The experimental detection of unstable periodic orbits in dynamical systems, especially those which yield short, noisy or nonstationary data sets, is a current topic of interest in many research areas. Unfortunately, for such data sets, only a few of the lowest order periods can be detected with quantifiable statistical accuracy. The primary observable is the number of encounters the general trajectory has with a particular orbit. Here we show that, in the limit of large period, this quantity scales exponentially with the period, and that this scaling is robust to dynamical noise.
REFERENCES
1.
Measures of Complexity and Chaos, edited by N. B. Abraham, A. M. Albano, A. Passamante, and P. Rapp (Plenum, New York, 1989).
2.
Nonlinear Dynamics and Time Series: Building a Bridge between the Natural and Statistical Sciences, edited by C. D. Cutler and D. T. Kaplan, Fields Institute Communications, Vol. 11 (American Mathematical Society, Providence, RI, 1996).
3.
See, for example,
A.
Wolf
, J. B.
Swift
, H. L.
Swinney
, and J. A.
Vastano
, Physica D
16
, 285
(1985
).4.
H. D. I.
Abarbanel
, R.
Brown
, J. J.
Sidorowich
, and L. S.
Tsimring
, Rev. Mod. Phys.
65
, 1331
(1993
).5.
H. D. I. Abarbanel, Analysis of Observed Chaotic Data (Springer, New York, 1996).
6.
See, for example,
P.
Grassberger
and I.
Procaccia
, Phys. Rev. Lett.
50
, 346
(1983
).7.
8.
A. M.
Albano
, J.
Muench
, C.
Schwartz
, A. I.
Mees
, and P. E.
Rapp
, Phys. Rev. A
38
, 3017
(1988
).9.
M.
Ding
, C.
Grebogi
, E.
Ott
, T.
Sauer
, and J. A.
Yorke
, Phys. Rev. Lett.
70
, 3872
(1993
);M.
Ding
, C.
Grebogi
, E.
Ott
, T.
Sauer
, and J. A.
Yorke
, Physica D
69
, 404
(1993
).10.
P. E.
Rapp
, A. M.
Albano
, T. I.
Schmah
, and L. A.
Farwell
, Phys. Rev. E
47
, 2289
(1993
).11.
12.
K. A.
Richardson
, T. T.
Imhoff
, P.
Grigg
, and J. J.
Collins
, Phys. Rev. Lett.
80
, 2485
(1998
).13.
(personal communication);
Montreal 97 Summer School Lecture Notes, Week 2, edited by The Faculty and Staff of the Centre for Nonlinear Dynamics (McGill University, Montreal, 1997), pp. 149–150.
14.
15.
16.
17.
18.
G.
Mindlin
, H.
Solari
, M.
Natiello
, R.
Gilmore
, and X.-J.
Hou
, Nonlinear Science
1
, 147
(1991
).19.
R.
Gilmore
, R.
Vilaseca
, R.
Corbalan
, and E.
Roldan
, Phys. Rev. E
55
, 2479
(1997
).20.
21.
22.
23.
H. A.
Braun
, K.
Schäfer
, K.
Voigt
, R.
Peters
, F.
Bretschneider
, X.
Pei
, L.
Wilkens
, and F.
Moss
, J. Comp. Neurosci.
4
, 335
(1997
).24.
P.
So
, E.
Ott
, S.
Schiff
, D. T.
Kaplan
, T.
Sauer
, and C.
Grebogi
, Phys. Rev. Lett.
76
, 4705
(1996
).25.
P.
So
, E.
Ott
, T.
Sauer
, B. J.
Gluckman
, C.
Grebogi
, and S.
Schiff
, Phys. Rev. E
55
, 5398
(1997
).26.
M. Spano, X. Pei, K. Dolan and F. Moss (to be published).
27.
D.
Auerbach
, P.
Cvitanovic
, J.-P.
Eckmann
, G. H.
Gunaratne
, and I.
Procaccia
, Phys. Rev. Lett.
58
, 2387
(1988
).28.
29.
R.
Artuso
, E.
Aurell
, and P.
Cvitanovic
, Nonlinearity
3
, 325
(1990
).30.
R.
Artuso
, E.
Aurell
, and P.
Cvitanovic
, Nonlinearity
3
, 361
(1990
).31.
32.
R. Badii, Complexity-Hierarchical Structures and Scaling in Physics (Cambridge University Press, Cambridge, England, 1997).
33.
R.
Badii
, E.
Brun
, M.
Finardi
, L.
Flepp
, R.
Holzner
, J.
Parisi
, C.
Reyl
, and J.
Simonet
, Rev. Mod. Phys.
66
, 1389
(1994
).34.
T. C.
Halsey
, M. H.
Jensen
, L. P.
Kadanoff
, I.
Procaccia
, and B.
Shraiman
, Phys. Rev. A
33
, 1141
(1986
).35.
P.
Grassberger
, R.
Badii
, and A.
Politi
, J. Stat. Phys.
51
, 135
(1988
).36.
37.
C. Beck and F. Schlögel, Thermodynamics of Chaotic Systems (Cambridge University Press, Cambridge, England, 1993).
38.
39.
40.
Effectively, since averaging over initial conditions is an approximate effect of dynamical noise in experimental systems.
41.
42.
43.
Y.-C. Lai, X. Pei, and F. Moss (to be published).
44.
K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos: An Introduction to Dynamical Systems (Springer, New York, 1997).
45.
A. Renyi, Probability Theory (North-Holland, Amsterdam, 1970).
46.
47.
48.
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, New York, 1993).
49.
Y.-C.
Lai
, Y.
Nagai
, and C.
Grebogi
, Phys. Rev. Lett.
79
, 649
(1997
).50.
In general, it can be proven that the metric entropy is at most the sum of the positive Lyapunov exponents [e.g., D. Ruelle, Chaotic Evolution and Strange Attractors (Cambridge University Press, New York, 1989)]. For a low-dimensional chaotic system with one positive Lyapunov exponent λ, we thus have The topological entropy and the metric entropy are two members of the generalized entropies which satisfy
It is also known that for a two-dimensional smooth invertible map, the Kaplan-Yorke conjecture reduces to the equality [J. L. Kaplan and J. A. Yorke, in Functional Differential Equations and Approximations of Fixed Points, edited by H.-O. Peitgen and H.-O. Walter, Lecture Notes in Mathematics Vol. 730 (Springer, Berlin, 1979)].
51.
The dynamics is hyperbolic on a chaotic attractor if at each point of the trajectory the phase space can be split into an expanding and a contracting subspace, and the angle between them is bounded away from zero. Furthermore, the expanding subspace evolves into the expanding one along the trajectory and the same is true for the contracting subspace. Otherwise the set is nonhyperbolic (Ref. 39).
52.
R. Bowen, On Axiom A Diffeomorphisms, CBMS Regional Conference Series in Mathematics (American Mathematical Society, Providence, RI, 1978), Vol. 35.
53.
J. C. Sprott and G. Rowlands, Chaos Data Analyzer (American Institute of Physics, New York, 1995).
54.
55.
W. L.
Ditto
, S. N.
Rauseo
, and M. L.
Spano
, Phys. Rev. Lett.
65
, 3211
(1990
).56.
A.
Garfinkel
, M. L.
Spano
, W. L.
Ditto
, and J. N.
Weiss
, Science
257
, 1230
(1992
).
This content is only available via PDF.
© 1998 American Institute of Physics.
1998
American Institute of Physics
You do not currently have access to this content.