Skip to Main Content
Skip Nav Destination

Chemical Design by Artificial Intelligence

Empirical principles, and structure-property relations derived from chemical intuition, have driven for centuries the design of materials and molecules with desirable properties, and the identification of viable synthetic pathways. In recent years, thanks to the compilation of curated experimental and computational databases of compounds and reactions, and to the general advances in the application of machine-learning techniques to all fields of science, the design of molecules and materials has been increasingly led by data-driven approaches.

This special issue welcomes manuscripts that report novel methods and breakthrough applications to design chemical compounds and materials with improved properties, and synthetic routes to obtain them, by screening existing databases, by actively exploring chemical space, and by combining computational approaches with automated chemistry. Applications include, but are not limited to, discovery, computational or experimental characterization of catalysts and materials for energy storage and production as well as novel synthetic routes for molecules and materials.

Guest Editors: Daniel H. Ess, Kim E. Jelfs, and Heather J. Kulik with JCP Editor Michele Ceriotti

Special Collection Image
Daniel H. Ess; Kim E. Jelfs; Heather J. Kulik
10.1063/5.0123281
Ping Yang; E. Adrian Henle; Xiaoli Z. Fern; Cory M. Simon
10.1063/5.0090573
I. Ismail; C. Robertson; S. Habershon
10.1063/5.0096027
R. Datta; R. Ramprasad; S. Venkatram
10.1063/5.0089568
Sukolsak Sakshuwong; Hayley Weir; Umberto Raucci; Todd J. Martínez
10.1063/5.0090482
Jigyasa Nigam; Sergey Pozdnyakov; Guillaume Fraux; Michele Ceriotti
10.1063/5.0087042
Fiorella Cravero; Mónica F. Díaz; Ignacio Ponzoni
10.1063/5.0087392
Adeesh Kolluru; Nima Shoghi; Muhammed Shuaibi; Siddharth Goyal; Abhishek Das; C. Lawrence Zitnick; Zachary Ulissi
10.1063/5.0088019
Kareesa J. Kron; Andres Rodriguez-Katakura; Pranesh Regu; Maria N. Reed; Rachelle Elhessen; Shaama Mallikarjun Sharada
10.1063/5.0088353
Brianna L. Greenstein; Danielle C. Hiener; Geoffrey R. Hutchison
10.1063/5.0087299
Chun-Yen Liu; Shengbin Ye; Meng Li; Thomas P. Senftle
10.1063/5.0090055
Padraic J. Flanagan; Jacqueline M. Cole
10.1063/5.0087603
Veronika Jurásková; Frederic Célerse; Ruben Laplaza; Clemence Corminboeuf
10.1063/5.0085153
Zijie Li; Kazem Meidani; Prakarsh Yadav; Amir Barati Farimani
10.1063/5.0083060
Shomik Verma; Miguel Rivera; David O. Scanlon; Aron Walsh
10.1063/5.0084535
Eugen Hruska; Ariel Gale; Xiao Huang; Fang Liu
10.1063/5.0084833
Manajit Das; Pooja Sharma; Raghavan B. Sunoj
10.1063/5.0084432
Dongxiao Chen; Cheng Shang; Zhi-Pan Liu
10.1063/5.0084545
Thijs Stuyver; Connor W. Coley
10.1063/5.0079574
Daniel R. Harper; Aditya Nandy; Naveen Arunachalam; Chenru Duan; Jon Paul Janet; Heather J. Kulik
10.1063/5.0082964
Close Modal

or Create an Account

Close Modal
Close Modal