Correlations in the generalized feedback shift-register random-number generator are shown to be greatly reduced when the number of feedback taps is increased from two to four (or more) and the tap offsets are made large. Simple formulas for producing maximal-cycle four-tap rules from available primitive trinomials are given, and explicit three- and four-point correlations are found for some of those rules. Several generators are also tested using a simple but sensitive random-walk simulation that relates to a problem in percolation theory. While virtually all two-tap generators fail this test, four-tap generators with offsets greater than about 500 pass it, have passed tests carried out by others, and appear to be good multipurpose high-quality random-number generators. © 1998 American Institute of Physics.

1.
D. E. Knuth, Seminumerical Algorithms, The Art of Computer Programming (Addison–Wesley, Reading, MA, 1973), Vol. 2.
2.
G. Marsaglia, in Computer Science and Statistics: The Interface, edited by L. Billard (Elsevier–North-Holland, Amsterdam, 1985).
3.
P.
L’Ecuyer
,
Ann. Oper. Res.
53
,
77
(
1994
).
4.
H. Niederreiter, J. Comp. Appl. Math. 56, 159 (1994); in Monte-Carlo and Quasi-Monte Carlo Methods in Scientific Computing, edited by H. Niederreiter and P. J.-S. Shiue, Volume 106 of Lecture Notes in Statistics (Springer, Berlin, 1995).
5.
R. C.
Tausworthe
,
Math. Comput.
19
,
201
(
1965
).
6.
S. W. Golomb, Shift Register Sequences (Holden Day, San Francisco, CA, 1967).
7.
T. G.
Lewis
and
W. H.
Payne
,
J. Assoc. Comput. Mach.
20
,
456
(
1973
).
8.
S.
Kirkpatrick
and
E. P.
Stoll
,
J. Comput. Phys.
40
,
517
(
1981
).
9.
A.
Hoogland
,
J.
Spaa
,
B.
Selman
, and
A.
Compagner
,
J. Comput. Phys.
51
,
250
(
1983
).
10.
G.
Parisi
and
F.
Rapuano
,
Phys. Lett.
157B
,
301
(
1985
).
11.
R. M.
Ziff
,
Phys. Rev. Lett.
56
,
545
(
1986
).
12.
R. M. Ziff (unpublished). The work proposed alternating between R(103, 250) and R(30, 127) on the same list of numbers, which is presumably equivalent to using another multitap generator. However, it is not known whether maximal-cycle length is achieved in this method, and therefore the matter requires further study.
13.
A. M.
Ferrenberg
,
D. P.
Landau
, and
Y. J.
Wong
,
Phys. Rev. Lett.
69
,
3382
(
1993
).
14.
P. D.
Coddington
,
Int. J. Mod. Phys. C
5
,
547
(
1994
);
P. D.
Coddington
,
Int. J. Mod. Phys. C
7
,
295
(
1996
).
15.
P.
Grassberger
,
Phys. Lett. A
181
,
43
(
1993
).
16.
I.
Vattulainen
,
T.
Ala-Nissila
, and
K.
Kankaala
,
Phys. Rev. Lett.
73
,
2513
(
1994
);
I.
Vattulainen
,
T.
Ala-Nissila
, and
K.
Kankaala
,
Phys. Rev. E
52
,
3205
(
1995
).
17.
L. N.
Shchur
,
J. R.
Heringa
, and
H. W. J.
Blöte
,
Physica A
241
,
579
(
1997
);
L. N.
Shchur
and
H. W. J.
Blöte
,
Phys. Rev. E
55
,
R4905
(
1997
).
18.
F.
Schmid
and
N. B.
Wilding
,
Int. J. Mod. Phys. C
6
,
781
(
1995
).
19.
A.
Compagner
and
A.
Hoogland
,
J. Comput. Phys.
71
,
391
(
1987
).
20.
J. R.
Heringa
,
H. W. J.
Blöte
, and
A.
Compagner
,
Int. J. Mod. Phys. C
3
,
561
(
1992
).
21.
A.
Compagner
,
J. Stat. Phys.
63
,
883
(
1991
).
22.
A.
Compagner
,
Am. J. Phys.
59
,
700
(
1991
).
23.
A.
Heuer
,
B.
Dünweg
, and
A. M.
Ferrenberg
,
Comput. Phys. Commun.
103
,
1
(
1997
).
24.
Y.
Kurita
and
M.
Matsumoto
,
Math. Comput.
56
,
194
(
1991
).
25.
M.
Živković
,
Math. Comput.
62
,
205
(
1994
).
26.
S. W. Golomb, in Combinatorial Mathematics and its Applications, Conference Proceedings, edited by R. C. Bose and T. A. Dowling (University of North Carolina Press, Chapel Hill, 1969), pp. 358–370.
27.
A. A.
André
,
G. L.
Mullen
,
H.
Niederreiter
,
Math. Comput.
54
,
737
(
1990
).
28.
Th.
Ruijgrok
and
E. G. D.
Cohen
,
Phys. Lett. A
133
,
415
(
1988
).
29.
W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes (MIT Press, Cambridge, MA, 1972).
30.
N.
Zierler
and
J.
Brillhart
,
Inf. Control.
13
,
541
(
1968
);
N.
Zierler
and
J.
Brillhart
,
Inf. Control.
14
,
566
(
1969
).
31.
N.
Zierler
,
Inf. Control.
15
,
67
(
1969
).
32.
J. C.
Cardy
,
J. Phys. A
25
,
L201
(
1992
).
33.
R.
Langlands
,
P.
Pouiliot
, and
Y.
Saint-Aubin
,
Bull. Am. Math. Soc.
30
,
1
(
1994
).
34.
R. M.
Ziff
,
Phys. Rev. Lett.
69
,
2670
(
1992
).
35.
J. M. F.
Gunn
and
M.
Ortuño
,
J. Phys. A
18
,
L1095
(
1985
).
36.
S.
Roux
,
E.
Guyon
, and
D.
Sornett
,
J. Phys. A
21
,
L475
(
1988
).
37.
R. M.
Ziff
,
Phys. Rev. E
54
,
2547
(
1996
).
38.
J.-P.
Hovi
and
A.
Aharony
,
Phys. Rev. E
53
,
235
(
1996
).
39.
B.
Duplantier
and
H.
Saleur
,
Phys. Rev. Lett.
59
,
539
(
1987
).
40.
R. M. Ziff and G. Stell, University of Michigan Laboratory for Scientific Computing Report No. 4-88 (1988).
41.
R. M.
Ziff
and
P.
Suding
,
J. Phys. A
30
,
5351
(
1997
).
42.
C. D.
Lorenz
and
R. M.
Ziff
,
Phys. Rev. E
57
,
230
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.