REFERENCES
1.
M.
Karbach
and G.
Müller
, “Introduction to the Bethe Ansatz I
,” Comput. Phys.
11
, 36
(1997
).2.
H.
Bethe
, “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette
,” Z. Phys.
71
, 205
(1931
).3.
M. P.
Nightingale
, V. S.
Viswanath
, and G.
Müller
, “Computation of dominant eigenvalues and eigenvectors: A comparative study of algorithms
,” Phys. Rev. B
48
, 7696
(1993
).4.
References to results in Part I will be identified by equation numbers (I#).
5.
C. N.
Yang
and C. P.
Yang
, “One-dimensional chain of anisotropic spin–spin interactions. I. Proof of Bethe’s hypothesis for ground state in a finite system
,” Phys. Rev.
150
, 321
(1996
);C. N.
Yang
and C. P.
Yang
, “One-dimensional chain of anisotropic spin–spin interactions. II. Properties of the ground-state energy per lattice site for an infinite system
,” Phys. Rev.
150
, 327
(1996
);C. N.
Yang
and C. P.
Yang
, “One-dimensional chain of anisotropic spin–spin interactions. III. Applications
,” Phys. Rev.
151
, 258
(1966
).6.
R. J.
Baxter
, “Spontaneous staggered polarization of the F-model
,” J. Stat. Phys.
9
, 145
(1973
).7.
L.
Hulthén
, “Über das Austauschproblem eines Kristalles
,” Ark. Mat., Astron. Fys.
26A 11
, 1
(1938
).8.
R. B.
Griffiths
, “Magnetization curve at zero temperature for the antiferromagnetic Heisenberg linear chain
,” Phys. Rev. A
133
, 768
(1964
).9.
J. C.
Bonner
and M. E.
Fisher
, “Linear magnetic chains with anisotropic coupling
,” Phys. Rev.
135
, A640
(1964
).10.
J.
des Cloizeaux
and J. J.
Pearson
, “Spin-wave spectrum of the antiferromagnetic linear chain
,” Phys. Rev.
128
, 2131
(1962
);T.
Yamada
, “Fermi-liquid theory of linear antiferromagnetic chains
,” Prog. Theor. Phys.
41
, 880
(1969
).11.
L. D.
Faddeev
and L. A.
Takhtajan
, “What is the spin of a spin wave?
,” Phys. Lett. A
85
, 375
(1981
).12.
F.
Woynarovich
, “On the eigenstates of a Heisenberg chain with complex wavenumbers not forming strings
,” J. Phys. A
15
, 2985
(1982
).13.
For example, programs c05nbc, c05nbf in the Numerical Algorithm Group (NAG) library.
See also, W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, UK, 1992).
This content is only available via PDF.
© 1998 American Institute of Physics.
1998
American Institute of Physics