A computer program is described that allows the effect of parameter changes on the global behavior of a nonlinear system to be studied. Steady‐state motions and their basins of attraction can be rapidly obtained and visualized for given parameter values. The program is applied to the study of a differential equation modeling a nonlinear oscillator forced parametrically through its bifurcation parameter. The algorithm used in our program is based on the Interpolated Cell Mapping (ICM) method developed by Tongue [B. H. Tongue, Physica D 28(3), 401–408 (1987)]. It is shown how this method, when implemented on a vector/parallel architecture machine, can be combined with animation to perform global sensitivity analyses of nonlinear systems. A high‐resolution (1152×900 pixel) animation is created which shows the evolution of the basins of attraction for a specific pair of periodic solutions as the forcing frequency and forcing amplitude are varied over a closed path in the parameter space. The movie consists of 720 pictures, each of which requires 518 400 separate simulations. In order to accomplish this task, the basic algorithm is modified, using IBM Parallel Fortran, to exploit the architecture of the IBM 3090‐600S. Of particular interest is the way the animation reveals phenomena that are difficult or impossible to see in the still images. Detailed benchmarks are presented which show the performance of different configurations of the code in a typical university supercomputing environment.
Skip Nav Destination
Article navigation
Research Article|
November 01 1992
Global sensitivity analysis of a nonlinear system using animated basins of attraction Free
Joseph P. Cusumano;
Joseph P. Cusumano
Department of Engineering Science & Mechanics, Penn State University, University Park, Pennsylvania 16802
Center for Academic Computing, Penn State University, University Park, Pennsylvania 16802
Search for other works by this author on:
Derchyan Lin;
Derchyan Lin
Department of Engineering Science & Mechanics, Penn State University, University Park, Pennsylvania 16802
Center for Academic Computing, Penn State University, University Park, Pennsylvania 16802
Search for other works by this author on:
Kevin Morooney;
Kevin Morooney
Department of Engineering Science & Mechanics, Penn State University, University Park, Pennsylvania 16802
Center for Academic Computing, Penn State University, University Park, Pennsylvania 16802
Search for other works by this author on:
Louis J. Pepe
Louis J. Pepe
Department of Engineering Science & Mechanics, Penn State University, University Park, Pennsylvania 16802
Center for Academic Computing, Penn State University, University Park, Pennsylvania 16802
Search for other works by this author on:
Joseph P. Cusumano
Department of Engineering Science & Mechanics, Penn State University, University Park, Pennsylvania 16802
Center for Academic Computing, Penn State University, University Park, Pennsylvania 16802
Derchyan Lin
Department of Engineering Science & Mechanics, Penn State University, University Park, Pennsylvania 16802
Center for Academic Computing, Penn State University, University Park, Pennsylvania 16802
Kevin Morooney
Department of Engineering Science & Mechanics, Penn State University, University Park, Pennsylvania 16802
Center for Academic Computing, Penn State University, University Park, Pennsylvania 16802
Louis J. Pepe
Department of Engineering Science & Mechanics, Penn State University, University Park, Pennsylvania 16802
Center for Academic Computing, Penn State University, University Park, Pennsylvania 16802
Comput. Phys. 6, 647–655 (1992)
Article history
Received:
April 29 1992
Accepted:
June 22 1992
Citation
Joseph P. Cusumano, Derchyan Lin, Kevin Morooney, Louis J. Pepe; Global sensitivity analysis of a nonlinear system using animated basins of attraction. Comput. Phys. 1 November 1992; 6 (6): 647–655. https://doi.org/10.1063/1.168421
Download citation file: