-motion coupled-cluster framework for core-excited and core-ionized states
,”
J. Chem. Theory Comput.
15
,
3117
3133
(
2019
).
104.
M. L.
Vidal
,
P.
Pokhilko
,
A. I.
Krylov
, and
S.
Coriani
, “
Equation-of-motion coupled-cluster theory to model L-edge x-ray absorption and photoelectron spectra
,”
J. Phys. Chem. Lett.
11
,
8314
8321
(
2020
).
105.
R.
Püttner
,
M.
Domke
,
D.
Lentz
, and
G.
Kaindl
, “
Si 2p photoabsorption in SiH4 and SiD4: Molecular distortion in core-excited silane
,”
Phys. Rev. A
56
,
1228
(
1997
).
106.
T.
Fransson
,
D.
Burdakova
, and
P.
Norman
, “
K- and L-edge x-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory
,”
Phys. Chem. Chem. Phys.
18
,
13591
13603
(
2016
).
107.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
, “
Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces
,”
J. Chem. Phys.
89
,
2185
2192
(
1988
).
108.
P. Å.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
, “
The restricted active space self-consistent-field method, implemented with a split graph unitary group approach
,”
J. Phys. Chem.
94
,
5477
5482
(
1990
).
109.
N.
Engel
,
S. I.
Bokarev
,
E.
Suljoti
,
R.
Garcia-Diez
,
K. M.
Lange
,
K.
Atak
,
R.
Golnak
,
A.
Kothe
,
M.
Dantz
,
O.
Kühn
, and
E. F.
Aziz
, “
Chemical bonding in aqueous ferrocyanide: Experimental and theoretical x-ray spectroscopic study
,”
J. Phys. Chem. B
118
,
1555
1563
(
2014
).
110.
M.
Guo
,
L. K.
Sørensen
,
M. G.
Delcey
,
R. V.
Pinjari
, and
M.
Lundberg
, “
Simulations of iron K pre-edge x-ray absorption spectra using the restricted active space method
,”
Phys. Chem. Chem. Phys.
18
,
3250
3259
(
2016
).
111.
R. V.
Pinjari
,
M. G.
Delcey
,
M.
Guo
,
M.
Odelius
, and
M.
Lundberg
, “
Cost and sensitivity of restricted active-space calculations of metal L-edge x-ray absorption spectra
,”
J. Comput. Chem.
37
,
477
486
(
2016
).
112.
M. G.
Delcey
,
L. K.
Sørensen
,
M.
Vacher
,
R. C.
Couto
, and
M.
Lundberg
, “
Efficient calculations of a large number of highly excited states for multiconfigurational wavefunctions
,”
J. Comput. Chem.
40
,
1789
1799
(
2019
).
113.
S. I.
Bokarev
,
M.
Dantz
,
E.
Suljoti
,
O.
Kühn
, and
E. F.
Aziz
, “
State-dependent electron delocalization dynamics at the solute-solvent interface: Soft-x-ray absorption spectroscopy and ab initio calculations
,”
Phys. Rev. Lett.
111
,
083002
(
2013
).
114.
M.
Lundberg
and
M. G.
Delcey
, “
Multiconfigurational approach to x-ray spectroscopy of transition metal complexes
,” in
Transition Metals in Coordination Environments: Computational Chemistry and Catalysis Viewpoints
, edited by
E.
Broclawik
,
T.
Borowski
, and
M.
Radoń
(
Springer International Publishing
,
Cham
,
2019
) pp.
185
217
.
115.
P. Å.
Malmqvist
and
B. O.
Roos
, “
The CASSCF state interaction method
,”
Chem. Phys. Lett.
155
,
189
194
(
1989
).
116.
P. Å.
Malmqvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
, “
The restricted active space (RAS) state interaction approach with spin-orbit coupling
,”
Chem. Phys. Lett.
357
,
230
240
(
2002
).
117.
M.
Sassi
,
C. I.
Pearce
,
P. S.
Bagus
,
E.
Arenholz
, and
K. M.
Rosso
, “
First-principles Fe L2,3-edge and O K-edge XANES and XMCD spectra for iron oxides
,”
J. Phys. Chem. A
121
,
7613
7618
(
2017
).
118.
H.
Ikeno
,
I.
Tanaka
,
T.
Miyamae
,
T.
Mishima
,
H.
Adachi
, and
K.
Ogasawara
, “
First principles calculation of Fe L2,3-edge x-ray absorption near edge structures of iron oxides
,”
Mater. Transactions
45
,
1414
1418
(
2004
).
119.
F.
de Groot
and
A.
Kotani
,
Core Level Spectroscopy of Solids
(
CRC Press
,
Boca Raton
,
2008
).
120.
F.
De Groot
,
J.
Fuggle
,
B.
Thole
, and
G.
Sawatzky
, “
2p x-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field
,”
Phys. Rev. B
42
,
5459
5468
(
1990
).
121.
M. W.
Haverkort
, “
Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain
,”
J. Phys. Conf. Ser.
712
,
012001
(
2016
).
122.
M.
Haverkort
,
M.
Zwierzycki
, and
O.
Andersen
, “
Multiplet ligand-field theory using Wannier orbitals
,”
Phys. Rev. B
85
,
165113
(
2012
).
123.
R. K.
Hocking
,
S.
DeBeer George
,
K. N.
Raymond
,
K. O.
Hodgson
,
B.
Hedman
, and
E. I.
Solomon
, “
Fe L-edge x-ray absorption spectroscopy determination of differential orbital covalency of siderophore model compounds: Electronic structure contributions to high stability constants
,”
J. Am. Chem. Soc.
132
,
4006
4015
(
2010
).
124.
S.
Coriani
,
T.
Fransson
,
O.
Christiansen
, and
P.
Norman
, “
Asymmetric-Lanczos-chain-driven implementation of electronic resonance convergent coupled-cluster linear response theory
,”
J. Chem. Theory Comput.
8
,
1616
1628
(
2012
).
125.
J.
Kauczor
,
P.
Norman
,
O.
Christiansen
, and
S.
Coriani
, “
Communication: A reduced-space algorithm for the solution of the complex linear response equations used in coupled cluster damped response theory
,”
J. Chem. Phys.
139
,
211102
(
2013
).
126.
T.
Fahleson
,
H.
Ågren
, and
P.
Norman
, “
A polarization propagator for nonlinear x-ray spectroscopies
,”
J. Phys. Chem. Lett.
7
,
1991
1995
(
2016
).
127.
M.
Linares
,
S.
Stafström
,
Z.
Rinkevicius
,
H.
Ågren
, and
P.
Norman
, “
Complex polarization propagator approach in the restricted open-shell, self-consistent field approximation: The near K-edge x-ray absorption fine structure spectra of allyl and copper phthalocyanine
,”
J. Phys. Chem. B
115
,
5096
5102
(
2011
).
128.
U.
Ekström
,
P.
Norman
,
V.
Carravetta
, and
H.
Ågren
, “
Polarization propagator for x-ray spectra
,”
Phys. Rev. Lett.
97
,
143001
(
2006
).
129.
J.
Brabec
,
L.
Lin
,
M.
Shao
,
N.
Govind
,
C.
Yang
,
Y.
Saad
, and
E. G.
Ng
, “
Efficient algorithms for estimating the absorption spectrum within linear response TDDFT
,”
J. Chem. Theory Comput.
11
,
5197
5208
(
2015
).
130.
B.
Peng
,
R.
Van Beeumen
,
D. B.
Williams-Young
,
K.
Kowalski
, and
C.
Yang
, “
Approximate Green's function coupled cluster method employing effective dimension reduction
,”
J. Chem. Theory Comput.
15
,
3185
3196
(
2019
).
131.
E. R.
Davidson
, “
The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices
,”
J. Chem. Phys.
17
,
87
94
(
1975
).
132.
F. A.
Asmuruf
and
N. A.
Besley
, “
Time dependent density functional theory study of the near-edge x-ray absorption fine structure of benzene in gas phase and on metal surfaces
,”
J. Chem. Phys.
129
,
064705
(
2008
).
133.
D.
Zuev
,
E.
Vecharynski
,
C.
Yang
,
N.
Orms
, and
A. I.
Krylov
, “
New algorithms for iterative matrix-free eigensolvers in quantum chemistry
,”
J. Comput. Chem.
36
,
273
284
(
2015
).
134.
E.
Vecharynski
,
C.
Yang
, and
F.
Xue
, “
Generalized preconditioned locally harmonic residual method for non-Hermitian eigenproblems
,”
SIAM J. Sci. Comp.
38
,
A500
A527
(
2016
).
135.
J. M.
Kasper
,
D. B.
Williams-Young
,
E.
Vecharynski
,
C.
Yang
, and
X.
Li
, “
A well-tempered hybrid method for solving challenging time-dependent density functional theory (TDDFT) systems
,”
J. Chem. Theory Comput.
14
,
2034
2041
(
2018
).
136.
C.
Huang
,
W.
Liu
,
Y.
Xiao
, and
M. R.
Hoffmann
, “
iVI: An iterative vector interaction method for large eigenvalue problems
,”
J. Comput. Chem.
38
,
2481
2499
(
2017
).
137.
C.
Huang
and
W.
Liu
, “
iVI-TD-DFT: An iterative vector interaction method for exterior/interior roots of TD-DFT
,”
J. Comput. Chem.
40
,
1023
1037
(
2019
).
138.
J. J.
Goings
,
P. J.
Lestrange
, and
X.
Li
, “
Real-time time-dependent electronic structure theory
,”
WIREs Comput. Mol. Sci.
8
,
e1341
(
2018
).
139.
X.
Li
,
N.
Govind
,
C.
Isborn
,
A. E.
DePrince
, and
K.
Lopata
, “
Real-time time-dependent electronic structure theory
,”
Chem. Rev.
120
,
9951
9993
(
2020
).
140.
X.
Li
,
S. M.
Smith
,
A. N.
Markevitch
,
D. A.
Romanov
,
R. J.
Levis
, and
H. B.
Schlegel
, “
A time-dependent Hartree–Fock approach for studying the electronic optical response of molecules in intense fields
,”
Phys. Chem. Chem. Phys.
7
,
233
239
(
2005
).
141.
C. M.
Isborn
,
X.
Li
, and
J. C.
Tully
, “
Time-dependent density functional theory Ehrenfest dynamics: Collisions between atomic oxygen and graphite clusters
,”
J. Chem. Phys.
126
,
134307
(
2007
).
142.
W.
Liang
,
C. T.
Chapman
, and
X.
Li
, “
Efficient first-principles electronic dynamics
,”
J. Chem. Phys.
134
,
184102
(
2011
).
143.
K.
Lopata
and
N.
Govind
, “
Modeling fast electron dynamics with real-time time-dependent density functional theory: Application to small molecules and chromophores
,”
J. Chem. Theory Comput.
7
,
1344
1355
(
2011
).
144.
A.
Bruner
,
D.
LaMaster
, and
K.
Lopata
, “
Accelerated broadband spectra using transition dipole decomposition and Padé approximants
,”
J. Chem. Theory Comput.
12
,
3741
3750
(
2016
).
145.
O.
Christiansen
,
P.
Jørgensen
, and
C.
Hättig
, “
Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy
,”
Int. J. Quant. Chem.
68
,
1
52
(
1998
).
146.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
, “
Recent advances in wave function-based methods of molecular-property calculations
,”
Chem. Rev.
112
,
543
631
(
2012
).
147.
M. A.
Marques
,
N. T.
Maitra
,
F. M.
Nogueira
,
E. K.
Gross
, and
A.
Rubio
,
Fundamentals of Time-Dependent Density Functional Theory
, Vol.
837
(
Springer Science & Business Media
,
2012
),
Chap. 7
.
148.
J.
Oddershede
,
P.
Jørgensen
, and
D. L.
Yeager
, “
Polarization propagator methods in atomic and molecular calculations
,”
Comp. Phys. Rep.
2
,
33
92
(
1984
).
149.
P.
Norman
,
D. M.
Bishop
,
H.
Jørgen Aa. Jensen
, and
J.
Oddershede
, “
Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations
,”
J. Chem. Phys.
115
,
10323
10334
(
2001
).
150.
S.
Villaume
,
T.
Saue
, and
P.
Norman
, “
Linear complex polarization propagator in a four-component Kohn–Sham framework
,”
J. Chem. Phys
133
,
064105
(
2010
).
You do not currently have access to this content.