In this article we introduce a predictor–corrector pair of multistep algorithms adapted to the accurate and efficient numerical integration of perturbed oscillators, since the truncation error comes exclusively from the perturbation terms. They are the first such methods that can achieve a high order while allowing step-size and order variations. © 1998 American Institute of Physics.

1.
E. L. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics (Springer, Berlin, 1971).
2.
J. M.
Ferrándiz
,
Celest. Mech.
41
,
343
(
1988
).
3.
A.
Deprit
,
A.
Elipe
, and
S.
Ferrer
,
Celest. Mech. Dyn. Astron.
58
,
151
(
1994
).
4.
E.
Stiefel
and
D. G.
Bettis
,
Numer. Math.
13
,
154
(
1969
).
5.
D. G.
Bettis
,
Numer. Math.
14
,
421
(
1970
).
6.
J. Vigo and J. M. Ferrándiz, Implementation of the Bettis algorithms for the numerical integration of perturbed oscillating systems, in Computational Physics, edited by P. L. Gardio and J. Marro (World Scientific, London, 1993), p. 349.
7.
T.
Lyche
,
Numer. Math.
19
,
65
(
1972
).
8.
M. Palacios and J. M. Franco, Numerical integration for orbital problems, in Proceedings Mecanique Spatiale, Toulouse, France, 1990, p. 561.
9.
P.
Martín
and
J. M.
Ferrándiz
,
SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
34
,
359
(
1997
).
10.
D. L.
Richardson
and
J.
Vigo
,
Adv. Astron. Sci.
89
,
1525
(
1995
).
11.
J. Vigo-Aguiar, doctoral dissertation, University of Valladolid, 1993 (Spanish language, available from the author).
12.
J.
Vigo-Aguiar
and
J. M.
Ferrándiz
,
SIAM J. Num. Anal.
35
,
4
(
1998
).
13.
P.
Deuflhard
,
Z. Angew. Math. Phys.
30
,
177
(
1979
).
14.
P.
Deuflhard
,
Celest. Mech.
21
,
213
(
1980
).
15.
G.
Denk
,
Appl. Numer. Math.
13
,
57
(
1993
).
16.
L.
Ixaru
,
G.
Vanden Berghe
,
H.
De Meyer
, and
M.
Van Daele
,
Comput. Phys. Commun.
100
,
56
(
1997
).
17.
T. E.
Simos
,
Int. J. Mod. Phys. C
7
,
825
(
1996
).
18.
T. E.
Simos
and
G.
Tougelidis
,
Comput. Mater. Sci.
8
,
317
(
1997
).
19.
T. E.
Simos
,
Int. J. Theor. Phys.
36
,
663
(
1997
).
20.
T. E.
Simos
and
Ch.
Tsitouras
,
J. Comput. Phys.
130
,
123
(
1997
).
21.
T. E.
Simos
,
IMA J. Numer. Anal.
11
,
347
(
1991
).
22.
T. E.
Simos
and
A. D.
Raptis
,
J. Comput. Appl. Math.
43
,
313
(
1992
).
23.
G.
Scheifele
,
Z. Angew. Math. Phys.
22
,
186
(
1971
).
24.
V.
Fairen
,
P.
Martín
, and
J. M.
Ferrándiz
,
Comput. Phys.
8
,
455
(
1994
).
25.
L. M. Milne-Thomson, The Calculus of Finite Differences (Macmillan, New York, 1981).
26.
J. D. Lambert, Numerical Methods for Ordinary Differential Systems (Wiley, New York, 1991).
27.
R. D.
Grigorieff
,
Numer. Math.
42
,
359
(
1983
).
28.
H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations (Springer, Berlin, 1973).
29.
V. Szebehely, Theory of Orbits (Academic, Orlando, FL, 1967).
30.
W. H. Press et al., Numerical Recipes in Fortran (Cambridge University Press, Cambridge, 1992).
31.
H.
Yoshida
,
Phys. Lett. A
150
,
262
(
1995
).
This content is only available via PDF.