An algebraic expression for 9-j symbols in the form of a summation of the products of binomial coefficients is obtained. An algorithm is also devised to calculate these binomial coefficients recursively. This avoids the evaluation of factorials of integers, which is the main source of overflow in calculation of coupling coefficients for large angular momenta. Thus, the new formula permits accurate calculation of 9-j symbols. In addition, it has higher symmetry and involves only a twofold summation. Therefore, a direct approach for accurate and efficient calculation of 9-j symbols for very large angular momenta is thereby established. © 1998 American Institute of Physics.

1.
W. J. Thompson, Angular Momentum: An Illustrated Guide to Rotation Symmetries for Physical Systems (Wiley, New York, 1994).
2.
J. F.
Schriner
and
W. J.
Thompson
,
Comput. Phys.
7
,
144
(
1993
).
3.
K. S. Rao and V. Rajeswari, Quantum Theory of Angular Momentum: Selected Topics (Springer, Narosa Publishing House, Berlin, 1993).
4.
R. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988).
5.
D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols (World Scientific, Singapore, 1988).
6.
S. J.
Alisauskas
and
A.
Jucys
,
J. Math. Phys.
12
,
594
(
1971
).
7.
L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics (Addison–Wesley, Reading, MA, 1981).
8.
D.
Zhao
and
R.
Zare
,
Mol. Phys.
65
,
1263
(
1988
).
9.
K. S.
Rao
,
V.
Rajeswari
, and
C. B.
Chiu
,
Comput. Phys. Commun.
56
,
231
(
1989
).
10.
S.
Lai
and
Y.
Chiu
,
Comput. Phys. Commun.
61
,
350
(
1990
).
11.
S.
Lai
and
Y.
Chiu
,
Comput. Phys. Commun.
70
,
544
(
1992
).
12.
D. F.
Fang
and
J. F.
Schriner
, Jr.
,
Comput. Phys. Commun.
70
,
147
(
1992
).
13.
V.
Fack
,
J.
Van der Jeugt
, and
K. S.
Rao
,
Comput. Phys. Commun.
71
,
285
(
1992
).
This content is only available via PDF.