A recurrence plot is a visualization tool for analyzing experimental data. These plots often reveal correlations in the data that are not easily detected in the original time series. Existing recurrence plot analysis techniques, which are primarily application oriented and completely quantitative, require that the time-series data first be embedded in a high-dimensional space, where the embedding dimension dE is dictated by the dimension d of the data set, with dE⩾2d+1. One such set of recurrence plot analysis tools, recurrence quantification analysis, is particularly useful in finding locations in the data where the underlying dynamics change. We have found that for certain low-dimensional systems the same results can be obtained with no embedding.

1.
J.-P.
Eckmann
,
S.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
,
973
977
(
1987
).
2.
C.
Webber
and
J.
Zbilut
, “
Dynamical assessment of physiological systems and states using recurrence plot strategies
,”
J. Appl. Physiol.
76
,
965
973
(
1994
).
3.
P.
Kaluzny
and
R.
Tarnecki
, “
Recurrence plots of neural spike trains
,”
Biol. Cybern.
68
,
527
534
(
1993
).
4.
L.
Trulla
,
A.
Giuliani
,
J.
Zbilut
, and
C.
Webber
, “
Recurrence quantification analysis of the logistic equation with transients
,”
Phys. Lett. A
223
,
255
260
(
1996
).
5.
M.
Casdagli
, “
Recurrence plots revisited
,”
Physica D
108
,
12
44
(
1997
).
6.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
7.
N.
Packard
,
J.
Crutchfield
,
J.
Farmer
, and
R.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
(
1980
).
8.
F. Takens, “Detecting strange attractors in fluid turbulence,” in Dynamical Systems and Turbulence, edited by D. Rand and L.-S. Young (Springer, Berlin, 1981), pp. 366–381.
9.
H. D. I. Abarbanel, Analysis of Observed Chaotic Data (Springer, New York, 1995).
10.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
(
2
),
1134
1140
(
1986
).
11.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining minimum embedding dimension using a geometrical construction
,”
Phys. Rev. A
45
,
3403
3411
(
1992
).
12.
D. Kaplan and L. Glass, Understanding Nonlinear Dynamics (Springer-Verlag, New York, 1995).
13.
C. E. Shannon, The Mathematical Theory of Communication (University of Illinois, Urbana, IL, 1964).
14.
G. H.
Gunaratne
,
P. S.
Linsay
, and
M. J.
Vinson
, “
Chaos beyond onset: A comparison of theory and experiment
,”
Phys. Rev. Lett.
63
,
1
(
1989
).
15.
C. Sparrow, “The Lorenz equations,” in Synergetics: A Workshop, edited by H. Haken (Springer Verlag, New York, 1977), pp. 111–134.
16.
S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, MA, 1994).
This content is only available via PDF.
You do not currently have access to this content.