A computer-algebra program, written in Maple, is presented for the production of explicit exponentially fitted methods. By using this program, a family of explicit four-step predictor–corrector exponentially fitted methods is obtained for numerical solution of the Schrödinger equation. The four-step methods considered contain free parameters that allow them to be fitted to exponential functions. These sixth-order methods are very simple and integrate more exponential functions than both the well-known fourth-order Numerov methods and the sixth-order Runge–Kutta methods. Based on this computer-algebra program, a variable-step exponentially fitted method is introduced. Numerical results indicate that the new variable-step method is much more efficient than other well-known methods for numerical solution of the radial Schrödinger equation. © 1998 American Institute of Physics.

1.
T. E.
Simos
and
G.
Tougelidis
,
Comput. Chem.
20
,
397
(
1996
).
2.
J. R.
Cash
and
A. D.
Raptis
,
Comput. Phys. Commun.
33
,
299
(
1984
).
3.
J. R.
Cash
,
A. D.
Raptis
, and
T. E.
Simos
,
J. Comput. Phys.
91
,
413
(
1990
).
4.
J. P.
Coleman
,
IMA J. Numer. Anal.
9
,
145
(
1989
).
5.
J. W.
Cooley
,
Math. Comput.
15
,
363
(
1961
).
6.
L. Gr. Ixaru and M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978).
7.
L. Gr.
Ixaru
and
M.
Rizea
,
Comput. Phys. Commun.
19
,
23
(
1980
).
8.
J.
Killingbeck
,
J. Phys. A
20
,
1411
(
1987
).
9.
H.
Kobeissi
and
M.
Kobeissi
,
J. Comput. Chem.
9
,
844
(
1988
).
10.
H.
Kobeissi
and
M.
Kobeissi
,
J. Comput. Phys.
77
,
501
(
1988
).
11.
H.
Kobeissi
,
M.
Kobeissi
, and
A.
El-Hajj
,
J. Phys. A
22
,
287
(
1989
).
12.
G. J.
Kroes
,
Comput. Phys. Commun.
70
,
41
(
1992
).
13.
J. D.
Lambert
and
I. A.
Watson
,
J. Inst. Math. Appl.
18
,
189
(
1976
).
14.
J. M.
Blatt
,
J. Comput. Phys.
1
,
382
(
1967
).
15.
A. D.
Raptis
,
Comput. Phys. Commun.
24
,
1
(
1981
).
16.
A. D.
Raptis
,
Computing
28
,
373
(
1982
).
17.
A. D.
Raptis
,
Comput. Phys. Commun.
28
,
427
(
1983
).
18.
A. D.
Raptis
,
Bull. Greek Math. Soc.
25
,
113
(
1984
).
19.
A. D.
Raptis
and
A. C.
Allison
,
Comput. Phys. Commun.
14
,
1
(
1978
).
20.
A. D.
Raptis
and
J. R.
Cash
,
Comput. Phys. Commun.
44
,
95
(
1987
).
21.
T. E. Simos, Numerical solution of ordinary differential equations with periodical solution. Doctoral dissertation, National Technical University of Athens, 1990.
22.
T. E.
Simos
,
J. Comput. Appl. Math.
30
,
251
(
1990
).
23.
T. E.
Simos
,
IMA J. Numer. Anal.
11
,
347
(
1991
).
24.
T. E.
Simos
,
Comput. Phys. Commun.
71
,
32
(
1992
).
25.
T. E.
Simos
,
Phys. Lett. A
177
,
345
(
1993
).
26.
G.
Vanden Berghe
,
V.
Fack
, and
H. E.
De Meyer
,
J. Comput. Appl. Math.
29
,
391
(
1989
).
27.
T. E.
Simos
and
P. S.
Williams
,
Comput. Chem.
21
,
403
(
1997
).
28.
T. E.
Simos
and
P. S.
Williams
,
J. Comput. Appl. Math.
79
,
189
(
1997
).
29.
T.
Lyche
,
Numer. Math.
19
,
65
(
1972
).
30.
P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, New York, 1962).
31.
L. Gr.
Ixaru
and
M.
Rizea
,
J. Comput. Appl. Math.
79
,
87
(
1997
).
32.
E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I (Springer, Berlin, 1987).
33.
Ch.
Adam
,
L. Gr.
Ixaru
, and
A.
Corciovei
,
J. Comput. Phys.
22
,
1
(
1976
).
This content is only available via PDF.