We present a simple multivariate interpolation scheme of arbitrary dimensionality based on Mathematica. The only limitation of the scheme is that the data must be distributed over a regular tensor-product grid. Since most software libraries fail to include a multivariate interpolation scheme that goes beyond three dimensions, the implemented code should prove useful in many applications that require interpolation in more than three variables. As an application, we use our program to construct smooth molecular potential-energy functions from data obtained by electronic structure calculations. For the three-dimensional case we compare the interpolants generated by our code to those resulting from standard library routines. © 1997 American Institute of Physics.
Skip Nav Destination
Article navigation
Research Article|
November 01 1997
A practical approach to multivariate interpolation Free
Stefan Schulz;
Stefan Schulz
Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
Max-Born-Institut, Rudower Chaussee 6, D-12489 Berlin, Germany
Search for other works by this author on:
Regina de Vivie-Riedle
Regina de Vivie-Riedle
Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
Search for other works by this author on:
Stefan Schulz
Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
Max-Born-Institut, Rudower Chaussee 6, D-12489 Berlin, Germany
Regina de Vivie-Riedle
Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
Comput. Phys. 11, 647–659 (1997)
Article history
Received:
September 30 1996
Accepted:
May 29 1997
Citation
Stefan Schulz, Regina de Vivie-Riedle; A practical approach to multivariate interpolation. Comput. Phys. 1 November 1997; 11 (6): 647–659. https://doi.org/10.1063/1.168614
Download citation file:
Citing articles via
Related Content
Curve fitting by Lagrange interpolation
Comput. Phys. (March 1993)
Parametric curve fitting: An alternative to Lagrange interpolation and splines
Comput. Phys. (November 1994)
Positive iterative deconvolution with energy conservation
Comput. Phys. (March 1998)
Monte Carlo simulation of Comptonization in inhomogeneous media
Comput. Phys. (November 1997)
A hierarchical approach to stochastic simulation of correlated systems
Comput. Phys. (March 1993)