A revised version of the quaternion approach for numerical integration of the equations of motion for rigid polyatomic molecules is proposed. The modified approach is based on a formulation of the quaternion dynamics with constraints. This allows one to resolve the rigidity problem rigorously using constraint forces. It is shown that the procedure for preservation of molecular rigidity can be realized particularly simply within the Verlet algorithm in velocity form. We demonstrate that the method presented leads to an improved numerical stability with respect to the usual quaternion rescaling scheme and it is roughly as good as the cumbersome atomic-constraint technique. © 1998 American Institute of Physics.

1.
A.
Rahman
and
F. H.
Stillinger
,
J. Chem. Phys.
55
,
3336
(
1971
);
A.
Rahman
and
F. H.
Stillinger
,
J. Chem. Phys.
60
,
1545
(
1974
).
2.
J. P.
Ryckaert
and
A.
Bellemans
,
Chem. Phys. Lett.
30
,
123
(
1975
).
3.
H. Goldstein, Classical Mechanics, 2nd ed. (Addison–Wesley, Reading, MA, 1967).
4.
J.
Barojas
,
D.
Levesque
, and
B.
Quentrec
,
Phys. Rev. A
7
,
1092
(
1973
).
5.
D.
Levesque
,
J. J.
Weis
, and
G. N.
Patey
,
Mol. Phys.
51
,
333
(
1984
).
6.
P. S. Y.
Cheung
and
J. G.
Powles
,
Mol. Phys.
30
,
921
(
1975
).
7.
K.
Singer
,
A.
Taylor
, and
J. V. L.
Singer
,
Mol. Phys.
33
,
1757
(
1977
).
8.
O.
Steinhauser
and
M.
Neumann
,
Mol. Phys.
37
,
1921
(
1979
).
9.
O.
Steinhauser
,
Chem. Phys. Lett.
82
,
153
(
1981
).
10.
D. J.
Evans
,
Mol. Phys.
34
,
317
(
1977
).
11.
D. J.
Evans
and
S.
Murad
,
Mol. Phys.
34
,
327
(
1977
).
12.
D. J.
Tildesley
and
P. A.
Maden
,
Mol. Phys.
42
,
1137
(
1981
).
13.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
14.
D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1995).
15.
J. P.
Ryckaert
,
G.
Ciccotti
and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
16.
G.
Ciccotti
,
J. P.
Ryckaert
and
M.
Ferrario
,
Mol. Phys.
47
,
1253
(
1982
).
17.
C. W. Gear, ANL Report No. ANL-7126, 1966.
18.
C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice–Hall, Englewood Cliffs, NJ, 1971).
19.
L.
Verlet
,
Phys. Rev.
159
,
98
(
1967
).
20.
R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw–Hill, New York, 1981).
21.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
22.
D.
Beeman
,
J. Comput. Phys.
20
,
130
(
1976
).
23.
J. M. Haile, Molecular Dynamics Simulations: Elementary Methods (Wiley-Interscience, New York, 1992).
24.
H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods: Applications to Physical Systems (Addison–Wesley, Reading, MA, 1988) Part 1.
25.
W. L.
Jorgensen
et al.,
J. Chem. Phys.
79
,
926
(
1983
).
26.
I. P.
Omelyan
,
Phys. Lett. A
223
,
295
(
1996
).
27.
D.
Bertolini
and
A.
Tani
,
Phys. Rev. E
51
,
1091
(
1995
).
This content is only available via PDF.