Skip to Main Content
Skip Nav Destination

Causation Inference and Information Flow in Dynamical Systems: Theory and Applications

Inferring causal interactions and relationships is a fundamental task pursued by scientists across many disciplines. While questions of causation are traditionally answered by testing hypotheses through carefully controlled, real experiments, recent computational approaches attempt to detect causal relations using purely observational data. Articles in this Focus Issue discuss both the theory of such approaches and their applications to problems across multiple scientific disciplines.

Guest Editors: Erik M. Bollt, Jie Sun and Jakob Runge

Adam Rupe; James P. Crutchfield
10.1063/1.5021130
Erik M. Bollt; Jie Sun; Jakob Runge
10.1063/1.5046848
X. San Liang
10.1063/1.5010253
J. Runge
10.1063/1.5025050
Joshua Garland; Andrew M. Berdahl; Jie Sun; Erik M. Bollt
10.1063/1.5024395
Milan Paluš; Anna Krakovská; Jozef Jakubík; Martina Chvosteková
10.1063/1.5019944
Erik M. Bollt
10.1063/1.5031109
Hiroshi Ashikaga; Ryan G. James
10.1063/1.5017534
Subhradeep Roy; Benjamin Jantzen
10.1063/1.5018101
James P. Bagrow; Lewis Mitchell
10.1063/1.5011403
José M. Amigó; Yoshito Hirata
10.1063/1.5010779
U. Ozturk; N. Marwan; O. Korup; H. Saito; A. Agarwal; M. J. Grossman; M. Zaiki; J. Kurths
10.1063/1.5004480
Dmitry A. Smirnov
10.1063/1.5017821
Close Modal

or Create an Account

Close Modal
Close Modal