An explicit sixth-algebraic-order method for the numerical solution of the Schrödinger equation for a neutral particle is developed. The new formula considered contains free parameters that are defined in order to integrate the spherical Bessel and Neumann functions exactly. Based on the new method and a method of Simos we obtained a variable-step algorithm. The results produced, based on the numerical solution of the radial Schrödinger equation, indicate that this new approach is more efficient than other well-known ones. © 1998 American Institute of Physics.
REFERENCES
1.
2.
3.
4.
L. Gr.
Ixaru
, M.
Rizea
, and T.
Vertse
, Comput. Phys. Commun.
85
, 217
(1995
).5.
6.
7.
A. D. Raptis, Ph.D. thesis, Glasgow University, Glasgow, 1977.
8.
9.
10.
11.
12.
13.
14.
L. D.
Thomas
, M. H.
Alexander
, B. R.
Johnson
, W. A.
Lester
, Jr., J. C.
Light
, K. D.
McLenithan
, G. A.
Parker
, M. J.
Redmon
, T. G.
Schmaltz
, D.
Secrest
, and R. B.
Walker
, J. Comput. Phys.
41
, 401
(1981
).15.
16.
17.
Computational Atomic Physics, edited by K. Bartschat (Springer, Berlin, 1996).
18.
L. D. Landau and F. M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965).
19.
L. F.
Shampine
, H. A.
Watts
, and S. M.
Davenport
, SIAM (Soc. Ind. Appl. Math.) Rev.
18
, 376
(1976
).
This content is only available via PDF.
© 1998 American Institute of Physics.
1998
American Institute of Physics